
POSITIVITY PROPERTIES OF DIRECT IMAGE BUNDLES
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ABSTRACT. This paper is based on a talk given at the conference on
‘Analytic geometry of Bergman kemels” in Kyoto, december 2005. It
reports on some results on the curvature of vector bundles that arise as
direct images of line bundles from [3]. It also gives some precisions and
applications of these results.

1. INTRODUCTION

This paper is based on a talk given at th$e$ conference on ‘Analytic ge-
ometry of Bergman kernels” in Kyoto, december 2005. It reports on some
$\mathrm{r}e$sults from [2] and [3] on the curvature of vector bundles that arise as direct
images of line bundles. Since complete proofs of the main results already
are published, we shall here instead focus on some precisions and applica-
tions. The precisions concem when equality holds in our estimates. The
applications, or perhaps illustrations, come from two different situations.
The first one concems recent work on extremal Kahler metrics on compact
manifolds. We shall then use our results to prove a variant of a recent the-
orem of Phong and Sturm on approximation of geodesics in the space of
K\"ahler metrics. The second illustration was not given in my talk, but is a
discussion of a comment by $\mathrm{H}$ Tsuji at the conference. It concems curva-
ture properties of the Weil-Petersson metric, and another related metric, on
Teichm\"uller space.

The results we are discussing deal with hermitian holomorphic line bun-
dles over the total space, $X$ , of a holomorphic fibration. We separate two
different cases, depending on whether the fibers of the fibration are compact
or not. These cases are quite different, since in the non-compact case the
space of holomorphic sections to our line bundle over a fiber is in general
not of finite dimension.

In the $\mathrm{n}\mathrm{o}\mathrm{n}\sim \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}$ case we will consider only a $\mathrm{v}e$ry special situation:
the total space is a product

$X=U_{t}\cross\Omega_{z}$

where $U$ and St are domains in $\mathbb{C}^{m}$ and $\mathbb{C}^{n}$ respectively, and $\Omega$ is assumed
to be pseudoconvex. We then get a trivial fibration from the projection of $X$

to $U$ . We will even assume that the line bundle in question is also trivial, but
its hermitian structure is not. The metric is then given by a weight function

$e^{-\phi(t,z)}$
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depending on $t,$ $\mathrm{i}\mathrm{e}$ varying from fiber to fiber. We assume that $\phi$ is plurisub-
harmonic and can be written

$\phi=\phi_{0}(z)+\psi(z, t)$ ,

where th is smooth up to the boundary and bounded. This implies that the
Bergman spaces

$A_{t}^{2}( \Omega)=\{h\in H(\Omega);\int_{\Omega}|h|^{2}e^{-\phi(t,z)}=:||h||_{t}<\infty\}$

are all equal as spaces, but their norms depend on $t$ . We thus get a trivial,
infinite rank vector bundle, $E$ over $U$ , with hermitian metric $||\cdot||_{t}$ . Our first
$\mathrm{r}e\mathrm{s}\mathrm{u}]\mathrm{t}$ is that this bundle is positive in the sense of Nakano. In the following
theorem, indices $j,$ $k$ denote differentiations with respect to the variables $t_{j}$

and $t_{k}$ , while greek indices $\lambda,$
$\mu$ denote differentiation with respect to $z_{\lambda}$ and

$z_{\mu}$ . By $\sum\Theta_{jk}dt_{j}$ A $d\overline{t}_{k}$ we denote $E:s$ curvature form, and $\phi^{t}=\phi(t, \cdot)$ .
Theorem 1.1. If $\phi$ is strictly plurisubharmonic, the hermitian bundle $(E,$ $||\cdot$

$||_{t})$ is strictly positive in the sense ofNakano.
More precisely, if $\phi$ is only assumed to be strictly plurisubhamonic with

respect to $z$ for each tfixed, if$u_{1},$ $\ldots u_{m}$ are elements in $E_{t}$ then

(1.1) $\sum(\mathrm{O}-_{j,k}u_{j}, u_{k})\geq\int_{\Omega}\sum_{jk}(\phi_{jk}-\sum_{\lambda\mu}\phi^{\lambda\mu}\phi_{j\lambda}\overline{\phi}_{k\mu})u_{j}\overline{u}_{k}e^{-\phi^{t}}$

This theorem implies that the dual bundle of $E$, with the dual norm, has
negative curvature (in the sense of Griffiths). As a consequence, if $s(t)$ is a
holomorphic section to the dual bundl$e$ , then

$\log||s(t)||_{t}$

is a plurisubharmonic function of $t$ . Applying this to $s(t)$ being a point
evaluation at a point in $\Omega$ that depends holomorphically on $t$ , we find that
the logarithm of the Bergman kernel

$K_{t}(z, z)= \sup_{u}|u(z)|^{2}/||u||_{t}^{2}$

is a plurisubharmonic function in $U\cross\Omega$ . Once one knows this statement
for a product domain a similar statement follows for more general domains.
Considering infinite sequences of weight functions $\phi_{\nu}$ that tend to infinity
outside of a pseudoconvex subdomain $D$ we amive at the following theorem.

Theorem 1.2. Let $D$ be a pseudoconvex domain in $\mathbb{C}^{m}\cross \mathbb{C}^{n}$ and let $\phi$

be pturisubharmonic in D. Put $D_{t}=\{z;(t, z)\in D\}$ and let $K_{t}$ be the
Bergman kernel of $D_{t}$ with the weight $\phi$. Then

$\log K_{t}(z, z)$

is plurisubharmonic in $D$.
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This theorem, which generalizes an earlier result of Maitani and Yam-
aguchi [6], was first proved with a slightly different method in [2]. Th$e\mathrm{r}\mathrm{e}$ it
is also explained how Theorem 1.2 can be view$e\mathrm{d}$ as a complex version of
the real-variable Prekopa’s theorem from convex analysis.

One question that tums out to be interesting is when equality holds in
the estimate of Theorem 1.1, $\mathrm{i}\mathrm{e}$ for which plurisubharnonic weights the
curvature operator $$ may have a null vector. It is $\mathrm{c}1e$ar that this can not
happen if $\phi$ is strictly plurisubharmonic, but quite a lot more can be said. In
the next theorem we assume for simplicity that $m=1$ .
Theorem 1.3. Assume that $\Omega$ is relatively compact in $\mathbb{C}^{n}$ with smooth strictly
pseudoconvex boundary. Suppose that the restriction of $\phi$ to each fiber is
strictly plurisubhannonic and smooth up to the boundary. Assume thatfor
$t=0$ there is some $u$ such that $\mathrm{O}-u=0$. Then, $if\omega=\partial_{z}\overline{\partial}_{z}\psi$

$\frac{\partial}{\partial t}|\omega=0$

at $t=0$. Moreover, iffor each $t$ in $U$ there is some nullvector $u$ of $\Theta$, then
$\psi$ is plurihamonic.

The proof of Theorem 1.1 involves an application of H\"ormander’s $L^{2_{-}}$

estimate for $\overline{\partial}$, and th$e$ proofofTheorem 1.3 depends on an analysis ofwhen
equality holds in H\"ormander’s estimate. Most likely; for bounded domains,
equality never holds, and for unbounded domains (with smooth boundary)
equality in H\"ormander’s estimate can hold only if the boundary is Levi-flat.
It is easy to see that for unbounded domains with Levi-flat boundary we
may get vanishing of curvature in Theorem 1.1, even if the variation of th$e$

weight function is not pluriharmonic. This occurs for instance when $\Omega$ is
all of $\mathbb{C}^{n}$ and $\phi=\phi_{0}\mathrm{o}T_{t}+\log|T_{t}’|^{2},$ $\mathrm{w}\mathrm{h}e$re $\phi_{0}$ is a function of $z$ alone, and
$T_{t}$ is the flow of a holomorphic vector field.

The second case of our results concerns fibrations with compact fibers,
$Xarrow pU$. The only “convexity type” assumption (to be compared with
pseudoconvexity of the total space in Theorem 1.2) is then that the total
space $X$ be K\"ahler. We also assume given a holomorphic hermitian line
bundle, $L$ over $X$ , which we assume has a smooth metric with semiposi-
tive curvature. The vector bundle, $E$ , we study is now the direct image of
$L\otimes K_{X/U}$ wh$e\mathrm{r}\mathrm{e}K_{X/U}$ is the relative canonical bundle of the fibration. Con-
cret$e1\mathrm{y}$ , this means that the fiber $E_{t}$ consists of the space of global sections
to $L\otimes K_{X_{t}}$ . The purpose of tensoring with canonical bundles before taking
direct images is twofold: First, together with th$e$ semipositivity assumption
on $L$ it quarantees that $E$ is indeed a vector bundle. Second, it gives us a
canonical way to integrate sections over the fiber, and thus get a metric on
$E$ . This is done by defining, for $u=s\otimes\alpha$ (where $s$ is a section to $L$ and a
is an $(n, 0)$ -form

$[u, u]=|s|^{2}c_{n}$ at $\wedge\overline{\alpha}$

and putting
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(1.2) $||u||_{t}^{2}= \int_{X_{t}}[u, u]$ .

We then have the following variant of Theorem 1.1.

Theorem 1.4. Let $Xarrow Up$ be a (non singular) Kdhlerfibration with com-
pactfibers over an open set $U$ in $\mathbb{C}^{m}$ . Let $L$ be a $(semi)positive$ line bundle
over $X$ and let $E=p_{*}(L\otimes K_{x/U})$ be the direct image bundle described
above. Then, if $E$ is given the metric $(\mathit{1},2)$, $E$ is $(semi)po\mathrm{s}itive$ in the sense
ofNakano.

Most likely one can prove a more general theorem, containing theorems
1.1 and 1.4, by considering fibrations having a K\"ahler metric which is com-
plete on each fiber.

Just like in the planar cas$e$ , Theorem 1.4 has consequences for the Bergman
kemel. Define the Bergman kernel for ( $L\otimes K_{X_{t}}$ by

$K_{t}= \sum u_{j}\wedge\overline{u}_{j}$ ,

if $\{u_{j}\}$ is an orthonormal basis for $E_{t}$ . Now $K$ is not a function anymore,
but transforms like a metric on $L\otimes K_{X/U}$ .
Corollary 1.5. Assume $L$ is $(semi)positive$. Then the Bergman kemel de-
fines a $(semi)positive$ metric on $L\otimes K_{X/U}$ .

We can think of th$e$ fibration as a way of varying smoothly the manifold
$X_{t}$ . Or, if the fibers are all the same, so that we have a trivial fibration, we
can use it to study variations of the line bundle. Finally, even the case when
the line bundle does not change with $t$ , but only the metric on it changes, is
of interest. This is precisely th$e$ situation that arises in the study of varia-
tions of K\"ahler metrics within one (integer) cohomology class that we will
discuss in section 3.

Th$e$ plan of th$e$ rest of this paper is as follows. In the next section we shall
discuss Theorem 1.1, and indicate the proof of Theorem 1.3. In section 3
we study the case of Theorem 1.4 when th$e$ fibration is trivial. Finally in
section 4 we apply Theorem 1.4 to the “universal curve” over Teichm\"uller
space, and show how it relates to curvature properties of th$e$ Weil-Petersson
metric.

Taking advantage of the format of th$e\mathrm{s}e$ notes from the proc$e$edings of a
conference, some arguments are merely sketched. Hopefully, a more com-
plete version will appear elsewhere.

2. FIBRATIONS OF DOMAINS IN $\mathbb{C}^{1+n}$ ,

We will explain very briefly the proof of Theorem 1.1 with the aim of
indicating the proof of Theorem 1.3. We refer to [3] for full details and for
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simplicity we assume $m=1$ . The main idea for th$e$ proof of Theorem 1.1
is to consider the bundle $E$ as a subbundle of a bundle $F$ , with fibers

$F_{t}=L^{2}(\Omega, e^{-\phi^{t}})$ .
Using the definition of the Ch$e\mathrm{r}\mathrm{n}$ connection, which generalizes naturally

to bundles of infinite rank, it is not hard to see that the Chem connection
form on $F$ equals the operator on $F_{t}$ given by multiplication by

$-\partial_{t}\psi=:-\psi_{t}dt$ .
Consequently the curvature form of $F$ is given by multiplication with

$(\partial\overline{\partial})_{t}\psi$ .
This operator is obviously positive as long as $\psi- \mathrm{o}\mathrm{r}$ equivalently $\phi- \mathrm{i}\mathrm{s}$ sub-
harmonic in the $t$-direction. It is also well known that curvature decreases
when we pass to a subbundle. The crux of the proof is to show that this
loss of positivity is not too big, if $\phi$ is plurisubharmonic with respect to all
variables. By a formula of Griffiths the curvature of $E$ satisfies

$(\mathrm{O}-^{E}u, u)=(\Theta^{F}u, u)-||\pi_{E}\perp(\overline{\partial}_{z}\psi_{t}u)||^{2}$ .
Here $\pi_{E}\perp \mathrm{i}\mathrm{s}$ th$e$ orthogonal projection on the complement of $E$ in $F$ . Now
note that

$w:=\pi_{E}\perp(\overline{\partial}_{z}\psi_{t}u)$

is the $L^{2}$ -minimal solution of the $\overline{\partial}$-equation on $\Omega$

$\overline{\partial}_{z}w=\overline{\partial}_{z}\psi_{t}u$.
We now apply the H\"ormander $\overline{\partial}$-estimate to this equation. (See the propo-
sition below.) As a result we obtain the inequality (1.1) (for $m=1$).

Let us now study when we have equality in (1.1) for some $u$ . As seen
from the discussion above, this question reduces completely to the question
when we have equality in H\"ormander’s estimate-the other steps in the
argument are equalities.

Proposition 2.1. Let $\Omega$ be a smoothly bounded strictly pseudoconvex do-
main and let $\phi$ be a strictly plurisubharmonic function which is smooth up
to the boundary in $\Omega$ . Then, if $f$ is a $\overline{\partial}$-closed $(0,1)- fom$ in $\Omega$ and $w$ is the
$L^{2}$ -minimal solution to $\overline{\partial}w=f$, equality holds in H\"ormander’s estimate

(2.1) $\int|w|^{2}e^{-\emptyset}\leq\int\sum\phi^{\lambda,\mu}f_{\lambda}\overline{f}_{\mu}e^{-\emptyset}$ .

onlyfor $f=0$.

Proof. In th$e$ proof it is convenient to think of $f$ as a form of bidegree $(n, 1)$ ,
and $w$ as a form of bidegree $(n, 0)$ ($|\mathrm{u}\mathrm{s}\mathrm{t}$ my multiplying by $dz$). Moreover
we $e$quip $\Omega$ with the K\"ahler metric $\omega=i\partial\overline{\partial}\phi$ . Then (2.1) just says that
$||w||\leq||f||$ , and amounts to saying that the smallest eigenvalue of the $\overline{\partial}-$

Neumann operator, $\square -=\overline{\partial}\overline{\partial}^{*}+\overline{\partial}^{*}\overline{\partial}$, restricted to closed forms is greater
than or equal to one. Conversely, if equality holds in (2.1), then $f$ is an
eigenform of $\square$ with

$-$

eigenvalue 1; $\square f-=f$ . From this, and subelliptic
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estimates it follows that $f$ is smooth up to the boundary. Moreover $f$ lies in
the domain of $\overline{\partial}^{*}$ and $w=\overline{\partial}^{*}f$ . Let $\gamma=*f,$ $\mathrm{w}\mathrm{h}e\mathrm{r}\mathrm{e}*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ th$e$ Hodge
operator defined by th$e$ metric $\omega$ , so that $\gamma\Lambda\omega=f$ . Combining with the
fundamental Kodaira-Nakano identity we find ($\mathcal{L}$ is the Levi form of the
boundary)

$||f||^{2}+|| \overline{\partial}\gamma||^{2}+\int_{\partial\Omega}\mathcal{L}_{\partial\Omega}(f, f)=||\overline{\partial}^{*}f||^{2}$ ,

where, by assumption, th$e$ last term is again equal to $||f||^{2}$ . Hence $\gamma$ must be
a holomorhic form and by the strikt pseudoconvexity $f$ must vanish at the
boundary. Thus $\gamma$ vanishes at the boundary, so 7 and $f$ vanish

$\mathrm{i}\mathrm{d}e\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\square$

.

Actually, it would probably be enough in the proposition to assume weak
pseudoconvexity here; the existence of one boundary point of strikt pseudo-
convexity is enough to conclude the argument. We have chosen to assume
strict pseudoconvexity to avoid problems due to lack of global regularity of
the $\overline{\partial}$-Neumann problem. Notice also that for unbounded domains, we may
very well have equality in (2.1). The simplest example is in entire space.
Equality then holds precisely when $\gamma=*f$ is holomorphic. When $\phi=|z|^{2}$

we can take $f=\overline{\partial}|z|^{2}$ .
Returning to our vector bundle $E$ , we now see that if the curvature of $E$

has some non trivial null vector for $t=0$, then $\overline{\partial}_{z}\psi_{t}=0$ . Applying $\partial_{z}$

we find that the $t$-derivative of $\omega$ vanishes, so we have proved the first part
of Theorem 1.3. If there are null-vectors for all $t$ it follows that $(\partial\overline{\partial})_{z}\phi$ is
independent of $t$ . Moreover, we see from (1.1) that $\psi_{\overline{u}}=0$ . Hence $\phi-\phi_{0}$

is pluriharmonic.
Natural examples of when $E$ has zero curvature even though the weight

function changes in a non trivial ( $\mathrm{i}\mathrm{e}$ non pluriharmonic) way come from
applying the flow of a holomorphic vector field to the weight. Notice that
this fits nicely with the obstructions coming from points of strict pseudo-
convexity above: it is intuitively reasonable that such flows do not exist
near strictly pseudoconv$e\mathrm{x}$ boundary points.

3. VARIATIONS OF K\"AHLER METRICS

Here we will discuss the special case of Theorem 1.4 when the fibration
is trivial. Let $Z$ be a compact manifold and let $\tilde{L}$ be a positive line bundle
over $Z$ . We put $X=U\cross Z$ where $U$ is open in $\mathbb{C}$ , and let $L$ be the pull
back of $\tilde{L}$ to $X$ under the projection from $X$ to $Z$ . An arbitrary metric $\phi$ on
$L$ can be written

$\phi=\phi_{0}+\psi(t, z)$ ,

where $\phi_{0}$ is the pullback of a metric on $\tilde{L}$ ( $\mathrm{i}e$ a $t$-independent metric) and
$\psi$ is afunction on $X$ . The direct image vector bundle

$E=p_{*}(L\otimes I\mathrm{s}\mathrm{i}_{Z})$
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is now the trivial bundle on $U$ with fiber equal to the space of global holo-
morphic sections to $L\otimes K_{Z}$ . We equip it with th$e$ metric

$||u||_{t}^{2}= \int_{Z}[u, u]_{\phi 0}e^{-\psi(t,\cdot)}$ .

By the same kind of argument as in the beginning of the previous section,
we find that the curvature of this metric satisfies

(3.1) $( \Theta^{E}u, u)\geq\int(\psi_{t\overline{t}}-|\overline{\partial}_{z}\psi_{t}|_{\omega}^{2})[u, u]_{\phi_{0}}e^{-\psi}$ .

As in the previous section it follows that if $u$ is a null vector for the cur-
vature for, some $t$ , then equality holds in the H\"ormander estimate for the
$\overline{\partial}$-equation

$\overline{\partial}w=\overline{\partial}\psi_{t}$ A $u$ .

To understand when this happens we ne$e\mathrm{d}$ a variant of Proposition 2.1.

Proposition 3.1. Let $A$ be a positive line bundle over a compact manifold
$Z$ and let $f$ be a $\overline{\partial}$-closed, $A$-valued $(n, q)$ form. Give $Z$ the K\"ahler metric
defined by the curvature$fom$ of $A,$ $\omega$. Let $w$ be the $L^{2}$ -minimal solution to
the $\overline{\partial}$-equation

$\overline{\partial}w=f$

Then equality holds in the H\"ormander estimate

$||w||^{2} \leq\frac{1}{q}||f||^{2}$

ifand only $if*f$ is a holomorphicform. ($Here*denotes$ the Hodge operator
with respect to $\omega.$ )

We now apply this to
$f=\overline{\partial}\psi_{t}\wedge u$ .

If $u$ is a null vector for the curvature it follows $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}*f=\gamma$ is a holomorphic
form. But

$*f=\delta_{V}u$

is the contraction of $u$ with a certain vector field, $V$ , the complex gradient
of $\psi_{t}$ , defined by

$\delta_{V}\omega=\overline{\partial}_{z}\psi_{t}$ .
Since $u\mathrm{a}\mathrm{n}\mathrm{d}*f$ are holomorphic, $V$ must be holomorphic (away from the
zeros of $u$ and hence everywhere, by Riemann’s theorem).

Th$e\mathrm{r}\mathrm{e}$ are now two cases. Either $Z$ has no non trivial holomorphic vector
field. Then $\overline{\partial}\psi_{t}=0$ and it follows much as in the previous section that

$\frac{\partial}{\partial t}\omega=0$ .

If $\Theta$ has a null vector for all $t$ it follows that $\omega$ does not change.
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The next case is when $Z$ may have some holomorphic vector field. Let
$T_{t}$ be the associated holomorphic flow of such a field. Starting from some
fixed metric $\phi_{0}$ on $L$ , let $\omega_{0}$ be its curvature form, and put

$\omega_{t}=T_{t}^{*}(\omega_{0})$ .

Then $\omega_{t}$ lies in the sam$e$ cohomology class as $\omega_{0}$ and is therefore the curva-
ture of some metric $\phi=\phi_{0}+\psi$ , where we can take $\psi$ to depend smoothly
on $t$ . Such a variation of the metric will give us a bundle $E$ with zero cur-
vature, at least if $L$ is invariant under th$e$ flow. Conversely, we claim that if
$$ has a null vector for all $t$ we must be in this situation.

To see this we first claim that $V$ depends holomorphically on $t$ . This
follows from a rather surprising formula: Let for any function $\psi$ on $X$

$c(\psi):=\psi_{\overline{u}}-|\overline{\partial}_{z}\psi_{t}|_{\omega}^{2}$.
Proposition 3.2. Let $V$ be the complex gradient of $\psi_{t}$ . Then

$V_{\overline{t}}= \frac{\partial}{\partial\overline{t}}V$

is the complex gradient of $c(\psi)$ . In particular, if $c(\psi)=0$ (or even con-
stant), then $V$ depends holomorphically on $t$ .

We thus have two holomorphic fields on the total space $X:V$ and $\partial/\partial t$ .
A computation shows that the compl$e\mathrm{x}$ Lie derivative of $\overline{\partial}_{z}\psi_{t}$ with $\mathrm{r}e$spect
to $V-\partial/\partial t$ vanishes. From there one gets the next proposition

Proposition 3.3. Assume that the metric $\phi$ on $L$ has semipositive curvature
and that the restriction of the curvature to each fiber is strictly positive.
Then, if the curvature of $E$ has some null vectorfor each $t$ itfollows that

$(\partial\overline{\partial})_{z}\psi$

is the pull back ofsomefixed metricform on $Z$ under theflow associated to
some holomorphic vectorfield on $Z$.
3.1. Geodesics. Th$e$ set of all K\"ahler metrics on $Z$ whose metric form lies
in the cohomology class determined by the Chem class of $\tilde{L}$ is naturally
idetified with the space, $\mathcal{K}$ of metrics on $\tilde{L}$ with positive curvature. This is
an open subset of an affine space, and its tangent space is a space of func-
tions on $Z$, see $e\mathrm{g}[5]$ and the references there. rc can be given the structure
of a Riemannian manifold, by defining the norm of a tangent vector $\psi$ at a
point $\phi$ by

$|| \psi||^{2}=\int_{Z}|\psi|^{2}dV_{\phi}$ ,

where $dV_{\phi}:=(i\partial\overline{\partial}\phi)_{n}$ is th$e$ volume element defined by $\phi$ . It tums out that
if

$tarrow\phi(t, z)$

is a path in rc and $\psi=d\phi/dt$ its tangent vector field, then $c(\psi)$ is equal to
its geodesic curvature, see [8]. Here we are being a bit sloppy. When we
talk about paths we are of cours$e$ thinking of $t$ as a $\mathrm{r}e$al variable, but we can
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also think of $t$ as being complex and the functions independent of ${\rm Im} t$ . As
a matter of fact, it is even more conveni $e\mathrm{n}\mathrm{t}$ to have $t$ complex, and the path
independent of the argument of $t$ .

In particular, $\phi$ is a geodesic if $c(\psi)=0$ . With any path as above we get
associated a vector bundle $E$ on $U$ . The inequality (3.1) for its curvature
holds even if $\phi$ does not have positive curvature on the total space, as long
as the restriction of $\phi$ to each copy of $Z$ has positive curvature.

It follows that the bundle $E$ associated to a geodesic has non-negative
curvature. Moreover, the curvature is even strictly positive provided that $Z$

has no non trivial holomorphic vector fields. In case $Z$ does have non trivial
holomorphic vector fields, the curvature of $E$ is strictly positive unless th$e$

geodesic comes from the flow of a holomorphic field.
Let $U$ be an annulus with inner radius 1 and outer radius $e$ . We will

consider metrics on $E$ that depend only on $|t|$ . By th$e$ above, any path in
rc with parameter interval $[0,1]$ gives rise to such a metric on $E$, and if the
path is a geodesic then the metric on $E$ is at least nonnegative i- “mostly”
even positive. Conversely, given any such metric on $E$ we get a path of
metrics on $\tilde{L}\otimes K_{Z}$ from the Bergman kem$e1\mathrm{s},$ $K_{t}$ , of $E_{t}$ . By the arguments
leading up to Corollary 1.5, these metrics are positive if the metric on $E$ has
positive curvature.

What we have described in the previous paragraph is very similar to the
starting point of [5], with one exception. In [5] one considers the direct
image of $L$ itself, and gives it a metric by integrating against th$e$ induced
volume element $dV_{\phi}$ . Here we tensor with $K_{Z}$ , which gives a natural way
of integrating without choosing a volume element.

We shall now state and prove a theorem corresponding to a result of
Phong and Sturm, [7] in our setting. Let $\phi_{0}$ and $\phi_{1}$ be two choices of met-
rics in $\mathcal{K}$ . Let $\phi_{0}$ define a constant metric, $(\cdot, \cdot)_{0}$ on the restriction of $E$ to
the inner boundary of the annulus $U$, and let $\phi_{1}$ define a metric on the outer
boundary. These metrics can be joined by a unique flat metric in the fol-
lowing way (see [7]). Choose an orthonormal basis $u_{j}$ for th$e$ first metric,
which also diagonalizes the second metric:

$(u_{j}, u_{k})_{1}=e^{2\lambda_{j}}\delta_{jk}$

Th$e$ metric on $E_{t}$ equals

$(u_{j}, u_{k})_{\log|t|}=|t|^{2\lambda_{g}}\delta_{jk}$ .

Then $u_{j}/t^{\lambda_{j}}$ is a holomorphic unitary frame so $E$ is flat. Let $K_{t}$ be the
Bergman kernel for $E_{t}$ . By inspection of the formulas, $K_{t}$ defines a semi-
positive metric $\phi(t)$ on $L\otimes K_{Z}$ .

Finally, we replace $L$ by $L^{k}$ , and denote the corresponding Bergman ker-
nels $K_{t}^{(k)}$ . By the Boutet de Monvel-Tian-Zelditch expansion

$Ic_{t}^{(k)}e^{-k\phi_{0/1}}/k^{n}=dV_{\phi}+O(1./k)$
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as $k$ tends to infinity on the inner and outer boundaries. Put
$K_{t}^{(k)}/k^{n}=e^{k\phi(t,k)}$ .

Then $k\phi(t, k)$ is a nonnegative metric on $L^{k}\otimes K_{Z}$ .

Proposition 3.4. Let $\phi^{*}be$ the supremum of all metrics with semipositive
curvature $\phi$ on $L$ such that

$\emptyset\leq\emptyset 0/\iota$

on the inner and outer boundary respectively. Then
$\lim\phi(t, k)=\phi^{*}$

with unifom rate ofconvergence at most $\log k/k$ .
Proof. By the Boutet de Monv$e1$-Tit-Zelditch expansion

$\phi(t, k)-\phi_{0/1}=O(1/k^{2})$

on the inner and outer boundary. Let $\phi$ be some metric with semipositive
curvature on $L$ which does not exc$e\mathrm{e}\mathrm{d}\phi_{0}$ and $\phi_{1}$ on the two parts of the
boundary. Let $K_{k\phi}$ be the Bergman kernel determinded by $k\phi$ . Then, since
the metric on $E^{(k)}$ determined by $k\phi$ has nonnegative curvature it must be
bigger than the flat metric determined by the boundary values $\phi_{0/1}$ , so the
Bergman kernels satisfy

$K_{t}^{(k)}\geq K_{k\phi}$ .
Let $\mu$ be some fixed volume element on $Z$ and put $\mu=e^{\chi}$ , where $\chi$ is some
metric on the canonical bundle. Using th$e$ extremal characterization of the
Bergman kemel and a simple variant of the Ohsawa Takegoshi extension
theorem we find that

$K_{k\phi}\geq Ce^{k\phi}\mu$ ,
with a constant independent of $k$ . Combining we see that

$K_{t}^{(k)}\geq Ce^{k\phi}\mu$ ,

so taking supremum over all choices of $\phi$

$\phi(t, k)\geq\chi/k-\log(k^{n})fk+\phi^{*}$ .

For th$e$ converse, note first that

$\chi(t, k):=\phi(t, k)-\chi/k$

is a metric on $L$ . If $\phi^{0}$ is an arbitrary, strictly positive metric on $L$ then for
$a$ large enough

$(1-a/k)\chi(t, k)+a/k\phi^{0}$

is also positive. Hence
$\phi^{*}\geq(1-a/k)\phi(t, k)+O(1/k)$ ,

which completes the proof.
$\square$
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4. TEICHMULLER SPACE

This section follows a suggestion made by $\mathrm{H}$ Tsuji during the Kyoto con-
ference. Let $T_{g}$ denote Teichm\"uller space, $\mathrm{i}\mathrm{e}$ the space of all complex
structures on a compact 2-manifold of genus $g>1$ , with two structures
identified if th$e\mathrm{y}$ are related via a diffeomorphism isotopic to the identity.
Each point $t$ in $\mathcal{T}_{g}$ determines a compact Riemann surface of genus $g$ , and
there exists a holomorphic fibration

$Xarrow T_{g}p$

such that th$e$ fiber, $X_{t}$ over each point is precisely the Riemann surface
determined by that point (see [1]). The cotangent space of $\mathcal{T}_{g}$ at $t$ is the
space of quadratic differentials on $X_{t},$ $\mathrm{i}\mathrm{e}$ the space of global sections to
$K_{X}^{2}$,. Hence the cotangent bundle of $\mathcal{T}_{g}$ is the direct image of the square of
the relative canonical bundle

$K_{x/\tau_{g}}^{2}$ .
This corresponds to th$e$ setting ofTheorem 1.4, with $L=K_{\mathrm{x}/\mathcal{T}_{g}}$ so we must
first discuss positivity of this bundle. Let us accept without proof that $X$ is
“locally K\"ahler’’, $\mathrm{i}e$ that any point in $\mathcal{T}_{g}$ has a neighbourhood $U$ such that
$p^{-1}(U)$ has some K\"ahler metric. It then follows from Corollary 1.5, with
$L$ trivial, that the Bergman kernel of $K_{X/\mathcal{T}_{\mathit{9}}}$ defines a nonnegative metric
on this bundle. Actually, it follows from the proof of Theorem 1.4 in [3],

that this metric is even strictly positive. Moreover, the space of all global
holomorphic one-forms on a Riemann surface of genus at least 1 has no
common zero set. (As pointed out to me by Ulf $\mathrm{P}e$rsson it follows from
the Riemann Roch theorem that the space of forms that vanish at any given
point has smaller dimension than the spac$e$ of all forms.) As a consequence,
the $\mathrm{m}e$tric defined by the Bergman kemel is non singular.

Now we can use this metric, and the recipe in Theorem 1.4, to get a
metric on $p_{*}(I\mathrm{f}_{X/\tau_{g}}^{2})$ . By Theorem 1.4 it has strictly positive curvature and
so defines a negativ$e1\mathrm{y}$ curved metric on Teichm\"uller space.

A more popular metric on Teichm\"uller space is the Weil-Petersson met-
$\mathrm{r}\mathrm{i}\mathrm{c}$ . It is defin$e\mathrm{d}$ in th$e$ same way as above, but starting from a different
metric on $K_{X/\mathcal{T}_{g}}$ : the one given by the Poincar\’e metric on each fiber. By a
theorem of Ahlfors, the Weil-Peterson metric is negatively curved. Here we
shall verify that it is at least seminegative. For this we need to verify that
the Poincar\’e metric defines a semipositively curved metric, notjust on each
fiber, but on all of $K_{X/\mathcal{T}_{g}}$ . This is a special case of a theorem of Brunella,

[4]. In our setting it can be proved as follows.
Locally, the fibration $Xarrow \mathcal{T}_{g}p$ lifts to a fibration $\hat{X}arrow \mathcal{T}_{g}p$ , where the fiber

of $\hat{X}$ is the universal cover of th$e$ fiber of $X,$ $\mathrm{i}e$ the disk. We claim that $X$

is pseudocomvex. This can be seen by lifting the Bergman kemels on the

fibers of $X$ to the fibers of $\hat{X}$ . These $(1, 1)$ -forms are naturally identifi$e\mathrm{d}$

with functions on the disk. Each fiber of $X$ is the quotient of the correspond-
ing fiber of $\hat{X}$ under a discrete group, so the lifts of the Bergman kemels
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are invariant under this group. This implies that th$e$ corresponding func-
tions are exhaustive. Since we already know they are plurisubharmonic, it
follows that $\hat{X}$ is pseudoconvex. The Poincar\’e metrics on the fibers of $X$

lift to the Poincar\’e metric on the disk, which equals th$e$ Bergman metric.
Then we can apply Theorem 1.2 to see that this metric is semipositive. This
implies that th$e$ Weil-Peterson metric is seminegative.
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