A SURVEY ON FIXED POINT THEOREMS IN GENERALIZED CONVEX SPACES

SEHIE PARK

ABSTRACT. We review some fixed point theorems which have appeared in our previous works [P1-11] on generalized convex spaces.

The concept of generalized convex spaces is a common generalization of various abstract convexities with or without linear structure and includes those of convex subsets of topological vector spaces, convex spaces of Lassonde, C-spaces due to Horvath, and many others. In the present paper, we review some fixed point theorems which have appeared mainly in our previous works [P1-11] on generalized convex spaces. Most of them are generalizations of well-known corresponding ones for topological vector spaces (t.v.s.).

1. Generalized convex spaces

A generalized convex space or a G-convex space $(Y, D; \Gamma)$ consists of a topological space Y, a nonempty set D, and a multimap $\Gamma : \langle D \rangle \multimap Y$ such that for each $A \in \langle D \rangle$ with cardinality |A| = n + 1, there exists a continuous function $\phi_A : \Delta_n \to \Gamma(A)$ such that $J \in \langle A \rangle$ implies $\phi_A(\Delta_J) \subset \Gamma(J)$, where $\langle D \rangle$ is the class of all nonempty finite subsets of D, Δ_n denotes the standard n-simplex with vertices $\{e_i\}_{i=0}^n$, and Δ_J the face of Δ_n corresponding to $J \in \langle A \rangle$; that is, if $A = \{a_0, a_1, \cdots, a_n\}$ and $J = \{a_{i_0}, a_{i_1}, \cdots, a_{i_k}\} \subset A$, then $\Delta_J = \operatorname{co}\{e_{i_0}, e_{i_1}, \cdots, e_{i_k}\}$.

We may write $\Gamma_A = \Gamma(A)$ and it is possible to assume $\Gamma_A = \phi_A(\Delta_n)$ for each $A \in \langle D \rangle$. A *G*-convex space $(X, D; \Gamma)$ with $X \supset D$ is denoted by $(X \supset D; \Gamma)$ and $(X; \Gamma) := (X, X; \Gamma)$. For a *G*-convex space $(X \supset D; \Gamma)$, a subset $Y \subset X$ is said to be Γ -convex if for each $N \in \langle D \rangle$, $N \subset Y$ implies $\Gamma_N \subset Y$. For details on *G*-convex spaces and examples, see [P1,4,5, PK1-6], where basic theory was extensively developed.

A G-convex space $(X, D; \Gamma)$ is called a C-space if each Γ_A is contractible (or more generally, *n*-connected for all $n \geq 0$) and, for each $A, B \in \langle D \rangle, A \subset B$ implies $\Gamma_A \subset \Gamma_B$. For X = D, this concept reduces to the one due to Horvath [H1,2].

We give here only a few examples of G-convex spaces:

²⁰⁰⁰ Mathematics Subject Classification. 47H04, 47H10, 52A07, 54C60, 54H25, 55M20.

Key words and phrases. The Schauder conjecture, Kakutani map, Fan-Browder map, approximable map, better admissible class of multimaps.

Examples 1. [PM] Let X = D = [0, 1) and $Y = D' = \mathbb{S}^1 = \{e^{2\pi i t} : t \in [0, 1)\}$ in the complex plane \mathbb{C} . Let $f : X \to Y$ be a continuous function defined by $f(t) = e^{2\pi i t}$. Define $\Gamma : \langle D' \rangle \longrightarrow Y$ by

$$\Gamma_A = f(\operatorname{co}(f^{-1}(A))) \quad ext{for} \quad A \in \langle D' \rangle.$$

Then $(Y \supset D'; \Gamma)$ is a compact G-convex space. (More generally, it is known that any continuous image of a G-convex space is a G-convex space.) We note the following:

(1) S^1 lacks the fixed point property. Moreover, S^1 is an example of a compact *C*-space since each Γ_A is contractible. Therefore, it shows that the Schauder conjecture (that is, any compact convex subset of a t.v.s. has the fixed point property) does not hold for *G*-convex spaces.

(2) Note that, in $(Y \supset D'; \Gamma)$, singletons are Γ -convex; that is, $\Gamma_{\{y\}} = \{y\}$ for each $y \in D'$.

(3) $(Y, D; \Gamma)$ with $\Gamma : \langle D \rangle \multimap Y$ defined by

$$\Gamma_A = f(\operatorname{co} A) \quad \text{for} \quad A \in \langle D \rangle$$

is an example of a G-convex space satisfying $D \not\subset Y$.

Examples 2. Let X = D = [0,1] and $Y = D' = \mathbb{S}^1 = \{e^{2\pi i t} : t \in [0,1]\}$. Define f and Γ_A as in Examples 1. Then $(Y \supset D'; \Gamma)$ is a compact G-convex space.

(1) Note that $1 \in S^1$ and that $\Gamma_{\{1\}} = S^1$ is not contractible. Hence, $(Y \supset D'; \Gamma)$ is not a C-space.

(2) Moreover $\Gamma_{\{1\}} \neq \{1\}$. Therefore, in general, $\Gamma_{\{y\}} \neq \{y\}$ in a G-convex space.

Examples 3. Similarly, for $X = [0,1) \times [0,1)$ or $X = [0,1] \times [0,1]$, we can made the torus, the Möbius band, and the Klein bottle into compact G-convex spaces, as was noted by Horvath [H1].

Several authors modified our definition of G-convex spaces and claimed that theirs are general than ours. All of them failed to give any proper meaningful example justifying their claims.

The following is known:

Theorem 1. [PM] Let X be a compact Hausdorff uniform space with a basis \mathcal{U} of the uniformity and $f: X \to X$ a continuous map. Then f has a fixed point if and only if for any $V \in \mathcal{U}$, $\operatorname{Gr}(f) \cap \overline{V} \neq \emptyset$.

2. Fan-Browder maps

A multimap (simply, a map) $T: X \to Y$ is a function from X into the power set 2^Y of Y. T(x) is called the value of T at $x \in X$ and $T^-(y) := \{x \in X : y \in T(x)\}$ the fiber of T at $y \in Y$. Let $T(A) := \bigcup \{T(x) : x \in A\}$ for $A \subset X$.

For topological spaces X and Y, a map $T: X \multimap Y$ is said to be *closed* if its graph $Gr(T) := \{(x, y) : x \in X, y \in T(x)\}$ is closed in $X \times Y$, and *compact* if its range T(X) is contained in a compact subset of Y.

A SURVEY ON FIXED POINT THEOREMS IN GENERALIZED CONVEX SPACES

A map $T: X \to Y$ is said to be upper semicontinuous (u.s.c.) if for each closed set $B \subset Y$, the set $T^{-}(B) = \{x \in X : T(x) \cap B \neq \emptyset\}$ is a closed subset of X; lower semicontinuous (l.s.c.) if for each open set $B \subset Y$, the set $T^{-}(B)$ is open; and continuous if it is u.s.c. and l.s.c. Note that a compact closed multimap is u.s.c. and compact-valued; and that every u.s.c. map with closed values is closed.

A multimap with nonempty convex values and open fibers is called a *Browder map*. The well-known *Fan-Browder fixed point theorem* states that a Browder map T from a compact convex subset X of a t.v.s. into itself has a fixed point [Br].

From the celebrated KKM theorem, we obtained the following general form of the Fan-Browder fixed point theorem:

Theorem 2. [P4,8] Let $(X, D; \Gamma)$ be a G-convex space, and $S : D \multimap X$, $T : X \multimap X$ multimaps. Suppose that

(1) S(z) is open [resp. closed] for each $z \in D$;

(2) for each $y \in X$, $M \in \langle S^{-}(y) \rangle$ implies $\Gamma_{M} \subset T^{-}(y)$; and

(3) X = S(N) for some $N \in \langle D \rangle$.

Then T has a fixed point $x_0 \in X$; that is, $x_0 \in T(x_0)$.

In [P8], this is applied to obtain various forms of known Fan-Browder type theorems, the Ky Fan intersection theorem, and the Nash equilibrium theorem.

The following is the dual form of Theorem 2:

Theorem 3. [P7] Let $(X, D; \Gamma)$ be a G-convex space and $S : X \multimap D, T : X \multimap X$ maps such that

- (1) for each $x \in X$, $M \in \langle S(x) \rangle$ implies $\Gamma_M \subset T(x)$;
- (2) $S^{-}(z)$ is open [resp. closed] for each $z \in D$; and

(3) $X = \bigcup \{S^{-}(z) : z \in N\}$ for some $N \in \langle D \rangle$.

Then T has a fixed point $x_0 \in X$.

From Theorem 3, we have the following:

Theorem 4. [P10] Let $(X \supset D; \Gamma)$ be a G-convex space and $A: X \multimap X$ a multimap such that A(x) is Γ -convex for each $x \in X$. If there exist $z_1, z_2, \cdots, z_n \in D$ and nonempty open [resp. closed] subsets $G_i \subset A^-(z_i)$ for $i = 1, 2, \cdots, n$ such that $X = \bigcup_{i=1}^n G_i$, then A has a fixed point.

Theorem 5. [P7] Let $(X, D; \Gamma)$ be a G-convex space and $S : X \multimap D$, $T : X \multimap X$ maps such that

(1) for each $x \in X$, $M \in \langle S(x) \rangle$ implies $\Gamma_M \subset T(x)$; and

(2) $X = \bigcup \{ \operatorname{Int} S^{-}(z) : z \in N \}$ for some $N \in \langle D \rangle$.

Then T has a fixed point.

From Theorems 2-5, most of popular variations or generalizatons of the Fan-Browder theorem (in the forms of the compact or so-called non-compact versions) can be deduced; see [P7,8,10].

3. Φ -spaces and compact Φ -maps

For a topological space X and a G-convex space $(Y, D; \Gamma)$, a multimap $T: X \multimap Y$ is called a Φ -map provided that there exists a multimap $S: X \multimap D$ satisfying

(a) for each $x \in X$, $M \in \langle S(x) \rangle$ implies $\Gamma_M \subset T(x)$; and

(b) $X = \bigcup \{ \operatorname{Int} S^-(y) : y \in D \}.$

A G-convex space $(Y, D; \Gamma)$ is called a Φ -space if Y is a Hausdorff uniform space and for each entourage V there exists a Φ -map $T : Y \multimap Y$ such that $Gr(T) \subset V$. This concept is originated from Horvath [H1], where a number of examples are given.

Theorem 6. [P1] If $(Y, D; \Gamma)$ is a Φ -space, then any compact continuous function $g: Y \to Y$ has a fixed point.

Recall that a nonempty convex subset X of a t.v.s. E is said to be *locally convex* (in the sense of Krauthausen) if for every $x \in X$ there exists a basis $\mathcal{V}(x)$ of neighborhoods of x such that every $V \in \mathcal{V}(x)$ is convex.

It is easily checked that every locally convex subset X is a Φ -space $(X;\Gamma)$ with $\Gamma_A = \operatorname{co} A$ for $A \in \langle X \rangle$. Therefore, Theorem 6 works when X is a locally convex subset of a Hausdorff t.v.s. or X is a convex subset of a locally convex Hausdorff t.v.s.

For C-spaces, Theorem 6 reduces to Horvath [H1, Theorem 4.4], where some examples of Φ -spaces and applications of Theorem 6 were given.

A G-convex uniform space $(X \supset D; \Gamma)$ is a G-convex space such that D is dense in X and (X, \mathcal{U}) is a Hausdorff uniform space, where \mathcal{U} is a basis of the uniformity consisting of symmetric entourages.

A locally G-convex space is a G-convex uniform space $(X \supset D; \Gamma)$ with a basis \mathcal{U} such that for each $U \in \mathcal{U}$ and each $x \in X$,

$$U[x] = \{x' \in X : (x, x') \in U\}$$

is Γ -convex.

Lemma 1. [P6] A locally G-convex space $(X \supset D; \Gamma)$ is a Φ -space.

An LG-space is a G-convex uniform space $(X \supset D; \Gamma)$ with a basis \mathcal{U} such that for each $U \in \mathcal{U}, U[C] := \{x \in X : C \cap U[x] \neq \emptyset\}$ is Γ -convex whenever $C \subset X$ is Γ -convex. For a C-space $(X; \Gamma)$, the concept of LG-spaces reduces to that of LC-spaces due to Horvath [H1,2].

Lemma 2. [P6] Every LG-space $(X \supset D; \Gamma)$ is a locally G-convex space if $\Gamma_{\{x\}} = \{x\}$ for each $x \in D$.

A C-space $(X;\Gamma)$ is an *LC-metric space* if X is equipped with a metric d such that for any $\varepsilon > 0$, the set $\{x \in X : d(x,A) < \varepsilon\}$ is Γ -convex whenever A is Γ -convex in X and open balls in (X,d) are Γ -convex.

Examples 4. The G-convex spaces $(Y \supset D'; \Gamma)$ in Examples 1 and 2 are not Φ -spaces because of Theorem 6. Moreover, in view of Lemmas 1 and 2, they are neither locally G-convex nor an LG-space. Note that in these examples, a neighborhood of $1 \in S^1$ is not Γ -convex.

A SURVEY ON FIXED POINT THEOREMS IN GENERALIZED CONVEX SPACES

In 1990, Ben-El-Mechaiekh raised the following problem (see [P2]): Does the Fan-Browder fixed point theorem hold if we assume the map T is compact instead of the compactness of its domain X?

This is still open. The following are general forms of partial solutions:

Theorem 7. [P2] Let E be a Hausdorff t.v.s. whose nonempty convex subsets have the fixed point property for compact continuous single-valued selfmaps. Let X be a nonempty convex subset of E and $T: X \multimap X$ a Φ -map. If T is compact, then T has a fixed point.

Theorem 8. [P1,2] Let $(Y, D; \Gamma)$ be a paracompact C-space. If it is also a Φ -space, then any compact Φ -map $T: Y \multimap Y$ has a fixed point.

Theorem 9. [P2] Let $(X; \Gamma)$ be a Hausdorff G-convex space, and $T: X \to X$ a Φ -map. If T is compact, then T^n has a fixed point for $n \geq 2$.

Theorem 10. [P2,9] Let $(X \supset D; \Gamma)$ be a paracompact LC-space such that $\Gamma_{\{x\}} = \{x\}$ for all $x \in D$. Then any compact Φ -map $T : X \multimap X$ has a fixed point.

Theorem 11. [P9] Let $(X;\Gamma)$ be a paracompact LC-space such that $\Gamma_{\{x\}} = \{x\}$ for all $x \in X$, Y a compact LC-metric subset of X, and $Z \subset X$ with $\dim_X Z \leq 0$. Let $T: X \multimap Y$ be a l.s.c. map with closed values such that T(x) is Γ -convex for $x \notin Z$. Then T has a fixed point.

In [P3], further fixed point theorems for l.s.c. multimaps in LC-metric spaces are given.

4. Kakutani maps

Usually, an u.s.c. multimap with nonempty closed convex values is called a *Kakutani* map within the category of t.v.s.

We have the following fixed point theorem for general Kakutani type maps defined on particular types of G-convex spaces:

Theorem 12. [P9] Let $(X \supset D; \Gamma)$ be an LG-space and $T : X \multimap X$ a compact u.s.c. multimap with closed Γ -convex values. Then T has a fixed point $x_0 \in X$.

For a single-valued map, Theorem 12 reduces to the following:

Corollary 12.1. [P9] Let $(X \supset D; \Gamma)$ be an LG-space such that $\Gamma_{\{x\}} = \{x\}$ for all $x \in D$. Then any compact continuous function $f: X \to X$ has a fixed point.

In view of Lemmas 1 and 2, this is also a simple consequence of Theorem 6.

Let $(X \supset D; \Gamma)$ be a *G*-convex uniform space with a basis \mathcal{U} and *K* a nonempty subset of *X*. We say that *K* is of the Zima type [PK6] whenever for every $V \in \mathcal{U}$ there exists a $U \in \mathcal{U}$ such that for every $A \in \langle D \rangle$ and every Γ -convex subset *M* of *K* the following implication holds:

$$M \cap U[z] \neq \emptyset, \ \forall z \in A \Rightarrow M \cap V[u] \neq \emptyset, \ \forall u \in \Gamma_A,$$

where $U[z] = \{x \in X : (z, x) \in U\}.$

Lemma 3. [PK6] For an LG-space $(X \supset D; \Gamma)$, any nonempty subset K of X is of the Zima type.

In view of Lemma 3, the following generalizes Theorem 12.

Theorem 13. [PK6] Let $(X \supset D; \Gamma)$ be a G-convex uniform space and $T : X \multimap X$ a compact u.s.c. map with nonempty closed Γ -convex values. If T(X) is of the Zima type, then T has a fixed point $x_* \in X$.

5. Better admissible maps

Let $(X, D; \Gamma)$ be a G-convex space and Y a topological space. We define the better admissible class \mathfrak{B} of multimaps from X into Y as follows [P4]:

 $F \in \mathfrak{B}(X,Y) \iff F: X \multimap Y$ is a map such that for any $N \in \langle D \rangle$ with |N| = n+1and any continuous function $p: F(\Gamma_N) \to \Delta_n$, the composition

$$\Delta_n \xrightarrow{\phi_N} \Gamma_N \xrightarrow{F|_{\Gamma_N}} F(\Gamma_N) \xrightarrow{p} \Delta_n$$

has a fixed point. Note that Γ_N can be replaced by the compact set $\phi_N(\Delta_n)$.

We give some subclasses of \mathfrak{B} as follows [P4, PK1,3]:

For topological spaces X and Y, an *admissible* class $\mathfrak{A}_c^{\kappa}(X,Y)$ of maps $F: X \multimap Y$ is one such that, for each nonempty compact subset K of X, there exists a map $G \in \mathfrak{A}_c(K,Y)$ satisfying $G(x) \subset F(x)$ for all $x \in K$; where \mathfrak{A}_c consists of finite compositions of maps in a class \mathfrak{A} of maps satisfying the following properties:

- (i) \mathfrak{A} contains the class \mathbb{C} of (single-valued) continuous functions;
- (ii) each $T \in \mathfrak{A}_c$ is u.s.c. with nonempty compact values; and
- (iii) for any polytope P, each $T \in \mathfrak{A}_c(P, P)$ has a fixed point, where the intermediate spaces are suitably chosen.

Here, a polytope P is a homeomorphic image of a standard simplex. There are lots of examples of \mathfrak{A} and \mathfrak{A}_c^{κ} .

Subclasses of the admissible class \mathfrak{A}_c^{κ} are classes of continuous functions \mathbb{C} , the Kakutani maps \mathbb{K} (with convex values and codomains are convex spaces), Browder maps, Φ -maps, selectionable maps, locally selectionable maps having convex values, the Aronszajn maps \mathbb{M} (with R_{δ} values), the acyclic maps \mathbb{V} (with acyclic values), the Powers maps \mathbb{V}_c (finite compositions of acyclic maps), the O'Neill maps \mathbb{N} (continuous with values of one or m acyclic components, where m is fixed), the u.s.c. approachable maps \mathbb{A} (whose domains and codomains are uniform spaces), admissible maps of Górniewicz, σ -selectionable maps of Haddad and Lasry, permissible maps of Dzedzej, the class \mathbb{K}_c^+ of Lassonde, the class \mathbb{V}_c^+ of Park et al., u.s.c. approximable maps of Ben-El-Mechaiekh and Idizk, and many others.

Note that for a subset X of a t.v.s. and any space Y, an admissible class $\mathfrak{A}_c^{\kappa}(X,Y)$ is a subclass of $\mathfrak{B}(X,Y)$. Some examples of maps in \mathfrak{B} not belonging to \mathfrak{A}_c^{κ} were known. Note that the connectivity map due to Nash and Girolo is such an example. For a particular type of G-convex spaces, we established fixed point theorems for the class \mathfrak{B} :

Theorem 14. [P4] Let $(X, D; \Gamma)$ be a Φ -space and $F \in \mathfrak{B}(X, X)$. If F is closed and compact, then F has a fixed point.

Note that Theorem 14 generalizes Theorem 6.

For a non-closed map, we have the following:

Corollary 14.1. Let $(X, D; \Gamma)$ be a compact Φ -space and $F \in \mathfrak{A}_{c}^{\kappa}(X, X)$. Then F has a fixed point.

Since a locally G-convex space is a Φ -space by Lemma 1, we have

Corollary 14.2. Let $(X \supset D; \Gamma)$ be a locally G-convex space. Then any closed compact map $F \in \mathfrak{B}(X, X)$ has a fixed point.

Similarly, by Lemma 2, we have

Corollary 14.3. Let $(X \supset D; \Gamma)$ be an LG-space such that $\Gamma_{\{x\}} = \{x\}$ for each $x \in D$. Then any closed compact map $F \in \mathfrak{B}(X, X)$ has a fixed point.

For topological spaces X and Y, we adopt the following [PK1]:

 $F \in \mathbb{V}(X,Y) \iff F : X \multimap Y$ is an acyclic map; that is, an u.s.c. multimap with compact acyclic values.

 $F \in \mathbb{V}_c(X,Y) \iff F : X \multimap Y$ is a finite composition of acyclic maps where the intermediate spaces are topological.

It is known that $\mathbb{V}_c(X,Y) \subset \mathfrak{B}(X,Y)$ whenever X is a G-convex space, and that any map in \mathbb{V}_c is closed.

Corollary 14.4. Let $(X, D; \Gamma)$ be a Φ -space. Then any compact map $F \in \mathbb{V}_c(X, X)$ has a fixed point.

6. Approximable maps

In this section, all spaces are assumed to be Hausdorff.

Recently, Ben-El-Mechaiekh *et al.* [B, BC] introduced the class A of approachable multimaps as follows:

Let X and Y be uniform spaces (with respective bases \mathcal{U} and \mathcal{V} of symmetric entourages). A multimap $T: X \multimap Y$ is said to be *approachable* whenever T admits a continuous W-approximative selection $s: X \to Y$ for each W in the basis \mathcal{W} of the product uniformity on $X \times Y$; that is, $\operatorname{Gr}(s) \subset W[\operatorname{Gr}(F)]$, where

$$W[A] := \bigcup_{z \in A} W[z] = \{ z' \in X \times Y : W[z'] \cap A \neq \emptyset \}$$

for any $A \subset X \times Y$, and

$$W[z]:=\{z'\in X imes Y:(z,z')\in W\}$$

for $z \in X \times Y$.

A multimap $T: X \multimap Y$ is said to be *approximable* if its restriction $T|_K$ to any compact subset K of X is approachable.

Note that an approachable map is always approximable. Recall that Ben-El-Mechaiekh et al. [B, BC] established a large number of properties and examples of approachable or approximable maps.

We denote $F \in A(X, Y)$ if $F : X \multimap Y$ is approachable.

The following two lemmas are [BC, Lemmas 2.4 and 4.1], respectively.

Lemma 4. Let (X, U), (Y, V), (Z, W) be three uniform spaces, with Z compact, and let $\Psi: Z \multimap X$, $\Phi: X \multimap Y$ be two u.s.c. closed-valued approachable maps. Then so is their composition $\Phi \circ \Psi$.

Lemma 5. If X is a nonempty convex subset of a locally convex t.v.s. and if $\Phi \in A(X, X)$ is closed and compact, then Φ has a fixed point.

From Lemmas 4 and 5, we show that certain approachable maps are better admissible if their domains are G-convex spaces as follows:

Lemma 6. [P6] Let $(X \supset D; \Gamma)$ be a G-convex uniform space and (Y, \mathcal{V}) a uniform space. If $F \in A(X, Y)$ is closed and compact, then $F \in \mathfrak{B}(X, Y)$.

From Theorem 14 and Lemma 6, we have

Theorem 15. [P6] Let $(X \supset D; \Gamma)$ be a Φ -space and $F \in A(X, X)$. If F is closed and compact, then F has a fixed point.

Examples 5. We give some examples of approachable maps $T: X \to Y$ as follows: (1) Any selectionable multimap is approximable.

(2) A locally selectionable map T with convex values is approximable whenever Y is a convex subset of a t.v.s.

(3) An u.s.c. map T with nonempty convex values is approachable whenever X is paracompact and Y is a convex subset of a locally convex t.v.s.

(4) An u.s.c. map T with nonempty compact contractible values is approachable whenever X is a finite polyhedron.

(5) An u.s.c. map T with nonempty compact values having trivial shape (that is, contractible in each neighborhood in Y) is approachable whenever X is a finite polyhedron.

For (1) and (2), see [P11]; and for (3)-(5), see [B].

The following is due to Ben-El-Mechaiekh et al. [BC, Proposition 3.9]:

Lemma 7. Let (X, \mathcal{U}) and (Y, \mathcal{V}) are uniform spaces. If either

(i) X is paracompact and $(Y; \Gamma)$ is an LC-space; or

(ii) X is compact and $(Y; \Gamma)$ is an LG-space,

then every u.s.c. map $F: X \multimap Y$ with nonempty Γ -convex values is approachable; that is, $F \in \mathbb{A}(X, Y)$.

Note that Lemma 7(i) generalizes Examples 5(3).

In our previous work [P6], (ii) is incorrectly stated and causes some incorrect statements. For example, [P6, Theorem 4] should be stated for LG-spaces as in Theorem 12.

From Lemmas 6 and 7, we have the following correction of [P4, Lemma 4.5]:

Lemma 8. Let $(X \supset D; \Gamma)$ be a compact LG-space. Then any u.s.c. map $F: X \multimap X$ with nonempty closed Γ -convex values belongs to $\mathfrak{B}(X, X)$.

Consequently, correct forms of [P4, Corollary 4.7 and Theorem 4.8] are Theorem 12 and Corollary 14.1, respectively, in the present paper.

We add two types of new multimaps in the class \mathfrak{B} :

Lemma 9. Let $(X, D; \Gamma)$ be a G-convex space and $F : X \multimap X$ be an u.s.c. map such that either

(i) F has nonempty compact contractible values; or

(ii) F has nonempty compact values having trivial shape,

then $F \in \mathfrak{B}(X, X)$.

Proof. For any $N \in \langle D \rangle$ with |N| = n + 1 and any continuous function $p: F(\Gamma_N) \to \Delta_n$, consider the composition

$$\Delta_n \xrightarrow{\phi_N} \Gamma_N \xrightarrow{F|_{\Gamma_N}} F(\Gamma_N) \xrightarrow{p} \Delta_n.$$

Note that $(F|_{\Gamma_N}) \circ \phi_N$ is an u.s.c. multimap having values of the type (i) or (ii) and defined on a finite polyhedron Δ_n . Therefore $p \circ (F|_{\Gamma_N}) \circ \phi_N$ is approachable by Lemma 4, and has a fixed point by Lemma 5. This completes our proof.

From Theorem 14 and Lemma 9, we have

Theorem 16. [P4] Let $(X, D; \Gamma)$ be a Φ -space and $F : X \multimap X$ be a map such that all of its values are either (i) nonempty contractible or (ii) nonempty and of trivial shape. If F is closed and compact, then F has a fixed point.

Note that Case (i) of Theorem 16 is a consequence of Corollary 14.4. In the category of t.v.s., Theorem 16(i) holds for Kakutani maps since convex values are contractible. But, for G-convex spaces, Γ -convex values are only known to be connected and that is why we need Lemma 7.

REFERENCES

- [B] H. Ben-El-Mechaiekh, Spaces and maps approximation and fixed points, J. Comp. Appl. Math. 113 (2000), 283-308.
- [BC] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, and J. Llinares, Abstract convexity and fixed points, J. Math. Anal. Appl. 222 (1998), 138-151.
- [Br] F.E. Browder, The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301.
- [H1] C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), 341-357.

- [H2] _____, Extension and selection theorems in topological spaces with a generalized convexity structure, Ann. Fac. Sci. Toulouse 2 (1993), 253-269.
- [P1] _____, Continuous selection theorems in generalized convex spaces, Numer. Funct. Anal. and Optimiz. 25 (1999), 567–583.
- [P2] _____, Remarks on a fixed point problem of Ben-El-Mechaiekh, Nonlinear Analysis and Convex Analysis (Proc. NACA'98, Niigata, Japan, July 28-31, 1998), 79-86, World Sci., Singapore, 1999.
- [P3] _____, Fixed points of lower semicontinuous multimaps in LC-metric spaces, J. Math. Anal. Appl. 235 (1999), 142–150.
- [P4] _____, Fixed points of better admissible multimaps on generalized convex spaces, J. Korean Math. Soc. 37 (2000), 885–899.
- [P5] _____, Elements of the KKM theory for generalized convex spaces, Korean J. Comput. & Appl. Math. 7 (2000), 1-28.
- [P6] _____, Remarks on fixed point theorems for generalized convex spaces, Fixed Point Theory and Applications (Y.J. Cho, ed.), 135-144, Nova Sci. Publ., New York, 2000.
- [P7] _____, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5 (2000), 67–79.
- [P8] _____, New topological versions of the Fan-Browder fixed point theorem, Nonlinear Anal. 47 (2001), 595-606.
- [P9] _____, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), 869– 879.
- [P10] _____, Coincidence, almost fixed point, and minimax theorems on generalized convex spaces, J. Nonlinear Convex Anal. 4 (2003), 151–164.
- [P11] _____, Fixed points of approximable or Kakutani maps in generalized convex spaces, Preprint.
- [PK1] S. Park and H. Kim, Admissible classes of multifunctons on generalized convex spaces, Proc. Coll. Natur. Sci. Seoul National University 18 (1993), 1–21.
- [PK2] _____, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996), 173-187.
- [PK3] _____, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209 (1997), 551-571.
- [PK4] _____, Generalizations of the KKM type theorems on generalized convex spaces, Ind. J. Pure Appl. Math. 29 (1998), 121-132.
- [PK5] _____, Coincidence theorems in a product of generalized convex spaces and applications to equilibria, J. Korean Math. Soc. 36 (1999), 813-828.
- [PK6] _____, Generalized KKM maps, maximal elements and almost fixed points, to appear.
- [PM] S. Park and K.B. Moon, Comments on a coincidence theorem in generalized convex spaces, Soochow J. Math. 25 (1999), 387–393.

National Academy of Sciences, Republic of Korea, and

School of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea E-mail address: shpark@math.snu.ac.kr