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Abstract. These notes are intended to give a brief account of some recent results
on multiplier ideal sheaves associated with singular metrics defined on holomorphic
line bundles over compact complex manifolds. The main result announced here is
a characterisation of the volume of a holomorphic line bundle in terms of Monge-
Amp\‘ere masses associated with positive currents in its first Chern class. This result,
new in the non-K\"ahler context, can be seen as giving singular Morse inequalities for
the cohomology groups of high tensor powers of a holomorphic line bundle equipped
with an arbitrarily singular Hermitian metric. A new characterisation of big line
bundles (and implicitly of Moishezon manifolds) in terms of existence of singular
metrics satisfying positivity conditions follows as a corollary. An effective version,
with estimates, of the coherence property of multiplier ideal sheaves is combined
with an effective estimate of the additivity defect of these sheaves to produce a
new regularisation of closed almost positive currents of bidegree $(1, 1)$ with an
additional control of the Monge-Amp\‘ere masses of the approximating sequence.
The proof of the main result relies mainly on this regularisation theorem. Detailed
proofs will appear elsewhere.

0.1 Singular Morse Inequalities

Let $X$ be a compact complex manifold with $n=\dim_{\mathbb{C}}X$ , and let L– $X$

be a holomorphic line bundle. With $L$ is associated a birational invariant,
the volume, defined as

$v(L)= \lim_{marrow}\sup_{+\infty}\frac{n!}{m^{n}}h^{0}(X, L^{m})$ ,

where $h^{0}(X, L^{m})$ is the complex dimension of the space $H^{0}(X, L^{m})$ of global
holomorphic sections of the $m^{th}$ tensor power of $L$ . It is a standard fact that
$v(L)\in[0, +\infty)$ . The line bundle $L$ is said to be big if $v(L)>0$ which amounts
to the space $H^{0}(X, L^{m})$ having the maximum order of growth $O(m^{n})$ as
$marrow+\infty$ . Big line bundles can thus be seen as bimeromorphic counterparts
to ample line bundles as $H^{0}(X, L^{m})$ defines a bimeromorphic embedding of
$X$ into some projective space $\mathrm{P}^{N_{m}}$ for $m>>1\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}$ enough. Their existence
characterises Moishezon manifolds among all compact complex manifolds.

The point at issue is to grasp the algebraically defined volume $v(L)$ in
terms of possibly singular Hermitian metrics that can be defined on $L$ . Recall
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that a singular Hermitian metric $h$ on $L$ is defined in any local trivialisation
$L_{|U}\simeq U\cross \mathbb{C}$ as $h=e^{-\varphi}$ for a weight function $\varphi$ : $Uarrow[-\infty, +\infty)$ which is
only assumed to be locally integrable with respect to the Lebesgue measure
on the open set $U\subset X$ . The set of singularities ($\mathrm{o}\mathrm{r}-\infty$ poles) $\{\varphi=-\infty\}$ is
Lebesgue negligible by the $L_{loc}^{1}$ assumption on $\varphi$ . A most manageable class
of singularities are the so-called analytic singularities (or logarithmic poles)
of the form :

$\varphi=\frac{c}{2}\log(|g_{1}|^{2}+\cdots+|g_{N}|^{2})+C^{\infty}$ , (1)

for some constant $c>0$ and holomorphic functions $g_{1},$
$\ldots,$ $g_{N}$ . In this case,

the set of singularities $\{\varphi=-\infty\}=\{g_{1}=\cdots=g_{N}=0\}$ is analytic.
With every Hermitian metric $h$ on $L$ one associates a multiplier ideal

sheaf $\mathrm{J}(h)\subset \mathrm{t}9_{X}$ defined as $\mathrm{J}(h)_{|U}=\mathrm{J}(\varphi)$ whenever $h=e^{-\varphi}$ on a trivialising
open set $U\subset X$ . The multiplier ideal sheaf $\mathrm{J}(\varphi)$ associated with the local
weight is, in turn, defined as

$\mathrm{J}(\varphi)_{x}=$ { $f\in \mathrm{t}9_{U,x}$ ; $|f|^{2}e^{-2\varphi}$ is Lebesgue integrable near $x$ }, $x\in U$.

Thus, the more singular $\varphi$ , the more $f$ has to vanish to compensate, and
consequently the smaller the multiplier ideal sheaf $\mathrm{J}(\varphi)$ . For smooth or boun-
ded weights $\varphi$ , this sheaf is clearly trivial, i.e. $\mathrm{J}(\varphi)=\mathit{0}_{U}$ . For tensor po-
wers $L^{m}$ , we have induced metrics $h^{m}=e^{-m\varphi}$ and multiplier ideal sheaves
$\mathrm{J}(h^{m})\subset O_{X}$ defined as $\mathrm{J}(h^{m})_{|U}=\mathrm{J}(m\varphi)$ .

On the other hand, a curvature current $T:=i\mathrm{O}-_{h}(L)$ is associated with
every Hermitian metric $h$ on $L$ . This is a $d$-closed current of bidegree $(1, 1)$ on
$X$ whose $\partial\overline{\partial}$-cohomology class is the first Chern class $c_{1}(L)$ of $L$ . If $h=e^{-\varphi}$

on an open set $U\subset X$ on which $L$ is trivial, $i_{h}(L)_{|U}$ is defined as the com-
plex Hessian form $i\partial\overline{\partial}\varphi$ of the weight $\varphi$ :

$T(z)=i_{h}(L)(z):=i \sum_{j,k=1}^{n}\frac{\partial^{2}\varphi}{\partial z_{j}\partial\overline{z}_{k}}(z)dz_{j}$ A $d\overline{z}_{k}$ , $z\in U$.

The coefficients $\frac{\partial^{2}\varphi}{\partial z_{j}\partial\overline{z}_{k}}$ are distributions and the current $T$ is said to be po-
sitive if the distribution $\sum\lambda_{j}\overline{\lambda}_{k}\frac{\partial^{2}\varphi}{\partial z_{j}\partial\overline{z}_{k}}$ is a positive measure for all complex
numbers $\lambda_{j}$ . This is equivalent to $\varphi$ being plurisubharmonic $(\mathrm{p}\mathrm{s}\mathrm{h})$ . The cur-
rent $T$ is said to be almost positve if $T\geq-C\omega$ for some constant $C>0$ and
an arbitrary Hermitian metric $\omega$ on $X$ . In this case, $\varphi$ is said to be almost
$psh$ . We will use the notation $dd^{c}= \frac{i}{\pi}\partial\overline{\partial}$ throughout. Any closed almost po-
sitive $(1, 1)$ -current $T$ on $X$ admits a global decomposition as $T=\alpha+dd^{c}\varphi$

for some $C^{\infty}(1,1)$-form $\alpha$ and some almost psh function $\varphi$ . The associated
multiplier ideal sheaf is defined as :

$\mathrm{J}(T)=\mathrm{J}(\varphi)\subset \mathrm{t}9_{X}$ .
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The coefficients $\frac{\partial^{2}}{\partial z_{j}}\partial \mathrm{f}\overline{z}_{k}^{-}$ are complex measures admitting a Lebesgue decom-
position into an absolutely continuous and a singular part with respect to
the Lebesgue measure, giving rise to a corresponding decomposition of the
current :

$T=T_{ac}+T_{sing}$ .

The currents $T_{ac}$ and $T_{sing}$ may not be closed. However, if $T$ is a closed current
with analytic singularities (cf. (1)), $T_{ac}$ and $T_{sing}$ are closed currents. Given
a Hermitian metric $h$ on $L$ , the associated curvature current $T:=i\Theta_{h}(L)$

admits a global representation $T=\alpha+dd^{c}\varphi$ with a global $C^{\infty}(1,1)$-form $\alpha$

on $X$ . For every $q=0,1,$ $\ldots,$
$n$ , the $q$-index set of $T$ is defined (cf. [Dem85])

as the open subset $X(q, T)$ of $X$ consisting of the points $x$ such that $T_{ac}(x)$

has precisely $q$ negative and $n-q$ positive eigenvalues. Now fix an arbitrary
Hermitian metric $\omega$ on $X$ and suppose that $T:=i\Theta_{h}(L)\geq-C\omega$ for some
constant $C>0$ (i.e. $T$ is almost positive and $\varphi$ is almost $\mathrm{p}\mathrm{s}\mathrm{h}$). Demailly’s
holomorphic Morse inequalities $([\mathrm{D}\mathrm{e}\mathrm{m}85])$ for smooth metrics $h$ were gene-
ralised by Bonavero $([\mathrm{B}\mathrm{o}\mathrm{n}98])$ to the case of singular metrics $h$ with analytic
singularities in the form of the following asymptotical estimates for the co-
homology group dimensions of the twisted coherent sheaves ($9_{X}(L^{m})\otimes \mathrm{J}(h^{m})$ :

$\sum_{j=0}^{q}(-1)^{q-j}h^{j}(X, \mathit{0}_{X}(L^{m})\otimes \mathrm{J}^{\cdot}(h^{m}))\leq\frac{m^{n}}{n!}\int_{X(\leq q,T)}(-1)^{q}T_{ac}^{n}+o(m^{n})$
,

as $marrow\infty$ , for all $q=1,$ $\ldots,$
$n$ . The current $T_{a\mathrm{c}}^{n}$ is well-defined as the coeffi-

cients of $T_{ac}$ are locally integrable functions by the Radon-Nicodym theorem
and products of $n$ such functions are well-defined measurable functions. The
analytic singularity assumption on $T$ actually ensures that $T_{ac}^{n}$ has finite mass
and thus the curvature integral above is finite. For $q=1$ , we get :

$h^{0}(X, \mathrm{t}9_{X}(L^{m})\otimes \mathrm{J}(h^{m}))-h^{1}(X, (9_{X}(L^{m})\otimes \mathrm{J}(h^{m}))\geq\frac{m^{n}}{n!}\int_{X(\leq 1,T)}T_{ac}^{n}+o(m^{n})$
.

As $h^{0}(X, \mathrm{t}9_{X}(L^{m}))\geq h^{0}(X, \mathrm{t}9_{X}(L^{m})\otimes \mathrm{J}(h^{m}))$

$\geq h^{0}(X, \mathrm{t}9_{X}(L^{m})\otimes \mathrm{J}(h^{m}))-h^{1}(X, \mathrm{t}9_{X}(L^{m})\otimes \mathrm{J}(h^{m}))$ ,

we infer the following lower bound for the volume of $L$ :

$v(L) \geq\int_{X(\leq 1,T)}T_{ac}^{n}$
, (2)

for every almost positive closed current $T$ with analytic singularities (if any)
in $c_{1}(L)$ .
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The main purpose of these notes is to announce a generalisation of the
Demailly-Bonavero Morse inequalities when no assumption is made on the
singularities of the Hermitian metric $h$ . Taking its cue from (2), this can be
stated in the form of the following characterisation of the volume of $L$ in
terms of all singular Hermitian metrics $h$ having a positive curvature current
(cf. [Pop06]).

Theorem 0.1.1 Let $L$ be a holomorphic line bundle over a compact complex
manifold X. Then the volume of $L$ is characterised as :

$v(L)= \sup_{T\in \mathrm{c}_{1}(L),T\geq 0}\int_{X}T_{ac}^{n}$ .

The special case of a K\"ahler ambient manifold $X$ was treated by Bouck-
som ( $[\mathrm{B}\mathrm{o}\mathrm{u}02$ , Theorem 1.2]) who obtained this very result under the extra
K\"ahler assumption on $X$ . This gives, in particular, the following criterion
characterising big line bundles in a way that generalises previous criteria by
Siu $([\mathrm{S}\mathrm{i}\mathrm{u}85])$ , Demailly $([\mathrm{D}\mathrm{e}\mathrm{m}85])$ , Bonavero $([\mathrm{B}\mathrm{o}\mathrm{n}98])$ , Ji-Shiffman $([\mathrm{J}\mathrm{S}93])$ .
Corollary 0.1.2 A line bundle $L$ defined over a compact complex manifold
$X$ is big if and only if there exists a possibly singular Hermitian metric $h$

on $L$ whose cvrvature current $T:=i_{h}(L)$ satisfies the following positivity
conditions :

(i) $T\geq 0$ on $X$ ; (ii) $\int_{X}T_{ac}^{n}>0$ .

This is reminiscent of results issued from Siu’s solution ([Siu84], [Siu65]) of
the Grauert-Riemenschneider conjecture [GR70] and from Demailly’s Morse
inequalities [Dem85]. Siu proved that $L$ is big if it possesses a $C^{\infty}$ metric $h$

satisfying the positivity conditions (i) and (ii) above. In a complementary
way, Ji and Shiffman $([\mathrm{J}\mathrm{S}93])$ proved that $L$ is big if and only if it possesses a
singular metric $h$ whose curvature current satisfies a much stronger positivity
condition (i.e. $i\Theta_{h}(L)\geq\epsilon$ cu on $X$ for some $0<\epsilon<<1$ ). To ensure bigness,
Bonavero $([\mathrm{B}\mathrm{o}\mathrm{n}98])$ required the curvature current $T$ to have analytic sin-
gularities. Corollary 0.1.2 above subsumes these results in dispensing with
any restriction on the singularities of the metric $h$ and in requiring only a
comparatively weak positivity assumption on the curvature current $T$ .

We will now explain the main ideas leading to aproof of Theorem 0.1.1.
Complete proofs and a broader discussion can be found in [Pop05] and
[Pop06]. The upper bound $”\leq$

” on the volume causes no difficulty. Indeed,
if $v(L)=0$ , there is nothing to prove. If $v(L)>0,$ $L$ is big and $X$ is Moi-
shezon and can therefore be modified into a projective manifold. The result
being known in the projective case, inequality $”\leq$

” follows from the birational
invariance of the volume.

The point at issue is to prove the Morse-type inequality $”\geq$
” giving a lower

bound for the volume. Let $T:=i\mathrm{O}-_{h}(L)\geq 0$ be the curvature current associa-
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ted with a singular Hermitian metric $h$ with arbitrary singularities on $L$ . If no
positive current exists in $c_{1}(L)$ , there is nothing to prove. By Demailly’s regu-
larisation theorem for currents [Dem92, Theorem 1.1, Proposition 3.7], there
exist regularising currents with analytic singularities $T_{m}arrow T$ in $c_{1}(L)$ such
that $T_{m} \geq-\frac{c}{m}\omega$ for some constant $C>0$ independent of $m$ such that each
$T_{m}$ is smooth on $X\backslash V\mathrm{J}(mT)$ . Furthermore, Theorem 2.4 in [Bou02, p. 1050]
asserts that a regularising sequence of currents with analytic singularities
can be combined with a regularising sequence of smooth forms constructed
in [Dem82] to produce yet another regularising sequence of currents retaining
all its previous properties and getting an additional grip on the absolutely
continuous part of $T$ . In other words, after modifying our sequence $(T_{m})_{m\in \mathrm{N}}$

by means of Theorem 2.4 in [Bou02, p. 1050], we may assume that besides
all its properties, it also satisfies :

$T_{m}(x)arrow T_{ac}(x)$ as $marrow+\infty$ , for almost every $x\in X$ . (3)

Applying the Demailly-Bonavero Morse inequalities to the curvature cur-
rent with analytic singularities $T_{m}$ , we get (cf. (2) :

$v(L) \geq\int_{X(\leq 1,T_{m})}T_{m,ac}^{n}=\int_{X(0,T_{m})}T_{m,ac}^{n}+\int_{X(1,T_{m})}T_{m,ac}^{n}$
for every $m\in \mathrm{N}$.

On the other hand, the proof of Proposition 3.1. in [Bou02, p. $1052- 53|$ uses
the Fatou lemma to derive the following inequality from property (3) :

$\lim_{marrow+}\inf_{\infty}\int_{X(0,T_{m})}T_{m,a\mathrm{C}}^{n}\geq\int_{X(T,0)}T_{ac}^{n}=\int_{X}T_{ac}^{n}$.

Thus, to prove the Morse-type inequality $”\geq$
” it is enough to show that

$\lim$ $\int$ $T_{m,ac}^{n}=0$ . Note that on the open set $X(1, T_{m})$ we have :
$marrow+\infty_{X(1,T_{m})}$

$0 \leq-T_{\dot{m},a\mathrm{c}}^{n}\leq n\frac{C}{m}(T_{m,ac}+\frac{C}{m}\omega)^{n-1}$ A $\omega$ .

It is thus enough to show that the Monge-Amp\‘ere masses satisfy :

$\lim_{marrow+\infty}\frac{C}{m}\int_{X}(T_{m,ac}+\frac{C}{m}\omega)^{n-1}\wedge\omega=0$, (4)

or equivalently that $\lim_{marrow+\infty}$ ill $\int_{X\backslash V\mathrm{J}(mT)}(T_{m}+\frac{c}{m}\omega)^{n-1}\wedge\omega=0$
. In other words,

we need a stronger regularisation theorem for closed $(1, 1)$-currents with an
extra control of the growth of the Monge-Amp\‘ere masses :

$\int_{X}(T_{m,ac}+\frac{C}{m}\omega)^{k}\wedge\omega^{n-k}=\int_{\mathrm{x}\backslash V\mathrm{J}(mT)}(T_{m}+\frac{C}{m}\omega)^{k}\wedge\omega^{n-k}$
, $k=1,$ $\ldots,$

$n$ ,
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as $marrow+\infty$ . If $X$ is K\"ahler, the sequence of masses in the usual Demailly
regularisation of currents is easily seen to be bounded by applying Stokes’s
theorem and using the closedness of $\omega$ (see [Bou02]). The situation is vastly
different in the non-K\"ahler case where a new regularisation of currents is
needed with a possibly unbounded sequence of masses. Thus the proof of
Theorem 0.1.1 is reduced to constructing the following regularisation of cur-
rents with mass control.

Theorem 0.1.3 Let $T\geq\gamma$ be a $d$-closed current of bidegree $(1, 1)$ on a
compact complex manifold $X$ , where $\gamma$ is a continuous $(1, 1)$ -form such that
$d\gamma=0$ . Then, in the $\partial\overline{\partial}$ -cohomology class of $T$ , there exist closed $(1, 1)-$

currents $T_{m}$ with analytic singularities converging to $T$ in the weak topology
of currents such that each $T_{m}$ is smooth on $X\backslash V\mathrm{J}(mT)$ and:

$(a)$ $T_{m} \geq\gamma-\frac{C}{m}\omega$ , $m\in \mathrm{N}_{i}$

$(b)$ $\nu(T, x)-\epsilon_{m}\leq\nu(T_{m}, x)\leq\nu(T, x)$ , $x\in X,$ $m\in \mathrm{N}$, for some $\epsilon_{m}\downarrow 0$ ;

$(c) \lim_{m\cdotarrow+\infty}\frac{1}{m}\int_{X\backslash V9(mT)}(T_{m}-\gamma-+\frac{C}{m}\omega)^{k}\wedge\omega^{n-k}=0$
, $k=1,$ $\ldots,$

$n=dim_{\mathbb{C}}X$ ,

where $\omega$ is an arbitrary Hermitian metric on $X$ .

For cvery $m\in \mathrm{N}$ , the $m^{th}$ regularising current $T_{m}$ is constructed using
the associated multiplier ideal sheaf $\mathrm{J}(mT)$ . We will now give an overview of
the main ideas involved in the proof of Theorem 0.1.3 observing the follo-
wing plan. Following [Pop06], we start with the important special case of an
original current $T$ having vanishing Lelong numbers at every point in $X$ . As
the multiplier ideal sheaves $\mathrm{J}(mT)$ are trivial in this case, the proof displays
more transparently some of the new ideas being introduced in a $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{i}\overline{\mathrm{c}}$ ally
lighter context. Then we go on to explain the main results of [Pop05] giving
an effective control, with estimates, of the growth of $\mathrm{J}(mT)$ as $marrow+\infty$ .
We finally switch back to [Pop06] to outline the proof of Theorem 0.1.3 in
the general case.

0.2 Case of vanishing Lelong numbers

As global regularisations are constructed by patching together local regu-
larisations via a well-known procedure, we will concentrate on the local pic-
ture. Let $\varphi$ be a psh function on a bounded pseudoconvex open set $\Omega\subset \mathbb{C}^{n}$

and set $T=dd^{c}\varphi$ . Applying the Ohsawa-Takegoshi $L^{2}$ extension theorem,
Demailly $([\mathrm{D}\mathrm{e}\mathrm{m}92])$ used the Bergman kernel to construct regularisations
with analytic singularities for $\varphi$ :
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$\varphi=\lim_{marrow+\infty}\varphi_{m}$ , $\varphi_{m}(z):=\frac{1}{2m}\log\sum_{j=0}^{+\infty}|\sigma_{m,j}(z)|^{2}$ , (5)

where $(\sigma_{m,j})_{j\in \mathrm{N}}$ is an arbitrary orthonormal basis of the Hilbert space $\mathcal{H}_{\Omega}(m\varphi)$

of holomorphic functions $f$ on $\Omega$ such that $|f|^{2}e^{-2m\varphi}$ is integrable on $\Omega$ . The
convergence in (5) holds pointwise and in $L_{loc}^{1}$ topology and induces a regula-
risation of currents $T_{m}:=dd^{c}\varphi_{m}arrow T=dd^{c}\varphi$ weakly as $marrow+\infty$ . We will
refer to (5) as the Demailly regularisation of $\varphi$ . The singularities of $T=dd^{c}\varphi$

are measured by its Lelong numbers :

$\nu(T, x):=\lim_{zarrow}\inf_{x}\frac{\varphi(x)}{\log|z-x|}$ , $x\in\Omega$ .

We will now suppose that $\varphi$ has zero Lelong numbers everywhere. The elu-
sive quality of these singularities comes in part from the multiplier ideal
sheaves associated to all multiples $m\varphi$ being trivial. Examples of such singu-
larities include $\varphi(z):=-\sqrt{-\log|z|}$ which has an isolated singularity with
a zero Lelong number at the origin. Under this assumption we can modify
Demailly’s regularisation (5) to get the following control on Monge-Amp\‘ere
masses $([\mathrm{P}\mathrm{o}\mathrm{p}06,0.4.1])$ .
Theorem 0.2.1 Let $\varphi$ be a $psh$ function on a bounded pseudoconvex open
set $\Omega\subset \mathbb{C}^{n}$ . Suppose, furthermore; that $\varphi$ has a zero Lelong number at every
point $x\in\Omega$ . Define the sequence of smooth $psh$ functions $(\psi_{m})_{m\in \mathrm{N}}$ on $\Omega$ as :

$\psi_{m}:=\frac{1}{2m}\log(\sum_{j=0}^{+\infty}|\sigma_{m,j}|^{2}+\sum_{j=0}^{+\infty}|\frac{\partial\sigma_{m,j}}{\partial z_{1}}|^{2}+\cdots+\sum_{j=0}^{+\infty}|\frac{\partial\sigma_{m,j}}{\partial z_{n}}|^{2})f$

$thefirstorderpartialwhere( \sigma_{m,j})_{j\in \mathrm{N}}isanorthonormalbasisof\mathrm{H}_{\Omega}(m\varphi),and\frac{\partial}{\partial z_{1},da},\ldots,\frac{\partial}{\partial z,rd^{n}}arede\dot{n}variveswithrespecttothestanrdcooinate$

$z=(z_{1}, \ldots, z_{n})$ on $\mathbb{C}^{n}$ . Then $dd^{c}\psi_{m}$ converges to $dd^{c}\varphi$ in the weak topo-
logy of currents as $marrow+\infty$ , and for any relatively compact open subset
$B\subset\subset\Omega$ we have :

$\int_{B}(dd^{c}\psi_{m})^{k}\wedge\beta^{n-k}\leq C(\log m)^{k}$ , $k=1,$ $\ldots,$
$n$ ,

where $\beta$ is the standard K\"ahler form on $\mathbb{C}^{n}$ , and $C>0$ is a constant inde-
pendent of $m$ .
Outline of proof. As the Lelong numbers of $\varphi$ vanish, all $\psi_{m}’ \mathrm{s}$ are smooth
and we can apply the Chern-Levine-Nirenberg inequalities (see [CLN69] or
[Dem97, chapter III, page 168] $)$ to get :

$\int_{B}(dd^{c}\psi_{m})^{k}$ A $\beta^{n-k}\leq C(\sup_{\overline{B}}|\psi_{m}|)^{k}$ , $k=1,$ $\ldots,$
$n$ ,

148



where $\tilde{B}\subset\subset\Omega$ is an arbitrary relatively compact open subset containing
$\overline{B}$ , and $C>0$ is a constant depending only on $B$ and $\tilde{B}$ . The proof is thus
reduced to accounting for the following.

Claim 0.2.2 There is a constant $C>0$ independent of $m$ such that:

$\sup_{\overline{B}}|\psi_{m}|\leq C\log m$
, for every $m$ .

An upper bound for $\psi_{m}$ is easily obtained by the submean-value inequality
satisfied by the absolute value of a holomorphic function. The delicate point
in estimating $|\psi_{m}|$ is finding a finite lower bound (possibly greatly negative)
for $\psi_{m}$ . Expressing the norms of the evaluation linear maps

$f \mathrm{t}_{\Omega}(m\varphi)\ni f\vdash+\frac{\partial f}{\partial z_{k}}(z)\in \mathbb{C}$ , $k=1,$ $\ldots,$
$n$ ,

at a given point $z\in\Omega$ in terms of orthonormal bases of $\mathrm{H}_{\Omega}(m\varphi)$ , we infer
that:

$\psi_{m}(z)\geq\sup_{F_{m}\in\overline{B}_{m}(1)}\frac{1}{2m}\log(|F_{m}(z)|^{2}+|\frac{\partial F_{m}}{\partial z_{1}}(z)\frac{\partial F_{m}}{\partial z_{n}}(z)|^{2})$, (6)

for every $z\in\Omega$ , where $\overline{B}_{m}(1)$ is the closed unit ball of $\mathrm{K}_{\Omega}(m\varphi)$ . Now fix
$x\in\Omega$ . To find a uniform lower bound for $\psi_{m}(x)$ , we need produce an ele-
ment $F_{m}\in B_{m}(1)$ for which we can uniformly estimate below one of the
first order partial derivatives at $x$ . Choose a complex line $L$ through $x$ such
that the Lelong number of $\varphi$ at $x$ is equal to the Lelong number at $x$ of the
restriction $\varphi_{|L}$ . Almost all lines through $x$ satisfy this property by a result of
Siu $([\mathrm{S}\mathrm{i}\mathrm{u}74])$ . The desired $F_{m}\in B_{m}(1)$ is constructed in two steps. First, we
establish a potential-theoretic result in one complex variable $([\mathrm{P}\mathrm{o}\mathrm{p}06,0.1.1])$

giving holomorphic functions $f_{m}$ on $\Omega\cap L$ satisfying:

$(a)f_{m}(z_{1})=e^{mg(z_{1})} \prod_{i=1}^{N_{m}}(z_{1}-a_{m,j})$ , $z_{1}\in\Omega\cap L$ , with $N_{m}\leq C_{0}m$ ,

for some holomorphic function $g$ and a constant $C_{0}>0$ independent of $m$ ,

$(b)C_{m}$
$:= \int_{\Omega\cap L}|f_{m}|^{2}e^{-2m\varphi}dV_{L}=o(m)$ , $dV_{L}$ being the volume form on $L$ ,

and

$(c)|a_{m,j}-a_{m,k}| \geq\frac{C_{1}}{m^{2}}$ $j\neq k$ , with $C_{1}>0$ independent of $m$ and $L$ .

Thanks to property $(c)$ we get a positive lower bound with a controlled growth
$\mathrm{i}\mathrm{n}m\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{f}f_{m}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}\mathrm{i}\mathrm{n}B\cap L$ . $\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}$
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step of the proof, we apply the Ohsawa-Takegoshi $L^{2}$ extension theorem (cf.
[Ohs88, Corollary 2, p. 266] $)$ to get a holomorphic extension $F_{m}\in \mathrm{H}_{\Omega}(m\varphi)$

of $f_{m}$ from the line $\Omega\cap L$ to $\Omega$ , satisfying the estimate:

$\int_{\Omega}|F_{m}|^{2}e^{-2m\varphi}dV_{n}\leq C\int_{\Omega\cap L}|f_{m}|^{2}e^{-2m\varphi}dV_{L}=CC_{m}$ ,

for a constant $C>0$ depending only on $\Omega$ and $n$ . The function $\pi^{F}F_{m}$ belongs
to the unit ball $\overline{B}_{m}(1)$ of $\mathrm{H}_{\Omega}(m\varphi)$ and the first order partial derivative of
$F_{m}$ at $x$ in the direction of the line $L$ coincides, by construction, with $f_{m}’(x)$

whose absolute value is controlled below. This leads to the estimate claimed
in (0.2.2) and finally completes the proof of Theorem 0.2.1. $\square$

A final word of explanation is in order here. The potential-theoretic re-
sult in one complex variable used in the above proof is obtained as Theorem
0.1.1. in [Pop06] by means of an atomisation procedure for positive mea-
sures defined on open subsets of C. This atomisation procedure is due to
Yulmukhametov [Yu185] and, in a generalised form, to Drasin $[\mathrm{D}\mathrm{r}\mathrm{a}\mathrm{O}\mathrm{l}]$ .

0.3 Growth of multiplier ideal sheaves

Let $\varphi$ be a psh function on some bounded pseudoconvex open set $\Omega\subset\emptyset$ .
For every $m,$ $\mathrm{J}(m\varphi)$ is known to be a coherent sheaf generated as an $\mathrm{t}9_{\Omega^{-}}$

module by an arbitrary orthonormal basis $(\sigma_{m,j})_{j\in \mathrm{N}^{*}}$ of $\mathrm{J}\mathrm{f}_{\Omega}(m\varphi)([\mathrm{N}\mathrm{a}\mathrm{d}90]$,
[Dem93, 4.4] $)$ . By the strong Noetherian property of coherent sheaves, it is
then generated, on every relatively compact open subset $B\subset\subset\Omega$ , by only
finitely many $\sigma_{m,j}’ \mathrm{s}$ . This local finite generation property is made effective
in [Pop05] in the following sense. The number $N_{m}$ of generators needed on
$B$ , and the growth rate of the (holomorphic function) coefficients appearing
in the decomposition of an arbitrary section of $\mathrm{J}(m\varphi)$ on $B$ as a finite li-
near combination of $\sigma_{m,j}’ \mathrm{s}$ , are given precise estimates as $marrow+\infty$ in the
following form.

Theorem 0.3.1 Let $\varphi$ be a $\mathit{8}trictlypsh$ function on $\Omega\subset\alpha$ such that
$i\partial\overline{\partial}\varphi\geq C_{0}\omega$ for some constant $C_{0}>0$ , Let $B:=B(x, r)\subset\subset\Omega$ be
an arbitrary open ball. Then, there exist a ball $B(x, r_{0})\subset\subset B(x, r)$ and
$m_{0}=m_{0}(C_{0})\in \mathrm{N}$ , such that for every $m\geq m_{0}$ the following property holds.
Every $g\in \mathcal{H}_{B}(m\varphi)$ admits, with respect to some suitable finitely many ele-
ments $\sigma_{m,1},$ $\ldots\sigma_{m,N_{m}}$ in a suitable orthonormal basis $(\sigma_{m,j})_{j\in \mathrm{N}^{*}}$ of $\mathrm{K}_{\Omega}(m\varphi)$ ,
a decomposition:

$g(z)= \sum_{j=1}^{N_{m}}b_{m,j}(z)\sigma_{m,j}(z)_{f}$ $z\in B(x, r_{0})$ ,
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with some holomorphic functions $b_{m,j}$ on $B(x, r_{0})$ , satisfying:

$\sup_{B(x,r_{0})}\sum_{j=1}^{N_{m}}|b_{m,j}|^{2}\leq CN_{m}\int_{B}|g|^{2}e^{-2m\varphi}<+\infty$,

where $C>0$ is a constant depending only on $n,$ $r$ , and the diameter of $\Omega$ .

Moreover, if $\varphi$ has analytic singularities, then $N_{m}\leq C_{\varphi}m^{n}$ for $m>>1$ ,
where $C_{\varphi}>0$ is a constant depending only on $\varphi,$

$B$ , and $n$ .
Outline of proof. The main tool is provided by Toeplitz concentration opera-
tors associated with $B\subset\subset\Omega$ and $m\in \mathrm{N}$ :

$T_{B,m}$ : $:\kappa_{\Omega}(m\varphi)arrow:\kappa_{\Omega}(m\varphi)$ , $T_{B,m}(f)=P_{m}(\chi_{B}f)$ ,

where $\chi_{B}$ is the characteristic function of $B$ , and $P_{m}$ : $L^{2}(\Omega, e^{-2m\varphi})arrow$

$\mathrm{K}_{\Omega}(m\varphi)$ is the orthogonal projection from the Hilbert space of (equivalence
classes of) measurable functions $f$ for which $|f|^{2}e^{-2m\varphi}$ is Lebesgue integrable
on $\Omega$ , onto the closed subspace of holomorphic such functions. Alternatively,
in terms of the Bergman kernel :

$K_{m\varphi}:\Omega\cross\Omegaarrow \mathbb{C}$, $K_{m\varphi}(z, \zeta)=\sum_{j=1}^{+\infty}\sigma_{m,j}(z)\overline{\sigma_{m,j}(\zeta)}$ ,

the concentration operators arise as :

$T_{B,m}(f)(z)= \int_{B}K_{m\varphi}(z, \zeta)f(\zeta)e^{-2m\varphi(\zeta)}d\lambda(\zeta)$ , $z\in\Omega$ ,

where $d\lambda$ is the Lebesgue measure. Thus $T_{B,m}$ is a compact operator and
its eigenvalues $\lambda_{m,1}\geq\lambda_{m,2}\geq\ldots$ lie in the open interval $(0,1)$ . The or-
thonormal basis of $\mathrm{H}_{\Omega}(m\varphi)$ we are looking for is chosen to be made up of
eigenvectors $(\sigma_{m,j})_{j\in \mathrm{N}}$ of $T_{B,m}$ . By compacity of $T_{B,m}$ , there are at most fi-
nitely many eigenvalues $\lambda_{m,1}\geq\lambda_{m,2}\geq\cdots\geq\lambda_{m,N_{m}}\geq 1-\epsilon$ for any given
$0<\epsilon<1$ . This means that :

$\int_{B}|\sigma_{m,1}|^{2}e^{-2m\varphi}\geq\cdots\geq\int_{B}|\sigma_{m,N_{m}}|^{2}e^{-2m\varphi}\geq 1-\epsilon>\int_{B}|\sigma_{m,k}|^{2}e^{-2m\varphi}$ ,

for every $k\geq N_{m}+1$ , and thus $\sigma_{m,1},$ $\ldots,$ $\sigma_{m,N_{m}}$ are clear candidates to
generating $\mathrm{J}(m\varphi)$ on $B$ . This expectation is borne out by a careful analysis
using H\"ormander’s $L^{2}$ estimates $([\mathrm{H}\mathrm{o}\mathrm{r}65])$ which gives, for every local section
$g\in \mathcal{H}_{B}(m\varphi)$ of $\mathrm{J}(m\varphi)$ , a decomposition :

$g(z)= \sum_{j=1}^{N_{m}}c_{j}\sigma_{m,j}(z)+\sum_{l=1}^{n}z_{l}h_{l}(z)$ , $z\in B$ , (7)

151



with some $c_{j}\in \mathbb{C}$ satisfying $\sum_{j=1}^{N_{m}}|c_{j}|^{2}\leq CN_{m}\int_{B}|g|^{2}e^{-2m\varphi}$ , and some holo-

morphic functions $h_{l}$ on $B$ , satisfying:

$\sum_{l=1}^{n}\int_{B}|h_{\iota}|^{2}e^{-2m\varphi}\leq C\int_{B}|g|^{2}e^{-2m\varphi}$,
$f(8)$

for a constant $C>0$ depending only on $n,$ $r$ , and the diameter of $\Omega$ . The
decomposition (7) can be seen as a local generation property of $\mathrm{J}(m\varphi)$ by
$\sigma_{\mathrm{m},1},$ $\ldots,$ $\sigma_{m,N_{m}}$ to order one. Indeed, the error term has been divided by
the holomorphic coordinate functions $z_{1},$ $\ldots z_{n}$ (centred at $0\in\alpha$ supposed
to be in $B$ ) by means of Skoda’s $L^{2}$ division theorem $([\mathrm{S}\mathrm{k}\mathrm{o}72])$ with growth
estimates (8). We can then iterate this procedure with $h_{1},$

$\ldots,$
$h_{n}$ in place of 9

to get, for every $p\in \mathrm{N}$, an approximation to order $p$ of $g$ by $\sigma_{m,1},$ $\ldots,$ $\sigma_{m,N_{m}}$ :

$g= \sum_{j=1}^{N_{m}}(a_{j}+\sum_{\nu=1}^{p-1}\sum_{l_{1},.,.,l_{\nu}=1}^{n}a_{j,\iota_{1},\ldots,\iota_{\nu}}z_{l_{1}}\ldots z_{\iota_{\mu)\sigma_{m,j}+\sum_{l_{1)}l_{p}=1}^{n}z_{\mathrm{t}_{1}}\ldots z_{l_{\mathrm{p}}}v_{l_{1},\ldots,l_{\mathrm{p}}}}},\ldots$

’

on $B(\mathrm{O}, r)$ , with coefficients $a_{j,l_{1},\ldots,\mathrm{t}_{\nu}=1}\in \mathbb{C}$ and $v_{l_{1}},\ldots$ , $l_{\mathrm{p}}\in(9(B(0, r))$ , satis-
fying, for $\nu=1,$ $\ldots,$ $p-1$ , the estimates :

$\sum_{\mathrm{t}_{1},\ldots,l_{\nu}=1}^{n}\sum_{j=1}^{N_{m}}|a_{j,l_{1},\ldots,l_{\nu}}|^{2}\leq C^{\nu+1}N_{m}C_{\mathit{9}}$, $\sum_{l_{1},\ldots,l_{\mathrm{p}}=1}^{n}\int_{B}’|v\iota_{1},\ldots,\iota_{p}|^{2}e^{-2m\varphi}\leq(_{\text{ノ}^{}\gamma}pC_{g}$ ,

where $C_{g}:= \int_{B}|g|^{2}e^{-2m\varphi}$ . The result is obtained by letting the number of

iterations $parrow+\infty$ and proving that the series defining the coefficients of
the $\sigma_{m,j}’ \mathrm{s}$ converges using the precise estimates we have. This can be seen
as an effective version of Nakayama’s lemma.

The estimate of the growth of $N_{m}$ is obtained via asymptotic estimates on
Bergman kernels associated with singular weights which generalise previous
asymptotic estimates obtained by Lindholm $[\mathrm{L}\mathrm{i}\mathrm{n}\mathrm{O}\mathrm{l}]$ and Berndtsson [Ber03]
in the case of smooth weights. The details can be found in [Pop05]. $\square$

The other result recorded in this section is essentially taken from [Pop05]
as well. It can be seen as measuring the additivity defect of multiplier ideal
sheaves. These sheaves are known to satisfy the subadditivity property $\mathrm{J}(m\varphi)\subset$

$\mathrm{J}(\varphi)^{m}$ by a result of Demailly-Ein-Lazarsfeld [DELOO]. We prove that, at least
in the case of analytic singularities, multiplier ideal sheaves can come arbi-
trarily close to an additive behaviour provided that $m$ is big enough. The
statement and the outline of its proof are taken from [Pop06].
Proposition 0.3.2 Let $\varphi$ be a $psh$ function with analytic singularities of
coefficient $c>0$ (cf. (1)) on $\Omega\subset\subset \mathbb{C}^{n}$ . Then, for any $\epsilon>0$ , any $m_{0} \geq\frac{n+2}{\epsilon}$ ,
and any $q\in \mathrm{N}$, the following inclusions hold on any pseudoconvex open subset
$B\subset\subset\Omega$ :
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$\mathrm{J}(m_{0}(1+\epsilon)\varphi)_{|B}^{q}\subset \mathrm{J}(m_{0}q\varphi)_{|B}\subset \mathrm{J}(m_{0}\varphi)_{|B}^{q}$, (9)

Outline of proof. The right-hand inclusion actually holds on $\Omega$ for every $m_{0}$

and is the subadditivity property of multiplier ideal sheaves proved by De-
mailly, Ein and Lazarsfeld in [DELOO]. It relies on the Ohsawa-Takegoshi $L^{2}$

extension theorem $([\mathrm{O}\mathrm{T}87])$ . The left-hand inclusion hinges on Skoda’s $L^{2}$

division theorem $([\mathrm{S}\mathrm{k}\mathrm{o}72])$ . Let $f\in \mathrm{O}(\Omega)$ be an arbitrary element in the unit
sphere of the Hilbert space $H_{\Omega}(m_{0}(1+\epsilon)\varphi)$ . Combined with assumption (1),
this means that:

$1= \int_{\Omega}|f|^{2}e^{-2m\mathrm{o}(1+\epsilon)\varphi}dV_{n}=\int_{\Omega}\frac{|f|^{2}}{(\sum_{j=0}^{N}|g_{j}|^{2})^{m_{0}c(1+\epsilon)}}e^{-2m\mathrm{o}(1+\epsilon)v}dV_{n}$

.

Choose $m_{0} \geq\frac{n+2}{c\epsilon}$ . We can apply Skoda’s $L^{2}$ division theorem $([\mathrm{S}\mathrm{k}\mathrm{o}72\mathrm{b}])$ to
write $f$ as a linear combination with holomorphic coefficients of products of
$[m_{0}c(1+\epsilon)]-(n+1)$ functions among the $g_{j}’ \mathrm{s}$ . The effective control on the
coefficients gives:

$|f|^{2} \leq C_{m0}’(\sum_{j=0}^{N}|g_{j}|^{2})^{[m0c(1+\epsilon)]-(n+1)}$ on $B$ ,

with a constant $C_{m_{0}}’>0$ whose dependence on $m_{0}$ can be made explicit.
Thus :

$|f|^{2}e^{-2m_{0}\varphi} \leq C_{m_{0}}’(\sum_{j=0}^{N}|g_{j}|^{2})^{[m_{0}c(1+\epsilon)]-(n+1)-m_{0^{C}}}$ on $B$ ,

and the crucial fact is that the exponent $[m_{0}c(1+\epsilon)]-(n+1)-m_{0}c$ is non-
negative by the choice of $m_{0} \geq\frac{n+2}{c\epsilon}$ . Therefore, the right-hand term above is
bounded on $B$ and thus the initial $L^{2}$ condition satisfied by $f$ on $\Omega$ leads to
an $L^{\infty}$ property on $B$ for a slightly less singular weight (i.e. without $(1+\epsilon)$

in the exponent). The explicit bound we finally get is :

$|f|^{2}e^{-2m_{0}\varphi} \leq C_{n}(m_{0}c(1+\epsilon)-n)(\sup_{B}e^{\varphi})^{2m\mathrm{o}\epsilon}:=C_{m0}$ ,

on $B\subset\subset\Omega$ , where $C_{n}>0$ is a constant depending only on $n$ and the dia-
meters of $B$ and $\Omega$ . This readily implies that for any $q$ functions $f_{1},$

$\ldots,$
$f_{q}$ in

the unit sphere of $\mathcal{H}_{\Omega}(m_{0}(1+\epsilon)\varphi)$ we have :

$|f_{1}\ldots f_{q}|^{2}e^{-2m0q\varphi}\leq C_{m_{0}}^{q}$ on $B$ ,

and in particular $f_{1}\ldots f_{q}$ is a section on $B$ of the ideal sheaf $\mathrm{J}(m_{0}q\varphi)$ . This
proves the left-hand inclusion. $\square$
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Effective versions of the inclusions (??) estimating the growth of the de-
rivatives for the generators of the three sheaves with respect to one another
are obtained in [Pop06, section 0.7.].

0.4 Modified regularisations of currents
To prove Theorem 0.1.3, we modify Demailly’s regularisation (5) by ad-

ding derivatives of the functions $(\sigma_{m,j})_{j\in \mathrm{N}}$ forming an orthonormal basis of
$\mathrm{H}_{\Omega}(m\varphi)$ . Unlike the case of vanishing Lelong numbers (section (0.2)) where
deriving to order one was enough to produce regularising currents for which
the Monge-Amp\‘ere masses could be controlled, we need derive more in the
general case. By arguments similar to those leading to Claim 0.2.2 of section
(0.2), the key point is to obtain an estimate for the derivatives of the $\sigma_{m,j}’ \mathrm{s}$

$\mathrm{u}\mathrm{p}\mathrm{t}\mathrm{o}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}m\nu(1+\epsilon)\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\nu \mathrm{i}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{L}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{f}\varphi$ . $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{i}\mathrm{s}$

to look at indices $m=m_{0}q$ with $q=q(m_{0})>>m_{0}$ and to obtain the desired
estimate on derivatives by means of an effective version of the inclusions (9)
of Proposition 0.3.2. Actually, given $B\subset\subset\Omega$ , the subtle point is obtaining a
lower bound on some $B_{0}\subset\subset B$ for the derivatives of finitely many elements
$(\sigma_{m,j})_{1<j\leq N_{m}}$ in an orthonormal basis of $\mathrm{J}\mathrm{f}_{\Omega}(m\varphi)$ which generate the ideal
sheaf $\mathrm{J}\overline{(}m\varphi$) on $B_{0}$ (see Theorem 0.3.1). We still assume that $\varphi$ is of the form
(1) in the next result.

Proposition 0.4.1 For all $q\in \mathrm{N},$ $0<\epsilon<<1$ , and $m_{0} \geq\frac{n+2}{c\epsilon}$ , there exists
an orthonormal basis $(\sigma_{m0q,j})_{j\in \mathrm{N}}$ of $\mathrm{H}_{\Omega}(m_{0}q\varphi)$ satisfying, for $m=m_{0}q$ and
any orthonormal basis $(\sigma_{m\mathrm{o}(1+\epsilon),j})_{j\in \mathrm{N}}$ of $\mathrm{H}_{\Omega}(m_{0}(1+\epsilon)\varphi)$ , the estimate :

$u_{m}$ : $=$ $\frac{1}{2m}\log\sum_{j=1}^{N_{m}}\sum_{|\alpha|=0}^{[m\nu(1+\epsilon)]}|\frac{D^{\alpha}\sigma_{m,j}}{\alpha!}|^{2}\geq$

$\geq$ $\frac{1}{2m}\log$ $\sum$$j_{1}, \ldots,j_{q}=0+\infty\sum_{|\alpha|=0}^{[m_{0}q\nu(1+\epsilon)]}|\frac{D^{\alpha}(\sigma_{m_{0}(1+\epsilon)_{)}j\iota}\ldots\sigma_{m_{0}(1+\epsilon),j_{q}})}{\alpha!}|^{2}-A_{m}$

$\geq$ $C_{0}\log\delta_{m\mathrm{o}}-A_{m}$ on $B_{0}$ , (10)

where $\nu:=\sup_{x\in B}\nu(\varphi, x),$
$\delta_{m_{0}}>$ depends only on $m_{0}$ , and $C_{0},$ $A_{m}>0$ are

constants entirely under control.

Idea of proof. The estimate is obtained in two steps. The first inequality
follows from an effective version, based on Skoda’s $L^{2}$ estimates $([\mathrm{S}\mathrm{k}\mathrm{o}72])$ ,
of the left-hand inclusion in (9) of Proposition 0.3.2. The second inequality
can be proved by an argument similar to the proof of Claim 0.2.2 using the
potential-theoretic result in one variable mentioned there and the Ohsawa-
Takegoshi $L^{2}$ extension theorem on a complex line. Unlike the case of zero
Lelong numbers, the distances between the points $a_{m,j}$ defining $f_{m}$ in the
proof of Claim 0.2.2 cannot be estimated (they can decay arbitrarily fast to

154



zero as $marrow+\infty$). The solution to this problem is provided by Proposition
0.3.2 ensuring that the sheaves $\mathrm{J}(m\varphi)=\mathrm{J}(m_{0}q\varphi)$ and $\mathrm{J}(m_{0}(1+\epsilon)\varphi)^{q}$ are
(

$‘ \mathrm{a}\mathrm{l}\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}$
” equal when $m_{0}>>1$ . We thus create a discrepancy between $m$ and

$m_{0}$ and construct sections of $\mathrm{J}(m\varphi)$ as $q^{th}$ powers of sections of $\mathrm{J}(m_{0}(1+\epsilon)\varphi)$ .
Although of uncontrollable growth in terms of $m_{0},$ $\delta_{m0}$ can be neutralised by
choosing $q=q(m_{0})>>m_{0}$ sufficiently large.

This procedure is applied to every $\varphi_{p}$ (which is of the form (1) with
$c=1/p)$ in the Demailly regularisation (5) of the original psh function $\varphi$ .
We obtain regularising functions $(\psi_{m,p})_{m\in \mathrm{N}}$ of each $\varphi_{p}$ and then let $parrow+\infty$

to get a regularising sequence for $\varphi$ . This proves a local version of Theorem
0.1.3 whose global version is then obtained via a standard patching procedure.
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