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Abstract The three-phase partition problem is to divide a given domain $\Omega\subset \mathbb{R}^{2}$

into three subdomains with a triple junction having least interfacial area. Recently,
we proposed a duality theorem for a three-phase partition problem in [5]. We
introduced a notion of separation of three convex sets by triangles to define a dual
problem. In this paper, we explain its outline.

1. Introduction

The three-phase partition problem is to divide a given domain $\Omega\subset \mathrm{R}^{2}$ into
three subdomains with a triple junction having least interfacial area (Fig. 1.1).

FIGURE 1.1. Three-phase partition problem

Sternberg and Zeimer [7] and Ikota and Yanagida [1] formulated this problem
as a variational problem and discussed stability of stationary solutions. However,
since the shortest curve joining two points $X_{0}$ and $X_{i}$ is the line segment $[X_{0}, X_{i}]$ ,
it can be formulated as an extremal problems in a Euclidean space. From this
point of view, we discussed stability and studied its game-theoretic aspect in $[2][3]$ .
Further, we gave a duality theorem for an extremal problem $(P_{0})$ induced from
the three-phase partition problem in [4].

$(P_{0})$
Minimize $f(X_{0}, \ldots, X_{3}):=\sum_{:=1}^{3}||X_{i}-X_{0}||$

subject to $X_{0}\in\Omega,$ $X_{i}\in C_{i}(i=1,2,3)$ ,
where $||\cdot||$ denotes the Euclidean norm and $C_{1}(i=1,2,3)$ are closed convex sets
with non-empty interior in $\mathbb{R}^{2}$ such that $\Omega:=\mathrm{c}1(\bigcap_{;_{=1}}^{3}C_{i}^{c})$ is non-empty (Fig. 1.2).
Moreover, we improved the duality theorem so that the dual problem does not
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FIGURE 1.2. Primal problem $(P_{0^{\backslash }})$

include the variables of the primal problem in [5]. The aim of this paper is to
state the outline of $[4][5]$ .

In this paper we use the following notations. For any closed convex sets $C_{1}$ and
$C_{2}$ , we define $d(C_{1}, C_{2}):= \min\{||X_{1}-X_{2}|||X_{i}\in C_{i}(i=1,2)\}$ . We denote by
$N(X_{i;}C_{i})$ the normal cone of $C_{i}$ at $X_{i}$ , that is,

$N$ ( $X_{i}$ ; Ci) $:=\{\mathrm{Y}\in \mathbb{R}^{n}|\mathrm{Y}^{T}(X-X_{i})\leq 0\forall X\in C_{i}\}$.

2. First-order optimality condition

As is easily seen from Fig. 1.2, $\Omega$ is not always a convex set. So the primal
problem $(P_{0})$ is not a convex programming problem in general. We modify it so
that it becomes a convex programming problem.

$(P)$
Minimize $\sum_{i=1}^{3}||X_{i}-X_{0}||$

subject to $X_{0}\in \mathbb{R}^{2},$ $X_{i}\in C_{i}(i=1,2,3)$ .
The only difference is that $\Omega$ is replaced by $\mathbb{R}^{2}$ . We say a feasible solution
$(X_{0}, \ldots, X_{3})$ for $(P_{0})$ (or $(P)$ ) non-degenerate if $X_{0}$ does not coincide with any
$X_{i}(i=1,2,3)$ .

FIGURE 2.1. Young’s law and the transversality condition

Theorem 2.1. Let $(X_{0}, \ldots , X_{3})$ be a non-degenerate minimal solution for $(P_{0})$ .
Then it is a minimum solution for $(P)$ . Further, it satisfies Young’s law

$\angle X_{i}X_{0}X_{j}=120^{0}$ for any $i\neq j(\in\{1,2,3\})$ (2.1)
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and the transversality condition
$X_{0}-X_{i}\in N(X_{1;}C_{i})$ $(i=1,2,3)$ . (2.2)

Proof. There exists an open convex neighborhood $C_{0}$ of $X_{0}$ such that $(X_{0}, \ldots,X_{3})$

is a minimum point of $f$ on $C:=C_{0}\cross C_{1}\mathrm{x}C_{2}\mathrm{x}C_{3}$ . Since $f$ and $C$ are convex,
$(X_{0}, \ldots,X_{3})$ is a minimum point of $f$ on $R^{n}\mathrm{x}$ Ci $\mathrm{x}C_{2}\mathrm{x}C_{3}$ . Hence it is a minimum
solution for $(P)$ . According to Kuhn-Tucker’s theorem, see e.g. Rockafellar [6],
there exist multipliers $\lambda_{i}\geq 0(i=1,2,3)$ such that $0\in R^{4_{\hslash}}$ belongs to the
subdifferential of the Lagrange function

$L(X_{0}, \ldots,X_{3}):=\sum_{:=1}^{3}||X_{1}-X_{0}||+\sum_{:,1=1}^{3}\lambda_{i}\delta(X_{i}|C_{i})$ ,

where $\delta(X_{i}|C_{i})$ denotes the characteristic function of $C_{1}$ . Picking up $X_{0}$-component
of the subdifferential $\partial L$ , we have

$n_{1}+n_{2}+n_{3}=0\in R^{n}$ , (2.3)

where $n_{i}:=(X_{0}-X_{i})/||X_{i}-X_{0}||$ , which implies Young’s law. Picking up $X_{1^{-}}$

component $(i=1,2,3)$ of $\partial L$ , we have $0\in-n_{i}+\lambda_{1}N(X_{i};C_{i})$ , which implies the
transversality condition.

Remark 2.1. In $[1][2][3][7]$ , smooth cases were studied. Then the transversality
condition $(\mathit{2}.Z)$ becomes $a$ orthogonality condition, that is, $X_{0}-X_{1}$ touches the
boundary $\partial\Omega$ at right angles.

3. SeParation by a triangle

In this section, we first review classical duality theorems in brief. Next, we
introduce separation of three convex sets by a triangle.

$,\mathrm{O}\mathrm{n}\mathrm{e}$ of the simplest duality theorems is the following. Let $C_{1}$ be a non-empty
convex set in $\mathrm{R}^{2}$ and $A\not\in C_{1}$ a point. Then the primal problem is

Minimize $||X_{1}-A||$
$(P_{1})$

subject to $X_{1}\in C_{1}$ .
Its dual problem $(D_{1})$ is to maximize the distance from $A$ to a hyperplane $H$

that separates $A$ and $C_{1}$ . We can rephrase it as maximizing the width of a river
that separates $A$ and $C_{1}$ (Fig. 3.1), where a river stands for the area sandwiched
between two parallel lines.

FIGURE 3.1. Dual problem $(D_{1})$ is to maximize the width of a river
that separates $A$ and $C_{1}$ .
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If we replace $A$ with a convex set $C_{2}$ such that $C_{1}\cap C_{2}=\phi$ , then the primal
problem becomes as follows.

Minimize 11 $X_{1}-X_{2}||$
$(P_{2})$

subject to $X_{1}\in C_{i}(i=1,2)$ .
Its dual problem $(D_{2})$ is to minimize the width of a river that separates $C_{1}$ and
$C_{2}$ (Fig. 3.2).

FIGURE 3.2. Dual problem $(D_{2})$ is to maximize the width of a river
that separates $C_{1}$ and $C_{2}$ .

If we take the epigraph epi$f:=\{(x, r)|f(x)\leq \mathrm{r}\}$ of a convex function $f$ and
the hypograph $\mathrm{h}\mathrm{y}\mathrm{p}g:=\{(x, r)|r\leq g(x)\}$ of a concave function $g$ as $C_{1}$ and $C_{2}$ ,
respectively, and measure the width of the river in the vertical direction, then
duality between $(P_{2})$ and $(D_{2})$ becomes to Fenchel’s duality, see e.g. [6, Theorem
31.1].

FIGURE 3.3. Fenchel’s duality theorem

Therefore, classical dual problems can be described in terms of rivers or hy-
perplanes separating two convex sets. In this paper, we introduce the notion of
triangles separating three convex sets in order to define the dual problem for the
three-phase partition problem $(P)$ .
Deflnition 3.1. We say that a triangle $\Delta\subset\Omega$ separates $\{C_{i}\}_{i=1}^{3}$ if there are three
closed half spaces $\{H_{i}^{-}\}_{i=1}^{3}$ such that $Ci\subset H_{1}^{-}for$ $eve\eta i$ and A $= \bigcap_{i=1}^{3}H_{i}^{+}$ , where
$H_{i}^{+}$ denotes the closed half space opposite to $H_{1}^{-}$ (Fig. 3.4).

Before defining the dual problem, let us consider the special case that $\Omega$ is a
triangle determined by three closed half spaces.

Lemma 3.1. $(\mathrm{I}4])$ When $\Omega$ is a tfiangle in $\mathbb{R}^{2}$ , it holds that
$\min(P)=\min(P_{0})=the$ smallest height of $\Omega$ .
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FIGURE 3.4. $\Delta_{1}$ separates $\{C_{1}\}_{i=1}^{3}$ , and $\Delta_{2}$ does not separate $\{C_{i}\}_{i=1}^{3}$ .

So we define the dual problem as follows.
$(D)$ Maximize the smallest height of a triangle that separates $\{C_{1}\}_{i=1}^{3}$ .

The following is the main result.

Theorem 3.1. ([5]) Let $(X_{0}, \ldots, X_{3})$ be a non-degenerate minimal solution for
$(P_{0})$ . Then it is a minimum solution for $(P)$ and the strong duality relationship
holds.

$\sum_{:=1}^{3}||X_{i}-X_{0}||=\min(P)=\max(D)$ . (3.1)

Remark 3.1. Since the maximum value for $(D)$ is attained by a regu$lar$ triangle,
we may restrict triangles to regular triangles in $(D)$ . However, it is clear that
regular triangles are not enough when $\Omega$ is a (general) triangle. That’s why we
defined the dual problem with (general) triangles.

Corollary 3.1. When $\Omega\dot{u}$ bounded, the dual problem can be simplified as follows.
$(D)$ Maximize the smallest height of a triangle contained in $\Omega$ .

Indeed, let $\Delta$ be an arbitrary triangle contained in $\Omega$ . Then, by separation
theorem, there exists a closed half space $H_{1}^{+}$. $\supset\Delta$ such that $C_{1}\subset H_{i}^{-}$ for each
$i=1,2,3$ . Since $\Delta_{1}:=\bigcap_{\dot{\iota}=1}^{3}H_{i}^{+}$ is contained in the bounded set $\Omega,$ $\Delta_{1}$ is a triangle.
Further, since $\Delta\subset\Delta_{1}$ , the smallest height of $\Delta$ is bounded from above by the
smallest height of $\Delta_{1}$ (Fig. 3.5).

FIGURE 3.5. Although $\Delta$ does not separate $\{C_{i}\}_{1=1}^{3},$ $\Delta_{1}$ separates them.
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Remark 3.2. In $[1][7]$ , they dealt with a weighted objective function. It is not
hard to extend the present results to the weighted objective function

$\sum_{i=1}^{3}\sigma_{i}||X_{i}-X_{0}||$ ,

where $\sigma_{1}>0(i=1,2,3)$ can be intefpreted as interface tension (Fig. S.6).

FIGURE 3.6. $\sigma_{i}>0(i=1,2,3)$ can be regarded as interface tensions.
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