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A SURVEY ON FIXED POINT THEOREMS
IN GENERALIZED CONVEX SPACES

SEHIE PARK

ABsTRACT. We review some fixed point theorems which have appeared in our previous
works [P1-11] on generalized convex spaces.

The concept of generalized convex spaces is a common generalization of various ab-
stract convexities with or without linear structure and includes those of convex subsets
of topological vector spaces, convex spaces of Lassonde, C-spaces due to Horvath, and
many others. In the present paper, we review some fixed point theorems which have
appeared mainly in our previous works [P1-11] on generalized convex spaces. Most of

them are generalizations of well-known corresponding ones for topological vector spaces
(t.v.s.).

1. Generalized convex spaces

A generalized conver space or a G-convex space (Y,D;T') consists of a topological
space Y, a nonempty set D, and a multimap I' : (D) — Y such that for each A € (D)
with cardinality |A| = n + 1, there exists a continuous function ¢4 : A, — I'(4)
such that J € (A) implies ¢4(Ay) C I'(J), where (D) is the class of all nonempty
finite subsets of D, A, denotes the standard n-simplex with vertices {e;}",, and A;
the face of A,, corresponding to J € (A); that is, if A = {ag,a1, " ,an} and J =
{aiy, @iy, - ,as,} C A, then Ay = co{e;y, €ip,- €0 }-

We may write 'y = I'(4) and it is possible to assume 'y = ¢4(A,) for each
A € (D). A G-convex space (X,D;T') with X D D is denoted by (X DO D;I') and
(X;T) := (X, X;T). For a G-convex space (X D D;TI'), a subset ¥ C X is said to be
I'-converz if for each N € (D), N C Y implies I'y C Y. For details on G-convex spaces
and examples, see [P1,4,5, PK1-6], where basic theory was extensively developed.

A G-convex space (X, D;T) is called a C-space if each I'4 is contractible (or more
generally, n-connected for all n > 0) and, for each A, B € (D), AC B impliesI'y C I'p.
For X = D, this concept reduces to the one due to Horvath [H1,2].

We give here only a few examples of G-convex spaces:
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Examples 1. [PM] Let X =D =[0,1) and Y = D' = S! = {€?"* : t € [0,1)} in the
complex plane C. Let f : X — Y be a continuous function defined by f(t) = e2™t.
Define I' : (D') — Y by

Ta = f(co(f71(A))) for A€ (D).

Then (Y D D';T) is a compact G-convex space. (More generally, it is known that any
continuous image of a G-convex space is a G-convex space.) We note the following:

(1) S? lacks the fixed point property. Moreover, S! is an example of a compact C-
space since each I'4 is contractible. Therefore, it shows that the Schauder conjecture
(that is, any compact convex subset of a t.v.s. has the fixed point property) does not
hold for G-convex spaces.

(2) Note that, in (Y D D';T), singletons are I'-convex; that is, I'ry} = {y} for each
yeD.

(3) (Y,D;T') with I : (D) — Y defined by

F4=f(coA) for A€ (D)

is an example of a G-convex space satisfying D ¢ Y.

Examples 2. Let X =D =[0,1] and Y = D' = S$! = {€2"* : t € [0, 1]}. Define f and
I'4 as in Examples 1. Then (Y D D';T") is a compact G-convex space.

(1) Note that 1 € S' and that I'y;; = S! is not contractible. Hence, (Y > D';T) is
not a C-space.

(2) Moreover I'(13 # {1}. Therefore, in general, I'(y} # {y} in a G-convex space.

Examples 3. Similarly, for X = [0,1) x [0,1) or X = [0,1] x [0,1], we can made the
torus, the Mobius band, and the Klein bottle into compact G-convex spaces, as was
noted by Horvath [H1].

Several authors modified our definition of G-convex spaces and claimed that theirs are

general than ours. All of them failed to give any proper meaningful example justifying
their claims.

The following is known:

Theorem 1. [PM] Let X be a compact Hausdorff uniform space with a basis U of the
uniformity and f : X — X a continuous map. Then f has a fized point if and only zf
forany Ve, Gr(f)nV # 0.

2. Fan-Browder maps

A multimap (simply, a map) T : X —o Y is a function from X into the power set 2¥
of Y. T(z) is called the value of T at z € X and T~ (y) := {z € X : y € T(z)} the fiber
of Taty €Y. Let T(A) :=|J{T'(z): z € A} for A C X.

For topological spaces X and Y, amap T : X — Y is said to be closed if its graph
Gr(T) :={(z,y):z € X, y€ T(z)} is closed in X x Y, and compact if its range T'(X)
is contained in a compact subset of Y.

125



A SURVEY ON FIXED POINT THEOREMS IN GENERALIZED CONVEX SPACES

Amap T : X — Y is said to be upper semicontinuous (u.s.c.) if for each closed
set B CY, theset T7(B) = {x € X : T(z) N B # 0} is a closed subset of X
lower semicontinuous (1.s.c.) if for each open set B C Y, the set T~ (B) is open; and
continuous if it is u.s.c. and ls.c. Note that a compact closed multimap is u.s.c. and
compact-valued; and that every u.s.c. map with closed values is closed.

A multimap with nonempty convex values and open fibers is called a Browder map.
The well-known Fan-Browder fized point theorem states that a Browder map 7 from a
compact convex subset X of a t.v.s. into itself has a fixed point [Br].

From the celebrated KKM theorem, we obtained the following general form of the
Fan-Browder fixed point theorem:

Theorem 2. [P4,8] Let (X,D;T") be a G-conver space, and S : D — X, T: X — X
multimaps. Suppose that

(1) S(2) is open [resp. closed] for each z € D;

(2) for eachy e X, M € (S~(y)) implies T'py C T~ (y); and

(3) X = S(N) for some N € (D).

Then T has a fized point zo € X ; that i3, o € T(zo).

In [P8], this is applied to obtain various forms of known Fan-Browder type theorems,
the Ky Fan intersection theorem, and the Nash equilibrium theorem.
The following is the dual form of Theorem 2:

Theorem 3. [P7] Let (X,D;T') be a G-conver space and S : X — D, T : X — X
maps such that

(1) for each z € X, M € (S(z)) impliesT ) C T(z);

(2) S—(z) is open [resp. closed] for each z € D; and

(3) X =U{S~(2) : z € N} for some N € (D).
Then T has a fized point zg € X.

From Theorem 3, we have the following:

Theorem 4. [P10] Let (X O D;T') be a G-convex space and A : X — X a multimap
such that A(z) is I'-convex for each x € X. If there exist 21,22, -+ ,2, € D and
nonempty open [resp. closed] subsets G; C A~ (z;) fori = 1,2,--- ,n such that X =
Ui, Gi, then A has a fized point.

Theorem 5. [P7] Let (X,D;T) be a G-convez space and S : X — D, T : X — X
maps such that

(1) for each z € X, M € (S(z)) implies T'p C T(z); and

(2) X =J{Int S~(z): z € N} for some N € (D).
Then T has a fized point.

From Theorems 2-5, most of popular variations or generalizatons of the Fan-Browder

theorem (in the forms of the compact or so-called non-compact versions) can be deduced;
see [P7,8,10].

126



SEHIE PARK
3. ®-spaces and compact ®-maps

For a topological space X and a G-convex space (Y,D;T), a multimap T : X — Y
is called a ®-map provided that there exists a multimap S : X — D satisfying

(a) for each z € X, M € (S(z)) implies I'ys C T'(x); and

(b) X =|J{Int S~(y) : y € D}.

A G-convex space (Y, D;T') is called a ®-space if Y is a Hausdorff uniform space and
for each entourage V' there exists a ®-map T : Y — Y such that Gr(T) C V. This
concept is originated from Horvath [H1], where a number of examples are given.
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Theorem 6. [P1] If (Y,D;T) is a ®-space, then any compact continuous function

9:Y =Y has a fized point.

Recall that a nonempty convex subset X of a t.v.s. E is said to be locally convez (in
the sense of Krauthausen) if for every z € X there exists a basis V(z) of neighborhoods
of z such that every V € V(z) is convex.

It is easily checked that every locally convex subset X is a ®-space (X;I') with
'y =coA for A € (X). Therefore, Theorem 6 works when X is a locally convex subset
of a Hausdorff t.v.s. or X is a convex subset of a locally convex Hausdorff t.v.s.

For C-spaces, Theorem 6 reduces to Horvath [H1, Theorem 4.4], where some examples
of ®-spaces and applications of Theorem 6 were given.

A G-convez uniform space (X O D;T') is a G-convex space such that D is dense in X
and (X,U) is a Hausdorff uniform space, where U is a basis of the uniformity consisting
of symmetric entourages.

A locally G- convez space is a G-convex uniform space (X D D;I') with a basis U such
that for each U € U and each z € X,

Ulz] ={z' € X : (z,2') e U}
is I'-convex.

Lemma 1. [P6] A locally G-conver space (X D D;T') is a ®-space.

An LG-space is a G-convex uniform space (X D D;T') with a basis U such that for
each U e U, U[C] := {z € X : CNUlz] # 0} is I'-convex whenever C' C X is I'-convex.

For a C-space (X;T'), the concept of LG-spaces reduces to that of LC-spaces due to
Horvath [H1,2].

Lemma 2. [P6] Every LG-space (X D D;T) is a locally G-convez space if '(zy = {z}
for each z € D.

A C-space (X;T') is an LC-metric space if X is equipped with a metric d such that
for any € > 0, the set {z € X : d(z, A) < €} is ['-convex whenever A is I'-convex in X
and open balls in (X, d) are I-convex.

Examples 4. The G-convex spaces (Y D D';T') in Examples 1 and 2 are not ®-spaces
because of Theorem 6. Moreover, in view of Lemmas 1 and 2, they are neither locally
G-convex nor an LG-space. Note that in these examples, a neighborhood of 1 € S? is
not [’-convex.
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In 1990, Ben-El-Mechaiekh raised the following problem (see [P2]): Does the Fan-

Browder fixed point theorem hold if we assume the map T is compact instead of the
compactness of its domain X7

This is still open. The following are general forms of partial solutions:

Theorem 7. [P2] Let E be a Hausdorff t.v.s. whose nonempty convex subsets have the
fized point property for compact continuous single-valued selfmaps. Let X be a nonempty
convez subset of E and T : X —o X a ®-map. If T is compact, then T has a fized point.

Theorem 8. [P1,2] Let (Y,D;T') be a paracompact C-space. If it is also a ®-space,
then any compact ®-map T : Y — Y has a fized point.

Theorem 9. [P2] Let (X;I') be a Hausdorff G-conver space, and T : X — X a ®-map.
If T is compact, then T™ has a fized point for n > 2.

Theorem 10. [P2,9] Let (X D D;T') be a paracompact LC-space such that T'(y) = {z}
for allx € D. Then any compact ®-map T : X — X has a fized point.

Theorem 11. [P9] Let (X;T) be a paracompact LC-space such that T'(;y = {z} for
all z € X, Y a compact LC-metric subset of X, and Z C X with dimx Z < 0. Let
T:X —Y be als.c map with closed values such that T'(z) is I'-convez for z ¢ Z.
Then T has a fized point.

In [P3], further fixed point theorems for l.s.c. multimaps in LC-metric spaces are
given.

4. Kakutani maps

Usually, an u.s.c. multimap with nonempty closed convex values is called a Kakutani
map within the category of t.v.s.

We have the following fixed point theorem for general Kakutani type maps defined
on particular types of G-convex spaces:

Theorem 12. [P9] Let (X D D;T") be an LG-space and T : X — X a compact u.s.c.
multimap with closed I'-conver values. Then T has a fized point zo € X.

For a single-valued map, Theorem 12 reduces to the following:

Corollary 12.1. [P9] Let (X D D;T') be an LG-space such that T'(zy = {z} for all
z € D. Then any compact continuous function f : X — X has a fized point.

In view of Lemmas 1 and 2, this is also a simple consequence of Theorem 6.

Let (X D D;I') be a G-convex uniform space with a basis ¢/ and K a nonempty
subset of X. We say that K is of the Zima type [PK6] whenever for every V' € U there
exists a U € U such that for every A € (D) and every I'-convex subset M of K the
following implication holds:

MU 0, V2 A = MAV[u]#£0, VueTla,
where Ulz] = {z € X : (2,z) € U}.
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Lemma 3. [PK6] For an LG-space (X D D;T'), any nonempty subset K of X is of the
Zima type.

In view of Lemma 3, the following generalizes Theorem 12.

Theorem 13. [PK6] Let (X D D;T') be a G-convez uniform space and T : X — X a
compact u.s.c. map with nonempty closed I'-conver values. If T'(X) is of the Zima type,
then T has a fized point z, € X.

5. Better admissible maps

Let (X, D;T") be a G-convex space and Y a topological space. We define the better
admissible class B of multimaps from X into Y as follows [P4]:

Fe®B(X,Y) <> F: X —Y is a map such that for any N € (D) with |[N|=n+1
and any continuous function p : F(I'y) — A,,, the composition

Fl
An 25Ty 3 F(Ty) 25 An

has a fixed point. Note that I'y can be replaced by the compact set ¢n(Ay).

We give some subclasses of B as follows [P4, PK1,3]:

For topological spaces X and Y, an admissible class A5(X,Y) of maps F: X —-Y
is one such that, for each nonempty compact subset K of X, there exists a map G €
2A.(K,Y) satisfying G(z) C F(z) for all z € K; where 2, consists of finite compositions
of maps in a class 2 of maps satisfying the following properties:

(i) A contains the class C of (single-valued) continuous functions;
(ii) each T € A, is u.s.c. with nonempty compact values; and

(iii) for any polytope P, each T' € 2. (P, P) has a fixed point, where the intermediate

spaces are suitably chosen.

Here, a polytope P is a homeomorphic image of a standard simplex. There are lots of
examples of % and Af.

Subclasses of the admissible class 2 are classes of continuous functions C, the Kaku-
tani maps K (with convex values and codomains are convex spaces), Browder maps,
®-maps, selectionable maps, locally selectionable maps having convex values, the Aron-
szajn maps M (with Rs values), the acyclic maps V (with acyclic values), the Powers
maps V. (finite compositions of acyclic maps), the O’Neill maps N (continuous with
values of one or m acyclic components, where m is fixed), the u.s.c. approachable maps
A (whose domains and codomains are uniform spaces), admissible maps of Gérniewicz,
o-selectionable maps of Haddad and Lasry, permissible maps of Dzedzej, the class K}
of Lassonde, the class V} of Park et al., u.s.c. approximable maps of Ben-El-Mechaiekh
and Idizk, and many others.

Note that for a subset X of a t.v.s. and any space Y, an admissible class 2%(X,Y) is
a subclass of B(X,Y). Some examples of maps in B not belonging to A} were known.
Note that the connectivity map due to Nash and Girolo is such an example.
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For a particular type of G-convex spaces, we established fixed point theorems for the
class B:

Theorem 14. [P4] Let (X, D;T') be a ®-space and F € B(X,X). If F is closed and
compact, then F' has a fized point.

Note that Theorem 14 generalizes Theorem 6.
For a non-closed map, we have the following:

Corollary 14.1. Let (X, D;T) be a compact ®-space and F € %45(X,X). Then F has
a fized point.

Since a locally G-convex space is a ®-space by Lemma 1, we have

Corollary 14.2. Let (X D D;T) be a locally G-convez space. Then any closed compact
map F € B(X, X) has a fized point.

Similarly, by Lemma 2, we have

Corollary 14.3. Let (X D D;T') be an LG-space such that ['(zy = {z} for each z € D.
Then any closed compact map F € B(X, X) has a fized point.

For topological spaces X and Y, we adopt the following [PK1]:

F e V(X,Y) <= F : X — Y is an acyclic map; that is, an u.s.c. multimap with
compact acyclic values.

F eV,(X,Y) <= F: X — Y is a finite composition of acyclic maps where the
intermediate spaces are topological.

It is known that V.(X,Y) C B(X,Y) whenever X is a G-convex space, and that any
map in V. is closed. -

Corollary 14.4. Let (X,D;T') be a ®-space. Then any compact map F € V (X, X)
has a fized point.

6. Approximable maps

In this section, all spaces are assumed to be Hausdorff.

Recently, Ben-El-Mechaiekh et al. [B, BC] introduced the class A of approachable
multimaps as follows:

Let X and Y be uniform spaces (with respective bases ¢ and V of symmetric en-
tourages). A multimap T : X — Y is said to be approachable whenever T' admits a
continuous W-approximative selection s : X — Y for each W in the basis W of the
product uniformity on X x Y; that is, Gr(s) C W[Gr(F)], where

WA= | W ={ €e X xY : W['|n A #0}
zZEA

forany ACX xY, and
Wz]:={7 € X xY :(2,7) e W]
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forze X xY.

A multimap T : X — Y is said to be approzimable if its restriction T|x to any
compact subset K of X is approachable.

Note that an approachable map is always approximable. Recall that Ben-El-Mechaiekh

et al. [B, BC] established a large number of properties and examples of approachable
or approximable maps.

We denote F' € A(X,Y) if F: X — Y is approachable.
The following two lemmas are [BC, Lemmas 2.4 and 4.1], respectively.

Lemma 4. Let (X,U), (Y,V), (Z,W) be three uniform spaces, with Z compact, and -

letV:Z —oX,®: X —Y be two u.s.c. closed-valued approachable maps. Then so is
their composition ® o .

Lemma 5. If X is a nonempty conver subset of a locally convexr t.v.s. and if ® €
A(X,X) is closed and compact, then ® has a fized point.

From Lemmas 4 and 5, we show that certain approachable maps are better admissible
if their domains are G-convex spaces as follows:

Lemma 6. [P6] Let (X D D;I') be a G-convex uniform space and (Y,V) a uniform
space. If F € A(X,Y) is closed and compact, then F € B(X,Y).

From Theorem 14 and Lemma 6, we have

Theorem 15. [P6] Let (X D D;T") be a ®-space and F € A(X, X). If F is closed and
compact, then F' has a fized point.

Examples 5. We give some examples of approachable maps T : X — Y as follows:

(1) Any selectionable multimap is approximable.

(2) A locally selectionable map 7" with convex values is approximable whenever Y is
a convex subset of a t.v.s.

(3) An u.s.c.map T with nonempty convex values is approachable whenever X is
paracompact and Y is a convex subset of a locally convex t.v.s.

(4) An u.s.c.map T with nonempty compact contractible values is approachable
whenever X is a finite polyhedron.

(5) An u.s.c. map T with nonempty compact values having trivial shape (that is, con-
tractible in each neighborhood in Y') is approachable whenever X is a finite polyhedron.

For (1) and (2), see [P11]; and for (3)-(5), see [B].

The following is due to Ben-El-Mechaiekh et al. [BC, Proposition 3.9]:

Lemma 7. Let (X,U) and (Y,V) are uniform spaces. If either

(1) X s paracompact and (Y;T) is an LC-space; or
(ii) X ts compact and (Y;T') is an LG-space,

then every u.s.c. map F : X — Y with nonempty I'-convex values is approachable; that
is, F € A(X,Y).

Note that Lemma 7(i) generalizes Examples 5(3).
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In our previous work [P6], (ii) is incorrectly stated and causes some incorrect state-
ments. For example, [P6, Theorem 4] should be stated for LG-spaces as in Theorem
12.

From Lemmas 6 and 7, we have the following correction of [P4, Lemma 4.5]:

Lemma 8. Let (X D D;I') be a compact LG-space. Then any u.s.c. map F: X — X
with nonempty closed I'-convex values belongs to B(X, X).

Consequently, correct forms of [P4, Corollary 4.7 and Theorem 4.8] are Theorem 12
and Corollary 14.1, respectively, in the present paper.
We add two types of new multimaps in the class 98:

Lemma 9. Let (X,D;T') be a G-convez space and F : X — X be an u.s.c. map such
that either

(i) F has nonempty compact contractible values; or
(ii) F has nonempty compact values having trivial shape,

then F € B(X, X).

Proof. For any N € (D) with |[N| =n+1 and any continuous function p : F(T'y) —
A, consider the composition

F|
An 25Ty = P(Ty) 25 An.

Note that (F|r,) o ¢ is an u.s.c. multimap having values of the type (i) or (ii) and
defined on a finite polyhedron A,,. Therefore po (F'|r, )o¢n is approachable by Lemma,
4, and has a fixed point by Lemma 5. This completes our proof.

From Theorem 14 and Lemma 9, we have

Theorem 16. [P4] Let (X, D;T") be a ®-space and F : X — X be a map such that all
of its values are either (i) nonempty contractible or (it) nonempty and of trivial shape.
If F is closed and compact, then F has a fized point.

Note that Case (i) of Theorem 16 is a consequence of Corollary 14.4. In the category
of t.v.s., Theorem 16(i) holds for Kakutani maps since convex values are contractible.
But, for G-convex spaces, I'-convex values are only known to be connected and that is
why we need Lemma 7.

REFERENCES

[B] H. Ben-El-Mechaiekh, Spaces and maps approzimation and fized points, J. Comp. Appl.
Math. 113 (2000}, 283-308.

[BC] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, and J. Llinares, Abstract converity and
fized points, J. Math. Anal. Appl. 222 (1998), 138-151.

[Br] F.E. Browder, The fized point theory of multivalued mappings in topological vector spaces,
Math. Ann. 177 (1968), 283-301.

[H1] C. D. Horvath, Contractibility and generalized convezity, J. Math. Anal. Appl. 156 (1991),
341-357.

132



[H]
[P1]

[P2]

[P3]
[P4]
(P5]
[Pé]
(P7]
[P8]
[P9]
[P10]
[P11]
[PK1]
[PK2]
[PK3]
[PK4]
[PK5)

[PKS6)]
(PM]

SEHIE PARK

, Extension and selection theorems in topological spaces with a generalized convezity
structure, Ann. Fac. Sci. Toulouse 2 (1993), 253-269.

, Continuous selection theorems in generalized conver spaces, Numer. Funct. Anal.
and Optimiz. 25 (1999), 567-583.

, Remarks on a fized point problem of Ben-El-Mechaiekh, Nonlinear Analysis and
Convex Analysis (Proc. NACA'98, Niigata, Japan, July 28-31, 1998), 79-86, World Sci.,
Singapore, 1999.

, Fized points of lower semicontinuous multimaps in LC-metric spaces, J. Math.
Anal. Appl. 235 (1999), 142-150.

, Fized points of better admissible multimaps on generalized convez spaces, J. Korean
Math. Soc. 37 (2000), 885-899.

, Elements of the KKM theory for generalized convex spaces, Korean J. Comput. &
Appl. Math. 7 (2000), 1-28.

, Remarks on fized point theorems for generalized convez spaces, Fixed Point Theory
and Applications (Y.J. Cho, ed.), 135~144, Nova Sci. Publ., New York, 2000.

, Remarks on topologies of generalized conver spaces, Nonlinear Funct. Anal. Appl.
5 (2000), 67-79.

, New topological versions of the Fan—Browder fized point theorem, Nonlinear Anal.
47 (2001), 595-606.

, Fized point theorems in locally G-convez spaces, Nonlinear Anal. 48 (2002), 869

879. .

, Coincidence, almost fized point, and minimaz theorems on generalized convez
spaces, J. Nonlinear Convex Anal. 4 (2003), 151-164.

, Fized points of approzimable or Kakutani maps in generalized convex spaces,
Preprint.

S. Park and H. Kim, Admissible classes of multifunctons on generalized conver spaces, Proc.
Coll. Natur. Sci. Seoul National University 18 (1993), 1-21.

, Coincidence theorems for admissible multifunctions on generalized convez spaces,
J. Math. Anal. Appl. 197 (1996), 173-187.

, Foundations of the KKM theory on generalized convez spaces, J. Math. Anal. Appl.
209 (1997), 551-571.

, Generalizations of the KKM type theorems on generalized conver spaces, Ind. J.
Pure Appl. Math. 29 (1998), 121-132.

, Coincidence theorems in a product of generalized convez spaces and applications to
equilibria, J. Korean Math. Soc. 86 (1999), 813-828.

, Generalized KKM maps, mazimal elements and almost fized points, to appear.

S. Park and K.B. Moon, Comments on a coincidence theorem in generalized convez spaces,
Soochow J. Math. 25 (1999), 387-393.

National Academy of Sciences, Republic of Korea, and
School of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea
E-mail address: shpark@math.snu.ac.kr

133



