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Abstract

The basin problem for a strange attractor aeks the aeymptotic distribution of
$\mathrm{L}\mathrm{e}\mathrm{b}\mathrm{e}\mathrm{s}_{1}\mathrm{e}$ almost every initial point in the basin of attraction. A solution to this
problem for H\’enon-like attractors was given by Benedicks-Viana, and later by Wang-
Young, under oertain conditions of the Jacobian of the map, which are used in a
crucial way to control the volume growth under iteration. The purpo\S e of this paper
is to remove the assumption of the Jacobian in their solutioo, in a hope that the
argument can be extended to a broader $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}8$ of H\’enon-like maps which are not
necessarily invertible and possess singularities.

1 Introduction
1 In [10], Mora-Viana isolated a class of parameter families of diffeomorphisms which they
call H\’enon-like, ae an abstract model of the renormarization in generic one-parameter
families of surface diffeomorphisms unfolding homoclinic tangencies associated with dis-
sipative saddles [11]. Recall that the H\’enon-like family $(H_{a,b})$ is a two parameter family
of planar diffeomorphisms such that

1. $(a, b,x, y)arrow H_{a,b}(x, y)$ is continuous and $(a, x, y)arrow H_{a,b}(x, y)$ is $C^{3}$ for any $b$ .
2. there exists a constant $J$ independent of $b$ such that

(a) $H_{a,b}$ hae the following form:

$H_{a,b}(x, y)=(1-ax^{2}, \mathrm{O})+R(x, y, a, b),$ $||R(x, y, a, b)||_{G^{f}}\leq j\sqrt{b}$ .

(b) for any $(a, b),$ $b\neq 0$ ,

$J^{-1}b\leq|\det DH_{a,b}|\leq Jb$ and $||D\log|\det DH_{a,b}|||\leq J$.
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They proved the abundance of strange attractors in this family around parameter values
close to $(2, 0)$ , by extending the pioneering work of Benedicks-Carleson [2]. For this
type of attractors Benedicks-Viana $[3]^{2}$ solved the basin problem, that is, the asymptotic
distribution of Lebesgue almost every initial point in the basin of attraction coincides
with the ergodic SRB measure, which is proved to exist by Benedicks-Young [4] [5]. In
their argument on the basin problem, the assumption (b) which we call the homogeneity
assumption is used at two crucial metric estimates: deducing that unstable sides are
roughly parallel, and obtaining area distortion bounds which stay bounded as $b$ tends to
zero. The comprehensive paper of Wang-Young [20] on strange attractors also contains
another solution to the basin problem in a similar but not the same context assuming a
similar condition on Jacobians for the same purpose. We remark that all they actually
need is that the condition (b) holds in a small neighborhood in which strange attractors
potentially exist, i.e. in a neighborhood of the set $\{(x, 0) : |x|\leq 1\}$ .

Our ultimate goal is to generalize these results on the basin problem [3] [20] to cases
for non-invertible maps possessing singularities which deny the homogeneity assumption.
This paper is an impetus to this goal; namely, we solve the basin problem for “H\’enon-
like attractors” generated by planar diffeomorphisms without relying on the homogeneity
assumption. We do this in a hope that our argument can be combined with further param-
eter exclusions and be extended to cases where fold singularities are present. The author
is currently working on this subject by using Tsujii’s reconstruction of the Benedicks-
Carleson theory [16].

One may ask whether families of diffeomorphisms which do not satisfy the homogeneity
assumption are naturally embedded in bifurcation mechanisms of dynamics. In a separate
paper [13] we shall prove that such families bifurcate through critical saddle-node cycles
[6].

1.1 The family.
Throughout this paper we consider a two parameter family of planar diffeomorphisms of
the following form:

$F_{a,b}$ : $arrow(^{G(x,y,a)+bu(x,y,a,b)}bv(x,y,a,b))$ ,

where $(a,x,y)arrow u(x,y,a, b),$ $v(x,y, a, b),$ $G(x,y, a)$ are $C^{3}$ with bounded $C^{3}$ norms for
any $b$ . Letting $g_{a}=G(x,0,a)$ we assume that $g_{a}$ is a unimodal map defined on [-1, 1].
By this we mean $g_{a}$ has a unique critical point $c\in(-1,1),$ $g_{a}’(x)$ changes its sign at $c$,
and sends the boundary $\{-1,1\}$ into itself. For simplicity assume that the critical point
of $g_{a}$ does not change with parameter and it is $0$ , and that-l is a fixed point of $g_{a}$ . The
map go is a preperiodic Misiurewicz map, i.e. there exists a repelling periodic point $Q$

of go and $m>2$ such that $g_{0}^{m}(0)=Q$ , and all periodic points of $g_{0}$ is repelling. Letting
$D(a, n)=\ovalbox{\tt\small REJECT}_{da}dg^{n}l0-$ we further assume the limit

$\lim_{\mathrm{n}arrow\infty}\frac{D(0,n)}{g_{0}^{n}(g\mathrm{o}(0))}$

$\overline{2\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}}$paper appear\’e in2001but the result had been announced in 1995. See [19].
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Figure 1: the geometry of the critical set.

which is known to exist [17] is nonzero. This assumption only concerns the parameter
exclusion which we do not deal with in this paper. The point in the setting is that nothing
particular is assumed on the Jacobians of the family $(F_{a,b})$ .

We impose the following non-degeneracy conditions:

$\partial_{x}v(0,0,0,0)\cdot g_{0}’’(0)\neq 0$. (1)

(1) implies that if $(a, b)$ is close to $(0,0)$ and $b\neq 0$ , then $F_{a,b}$ maps a short segment in the
$x$-axis containing $(0,0)$ to a curve which is $C^{2}$ close to the parabola $x=e\cdot y^{2}(e\neq 0)$ .

Denote by $P$ the repelling fixed point of $g_{0}$ which is not $(-1,0)$ . We use the same
letters $P,$ $Q$ to denote their continuations for $F_{a,b}$ with $(a, b)$ close to $(0,0)$ . If there is no
fear of confusion, we write $F=F_{a,b}$ and $z:=F_{1}(z)$ for $z\in \mathrm{R}^{2}$ and $i\in \mathrm{Z}$

‘ when it makes
sense. We maintain the same convention for an arbitrary set $A\subset \mathrm{R}^{2}$ , i.e. $A_{:}=F^{:}(A)$ .

The properties of $(F_{a,b})$ imply the existence of an $F$-forward invariant closed rectangle
$D=D(F)$ which contains $P$ , and is bounded by two horizontal lines $\{(x, y) : |y|=1/10\}$

and two vertical curves contained in $W^{s}(Q)$ . The set $D$ captures an important part of
the dynamics of $F$ . Put $\Omega=\bigcap_{n\succ 0}$ $D_{n}$ , where $D_{n}=F$“ $(D)$ . The forward iterates of the
horizontal boundaries of $D$ are $\mathrm{c}\overline{\mathrm{a}}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}$ unstabl.e sides. The vertical boundaries of $D$ play
no role in our argument because they approach the fixed point $Q$ under iteration.

1.2 The critical set of Wang-Young.
Following [20], we present a geometric model called critical set which lies at the heart of
our argument. For all our purposes, we arrange things in a slightly different way from the
original paper [20].

Regarding nonzero positive constants $\alpha_{0},$
$\beta_{0},$ $\delta_{0},$

$\gamma_{0},$
$\Delta_{0}$ , we assume for the moment the

relations $10\alpha_{0}<\beta_{0},$ $||g_{0}||_{C^{S}}\leq e^{\Delta_{0}/2},2.8\alpha_{0}/\Delta_{0}<1,$ $\gamma_{0}=\hat{\gamma}_{0}-5\alpha_{0}$ , and $\delta_{0}<1$ . The
constant $\hat{\gamma}0$ only depends on 90, and will be specified later. Fix $\theta_{0}>0$ sufficiently small,
say $<10^{-4}$ , depending on $g_{0}$ . Denote by $C>0$ any auxiliary constant which appears in
many places of our estimates. Keep in mind that the values of $C$ are different in different
places.

For two nonzero vectors $u$ and $\tilde{u},$ $\mathrm{t}\mathrm{g}\mathrm{l}\mathrm{e}(u,\tilde{u})\in[0, \pi/2]$ denotes the smaller angle which
they make. Put slope $(v)=\tan \mathrm{t}\mathrm{g}\mathrm{l}\mathrm{e}(v, (_{0}^{1}))$ . For a $C^{1}$ curve 7 and $z\in\gamma,$ $t_{\gamma}(z)$ denotes
any unit tangent vector of 7 at $z$ . If $\gamma$ is contained in the unstable sides, we simply write
$t(z)$ . A nonzero vector $v$ is called horizontal if slope(v) $\leq 10\theta_{0}$ holds. A $C^{2}$ curve 7
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is called horizontal if slope $(t_{\gamma}(z))\leq 10\theta_{0}$ holds for all $z\in\gamma$ , and the curvature of 7 is
smaller than $\theta_{0}^{3}$ everywhere on 7.

1.2.1 Geometry of the critical set.

Fix a small neighborhood $N$ of $(0,0)$ such that 11 $DF_{a,b}||_{C^{8}}\leq e^{\Delta_{0}}$ holds for all $(a, b)\in N$ .
Fix $K>0$ such that $|\det DF_{a,b}(z)|<Kb$ holds for all $z\in D$ and $(a, b)\in N$. The critical
set $C\subset\Omega$ is given by $C= \bigcap_{k=0}^{\infty}C^{\overline{(}k)}$ , where $\{C^{(k)}\}_{k\geq 0}$ is a decreasing sequence called
critical regions such that;

1. $C^{(0)}=\{(x, y)\in D : |x|\leq\delta_{0}\}$ .
2. $C^{(\mathrm{k})}$ is a subset of $D_{k}=F^{k}(D)$ and has a finite number of components called

$Q^{(k)}$ each of which is diffeomorphic to a rectangle. The set $Q^{(k)}$ is bounded by
two vertical lines, and by two horizontal curves in the unstable sides of $D_{k}$ . The
Hausdorff distance between the two horizontal curves is $O(b^{k/4})$ , and their projection
on the $\mathrm{x}$-axis are intervals with length $\min\{\delta_{0}, e^{-\beta_{0}k}\}$ .

3. $C^{(k)}$ is related to $C^{(k-1)}$ as follows: $Q^{(k-1)}\cap D_{k}$ has at most finitely many compo-
nents. Each of them is bounded by the two vertical boundaries of $Q^{(\mathrm{k}-1)}$ , and by
two horizontal curves in the unstable sides of $D_{k}$ . Each component of $Q^{(k-1)}\cap D_{k}$

contains exactly one component of $C^{(k)}$ . See Figure 1.

1.2.2 Critical points.

Around the mid point of each unstable side of $Q^{(k)}$ , there exists a unique point $c$ such
that

$||DF_{\epsilon_{1}}^{\mathfrak{n}}(_{0}^{1}))||\geq e^{\gamma 0n}$ and 11 $DF_{c_{1}}^{n}t(c_{1})||\leq(Kb)^{n}$

holds for all $n\geq 0$ . The point $c$ is called a critical point of generation $k$ . By definition,
$Q^{(k)}$ contains infinitely many critical points. Letting $c=(c_{x}, c_{y})$ be the critical point on
the unstable side of $Q^{(k\rangle}$ , we assume the relation $|c_{x}-d_{x}|\leq(Kb/2)^{k}$ for any critical point
$d=(d_{x}, d_{y})\in Q^{(k)}$ .

For $z=(x, y)\in D$ , the distance to the critical set $d_{C}(z)$ is defined as follows: $d_{C}(z)=$

$|x|$ for $z\not\in C^{(0)}$ . Otherwise, letting $k_{0}= \max\{k : z\in C^{(k)}\}$ and $Q^{(k_{0})}$ be the component
containing $z,$ $d_{C}(z)$ is defined to be the minimum of the horizontal distances between $z$

and the two critical points on the unstable sides of $Q^{(k_{0})}$ .

1.2.3 Dynamical assumptions.

For the critical set $C$ we put two assumptions:

(A1) for all critical point $c$ and $n\geq 0$ ,

$\sum_{1\leq j\leq n+1,\mathrm{c}_{j}\in \mathcal{E}^{(0)}}\log k(c_{j})^{-1}\leq\alpha_{0}n$
,

where $\overline{C}^{(0)}:=\{(x, y)\in D : |x|\leq\delta_{0}^{2.8\alpha 0/\Delta_{0}}\}$. Notice the relation $C^{(0)}\subset\overline{C}^{(0)}$ .
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$(A2)$ For all critical point $c$ and $n\geq 0$ , there exists $\chi(n)\in[(1-10\alpha_{0})n, n]$ such that

slope$(DF_{c\iota}^{\chi(n)}(_{0}^{1}))\leq\theta_{0}$ .

The assumption $(A1)$ states two things on the orbits of the critical points: they do
not come too close to the critical set, and do not enter the region $\overline{C}^{(0)}$ so frequently.
This formulation is inspired by the bounded recurrence condition introduced by Luzzatto
[8] 3. He proved that the assumption $(A1)$ in the one-dimensional situation is indeed
realized with positive probability in parameter spaces. The reader should also refer to
Luzzatto-Viana [9] in which a proof is given for the construction of a positive measure set
of parameter values corresponding to the critical set4 satisfying $(A1)$ .

Wang-Young defined the critical set only for those parameters which were selected
by the huge inductive parameter exclusion argument. In contrast, we define the critical
set explicitly from the beginning, and develop arguments assuming the existence of the
critical set.

The assumption $(A1)$ is stronger than the combination of the parameter exclusion
rules $(BA)$ and $(FA)$ , introduced by Benedicks-Carleson [2]. Wang-Young [20] proved the
abundance of parameter values corresponding to the critical set satisfying $(BA)$ and $(FA)$ .
Thus, the existence, let alone the abundance, of the critical set with $(A1),$ $(A2)$ does not
immediately follow from [20]. However, we remark that one can reconstruct arguments
of [20] in light of [9], and can sh$o\mathrm{w}$ the abundance of parameter values possessing the
critical set satisfying $(A1)$ . For these selected parameter values the assumption $(A2)$ is
necessarily satisfied.

Theorem 1. (Wang-Young [20]) Let $(F_{a,b})$ be as above. For any $\alpha_{0}$ sufficiently small,
there exist $\beta_{0},$ $\delta_{0}$ such that for any $b\neq 0$ sufficiently close to $0$ , there evists a set of
$a$-values $\Delta_{b}$ utth $\mathrm{L}\mathrm{e}\mathrm{b}(\Delta_{b})>0$ such that for any $a\in\Delta_{b}$ , the corresponding $F_{a,b}$ has the
$c$ritical set $C(\alpha_{0}, \beta_{0}, \delta_{0})$ satisfying $(A1)$ and $(A2)$ , and admits an ergodic $SRB$ measure
$\mu_{a,b}$ supported on the closure of the unstable manifold of $P$ .

1.3 Statement of the result.
We now introduce a constant $\mu_{0}:=-10^{-2}\cdot\log b$ and the following terminology to state
our main theorem. We say $z\in F(C^{(0)})$ is controlled up to time $n$ if $d_{C}(z_{j})\geq e^{-\S nj}$ holds
for all $0\leq j\leq n$ . We say $z\in D$ is eventually controlled if there exists some $n_{0}$ such that
$z_{n\mathrm{o}}\in F(C^{(0)})$ and $z_{n_{\mathrm{O}}}$ is controlled all the time.

Main theorem. Let $(F_{a,b})$ be as above. For any $\alpha_{0}$ sufficiently small, there exist $\beta_{0},$ $\delta_{0}$

such that for any $b\neq 0$ sufficiently close to $0$ , if $F=F_{a,b}$ has the critical set $C(\alpha_{0}, \beta_{0}, \delta_{0})$

satisfying $(A1)$ and $(A2)$ , then Lebesgue almost every initial point $z\in D$ is eventually
controlled. In particular,

$\lim_{narrow}\sup_{\infty}\frac{1}{n}\log$ II $DF^{n}(z)$ Il $\geq\frac{\gamma_{0}}{3}$

3A similar condition implicitly appears in [14] [15]
4By this we mean the geometric structure in dynamical space which is constructed in [9]. The term

“critical set” is not used there, so we have slightly abused a language.
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holds for Lebesgue almost every $z\in D$ .
Three remarks: the lower estimate of the upper Lyapunov exponent directly follows

from Corollary 4.1. The main theorem should be understood in conjunction with Wang-
Young’s theorem to be explained in the next paragraph. The author suspects that ex-
tending the main theorem to higher dimensions [18] [21] presents a serious difficulty.

We say $z\in D$ is generic with respect to a probability measure $\mu$ if the asymptotic
distribution of the orbit of $z$ exists and coincides with $\mu$ , i.e. $\lim_{narrow\infty}n^{-1}\sum_{i=0}^{n-1}\delta_{l|}=\mu$

holds. we claim that Wang-Young’s theorem and the main theorem together imply that
for any $(F_{a,b})$ as above and any $(a, b)$ such that $a$ $\in\Delta_{b}$ , Lebesgue almost every initial point
of $D$ is geheric with respect to the SRB measure $\mu_{a,b}$ . Following [20], let us explain why tbis
is so. We begin with taking a small horizontal curve $\mathrm{o}\mathrm{f}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}\sim\delta_{0}/(-\log\delta_{0})^{2}$ , denoted by
$\Delta_{+}$ , located near one of the vertical boundaries of $C^{(0)}$ . Imitating the parameter exclusion
argument in one-dimensional systems [1] [2], we construct a positive measure subset $\tilde{\Delta}_{+}$

of $\Delta_{+}\mathrm{s}\mathrm{u}\mathrm{i}$ that all points of $F(\tilde{\Delta}_{+})$ is controlled all the time. We do the same thing
with respect to $\Delta_{-}$ and construct $\tilde{\Delta}_{-}$ , where $\Delta_{-}$ is also a small horizontal curve of the
same length as $\Delta_{+}$ , located near the other vertical boundary of $C^{(0)}$ . From a point which
is controlled all the time emanates a stable leaf; by this we roughly mean a sufficiently
long $C^{1}$ vertical curve such that any two points lying on it are future asymptotic to
each other. The collection of the stable leaves through $F(\tilde{\Delta}_{-}\cup\tilde{\Delta}_{+})$ forms a lamination
with absolutely continuous holonomies. We denote by llt its pull back by $F$ . The leaves
of $?t$ are still horizontal, since $\Delta_{+}\cup\Delta_{-}$ is near the vertical boundaries of $C^{(0)}$ , and in
particular they pass through the closure of $W$“ $(P)$ . Suppose that there exists a positive
Lebesgue measure set $B\subset D$ such that any point of $B$ is not generic with respect to
$\mu_{a,b}$ . The SRB property of $\mu_{a,b}$ , the Birkoff ergodic theorem, the absolute continuity of
the holonomies along $\mathcal{H}$ altogether imply that the set $\{z\in B:\exists n\geq 0\mathrm{s}.\mathrm{t}. z_{n}\in \mathcal{H}\}$ has
zero Lebesgue measure. Let $\mathrm{Y}^{(i)}$ be the set of points $z\in D$ such that $z_{1}$ is controlled
all the time. According to the main theorem, there exists some $i_{0}$ such that $\mathrm{Y}^{(i_{0})}\cap B$

has positive Lebesgue measure. Let $\epsilon>0$ be an arbitrarily small number. By the
Fubini theorem and the Lebesgue density theorem, one can take a horizontal curve 7
in a way that $|\gamma\cap \mathrm{Y}_{i_{0}}^{(1_{0})}\cap B_{i_{0}}|_{\gamma}>1-\epsilon$ holds, where $|\cdot|_{\gamma}$ is the normalized arc length
measure on $\gamma$ . Let $\hat{\Delta}_{+}$ (resp. $\hat{\Delta}_{-}$ ) be a horizontal curve containing $\Delta_{+}$ (resp. $\Delta_{+}$ ) and
extending to its both sides with $1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}\sim\delta_{0}/(-\log\delta_{0})^{2}$ . Define a return time function
$R:\gamma\cap \mathrm{Y}_{i_{0}}^{(i_{0})}\cap B_{1_{0}}arrow(0, \infty]$ in the following way; $R(z)$ is the first moment at which
there exists a neighborhood $V_{z}$ of $z$ in $\gamma$ such that $p_{x}(V_{l})\supset p_{x}(\hat{\Delta}_{+})$ or $p_{x}(V_{l})\supset p_{x}(\hat{\Delta}_{-})$

holds, where $p_{x}(x, y)=x$ . Define $R(z)=\infty$ if no such $R(z)$ exists. By the main
theorem, there exists a countable union of horizontal curves denoted by $\tilde{\gamma}$ such that
$\tilde{\gamma}\subset\gamma,\tilde{\gamma}\supset\gamma\cap \mathrm{Y}_{i_{0}}^{(i_{0})}\cap B_{1_{0}}$ , and $R$ is well-defined on $\tilde{\gamma}$ . The retum time estimate of [2] or
[5], including distortion estimates shows that the value of $R$ is in fact finite for Lebesgue
almost every $z\in\tilde{\gamma}$ . Define a return map $T:\tilde{\gamma}arrow \mathrm{R}^{2}$ by $T(z)=F^{R(Z)}(z)$ . By definition,
$T(z)$ has a Markov-like structure with countably many branches with bounded distortions.
Thus we obtain $|$ { $z\in\tilde{\gamma}$ A $\mathrm{Y}_{1_{0}}^{(1_{0})}\cap B_{i_{0}}$ : $\exists n\geq 0\mathrm{s}.\mathrm{t}$ . $z_{n}\in \mathcal{H}$} $|_{\tilde{\gamma}} \geq\min\{|\tilde{\Delta}_{+}|_{\Delta}+’|\tilde{\Delta}_{-}|_{\Delta-}\}/2$.
Since the measure $|\tilde{\Delta}_{\pm}|_{\Delta}\pm \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}$ depends on $\delta_{0}$ and $\epsilon$ is arbitrary, this yields a contradiction
if we choose $\epsilon<\min\{|\tilde{\Delta}_{+}|_{\Delta}+’|\tilde{\Delta}_{-}|_{\Delta_{-}}\}/2$ from the beginning. We lastly remark that the

104



measure estimate of $\tilde{\Delta}_{\pm}$ , and the return time estimate of course require a distortion
argument which is not contained in this paper. For details, see [2] [10] [20].
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