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A dilality theorem for a three-phase partition problem
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Abstract The three-phase partition problem is to divide a given domain 2 C R?
into three subdomains with a triple junction having least interfacial area. Recently,
we proposed a duslity theorem for a three-phase partition problem in [5]. We
introduced a notion of separation of three convex sets by triangles to define a dual
problem. In this paper, we explain its outline.

1. Introduction

The three-phase partition problem is to divide a given domain Q@ C R? into
three subdomains with a triple junction having least interfacial area (Fig.1.1).
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FIGURE 1.1. Three-phase partition problem

Sternberg and Zeimer [7] and Ikota and Yanagida [1] formulated this problem
as a variational problem and discussed stability of stationary solutions. However,
since the shortest curve joining two points X, and Xj; is the line segment [Xj, X;],
it can be formulated as an extremal problems in a Euclidean space. From this
point of view, we discussed stability and studied its game-theoretic aspect in [2][3].
Further, we gave a duality theorem for an extremal problem (F,) induced from
the three-phase partition problem in [4].

3
| Minimi Xoye. o, Xa) =S 1X: — X
P) inimize  f(Xo 3) ; I ol|
subject to Xo €, X; €C; (i =1,2,3),
where || - || denotes the Euclidean norm and C; (i = 1,2, 3) are closed convex sets

with non-empty interior in R? such that  := cl(M}_;C¥) is non-empty (Fig. 1.2).
Moreover, we improved the duality theorem so that the dual problem does not
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FIGURE 1.2. Primal problem (P)

include the variables of the primal problem in [5]. The aim of this paper is to
state the outline of [4][5]. :

In this paper we use the following notations. For any closed convex sets C; and
Ca, we define d(C1, Cy) := min{||X; — X;|| | X: € C; ( = 1,2)}. We denote by
N(X;; C;) the normal cone of C; at X;, that is,

N(Xi; C,) = {Y eR" I YT(X — Xi) <0VX € C,}

2. First-order optimality condition

As is easily seen from Fig. 1.2, Q is not always a convex set. So the primal
problem (Fp) is not a convex programming problem in general. We modify it so
that it becomes a convex programming problem.

3
(P) Minimize ; || X; — Xol| |
subject to Xp € R? X; €C; (i=1,2,3).

The only difference is that € is replaced by R?. We say a feasible solution
(Xo,--.,X3) for (Py) (or (P)) non-degenerate if Xy does not coincide with any
X; (i=1,2,3). ’

" FIGURE 2.1. Young’s law and the transversality condition

Theorem 2.1. Let (Xo,...,X3) be a non-degenerate minimal solution for (Fp).
Then it is a minimum solution for (P). Further, it satisfies Young’s law

£LX;XoX; =120° for any i # j (€ {1,2,3}) (2.1)
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and the transversality condition
Xo - X;’ € N(X,,O,) (Z = 1,2, 3) (22)

Proof. There exists an open convex neighborhood Cj of Xy such that (Xo,. .., X3)
is & minimum point of f on C := Cy x C; x Cz x C3. Since f and C are convex,
(Xo, - . - , X3) is & minimum point of f on R™ x C; x Ca X C3. Hence it is a minimum
solution for (P). According to Kuhn-Tucker’s theorem, see e.g. Rockafellar [6],
there exist multipliers A\; > 0 (i = 1,2,3) such that 0 € R* belongs to the
subdifferential of the Lagrange function _

3 3
L(Xo, ces ,X3) = Z “X; - Xoll + Z A,é(X,‘C,),
i=1 i=1
where §(X;|C;) denotes the characteristic function of C;. Picking up X,-component
of the subdifferential L, we have

ny+ny+n3=0¢€ R", (2.3)

where n; := (Xo — X;)/||Xi — Xo||, which implies Young’s law. Picking up X;-
component (i = 1,2,3) of L, we have 0 € —n; + \;N(X;; C;), which implies the
transversality condition. O

Remark 2.1. In [1][2][3][7], smooth cases were studied. Then the transversality
condition (2.2) becomes a orthogonality condition, that is, Xo — X; touches the
boundary 00 at right angles.

3. Separation by a triangle -

In this section, we first review classical duality theorems in brief. Next, we
introduce separation of three convex sets by a triangle.

‘One of the simplest duality theorems is the following. Let C) be a non-empty
convex set in R? and A ¢ C) a point. Then the primal problem is

(P) Minimize || X; — A||
1 subject to X, € Ci.

Its dual problem (D) is to maximize the distance from A to a hyperplane H
that separates A and C;. We can rephrase it as maximizing the width of a river
that separates A and C; (Fig. 3.1), where a river stands for the area sandwiched
between two parallel lines.

FIGURE 3.1. Dual problem (D) is to maximize the width of a river
that separates A and C;.
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If we replace A with a convex set C, such that C; N Cy; = ¢, then the primal
problem becomes as follows.

(Py) Minimize ||X; — X3
2 subject to X; € C; (i = 1,2).

Its dual problem (D,) is to minimize the width of a river that separates C; and
C; (Fig. 3.2).

FIGURE 3.2. Dual problem (D) is to maximize the width of a river.
that separates C; and C,.

If we take the epigraph epif := {(z,r)| f(z) < r} of a convex function f and
the hypograph hypg := {(z,r)|r < g(z)} of a concave function g as C; and C,,
respectively, and measure the width of the river in the vertical direction, then

duality between (P) and (D,) becomes to Fenchel’s duality, see e.g. [6, Theorem
31.1).

FIGURE 3.3. Fenchel’s duality theorem

Therefore, classical dual problems can be described in terms of rivers or hy-
perplanes separating two convex sets. In this paper, we introduce the notion of
triangles separating three convex sets in order to define the dual problem for the
three-phase partition problem (P).

Definition 3.1. We say that a triangle A C Q separates {C;}i, if there are three
closed half spaces {H; }3_, such that C; C H; for everyi and A = N3, H;, where
H denotes the closed half space opposite to H (Fig. 8.4). :

Before defining the dual problem, let us consider the special case that 2 is a
triangle determined by three closed half spaces.

Lemma 3.1. ({4]) When Q is a triangle in R?, it holds that
min(P) = min(Py) = the smallest height of 2.
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FIGURE 3.4. A; separates {C;}3.,, and A; does not separate {C;}3_;.

So we define the dual problem as follows.
(D)  Maximize the smallest height of a triangle that separates {C;};_;.
The following is the main result.

Theorem 3.1. ([5]) Let (Xo,...,X3) be a non-degenerate minimal solution for
(Po). Then it is a minimum solution for (P) and the strong duality relationship
holds.
3
Y " 11X: = Xol| = min(P) = max(D). (3.1)

i=1

Remark 3.1. Since the mazimum value for (D) is attained by a regular triangle,
we may restrict triangles to regular triangles in (D). However, it is clear that
regular triangles are not enough when Q is a (general) triangle. That’s why we
defined the dual problem with (general) triangles.

Corollary 3.1. When 2 is bounded, the dual problem can be simplified as follows.
(D) Mazimize the smallest height of a triangle contained in .

Indeed, let A be an arbitrary triangle contained in 2. Then, by separation
theorem, there exists a closed half space H;” D A such that C; C H; for each
i=1,2,3. Since A; := N_, H is contained in the bounded set 2, A, is a triangle.
Further, since A C Aj, the smallest height of A is bounded from above by the
smallest height of A, (Fig. 3.5).

FIGURE 3.5. Although A does not separate {C;}}_,, A, separates them.
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Remark 3.2. In [1][7], they dealt with a weighted objective function. It is not
hard to extend the present results to the weighted objective function

3
> aill X = Xoll,

i=1

where o; > 0 (i=1,2,3) can be interpreted as interface tension (Fig. 3.6).

FIGURE 3.6. 0; > 0 (i = 1,2, 3) can be regarded as interface tensions.

REFERENCES

[1] R.Ikota and E. Yanagida, ” A stability criterion for stationary curves to the curvature-driven
motion with a triple junction”, Differential and Integral Equations, 16, 707-726 (2003).

[2] H. Kawasaki, "A game-theoretic aspect of conjugate sets for a nonlinear programming
problem”, in Proceedings of the third International Conference on Nonlinear Analysis and
Convex Analysis, Yokohama Publishers, 159-168 (2004).

[3] H. Kawasaki, ” Conjugate-set game for a nonlinear programming problem”, in Game theory
and applications 10, eds. L.A. Petrosjan and V.V. Mazalov, Nova Science Publishers, New
York, USA, 87-95 (2005).

[4] H. Kawasaki, ” A duality theorem for a three-phase partition problem”, submitted.

(5] H. Kawasaki, ” A duality theorem based on triangles separating three convex sets”, submit-
ted.

[6] R.T. Rockafellar, Conver Analysis, Princeton University Press, Princeton, New Jersey,
(1970).

(7] P. Sternberg and W. P. Zeimer, "Local minimizers of a three-phase partition problem with
triple junctions”, Proc. Royal Soc. Edin., 124A, 1059-1073 (1994).

39



