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Abstract

In this paper we present a new general approach to the multi-dimensional
corona problem for the ball and polydisk. We also describe some properties
of the Banach spaces predual to the spaces $H^{\infty}$ defined on these domains.

1. Corona Problem
1.1. In the present paper we discuss one of the fundamental problems in the theory
of uniform algebras known as the corona problem. Such a problem was originally
raised by S. Kakutani in 1941 and asked whether the open unit disk $\mathrm{D}\subset \mathbb{C}$ is
dense in the maximal ideal space of the algebra $H^{\infty}(\mathrm{D})$ of bounded holomorphic
functions on $\mathrm{D}$ with the supremum norm. This problem was answered affirmatively
by L. Carleson in 1962 [C1]. Let us recall that for a uniform algebra $A$ of continuous
functions defined on a Hausdorff topological space $X$ , the maximal ideal space $\mathcal{M}(A)$

is the set of all nonzero homomorphisms $Aarrow \mathbb{C}$ equipped with the weak*-topology
of the dual space $A^{*}$ , known as the Gelfand topology. Then $\mathcal{M}(A)$ is a compact
Hausdorff space. Any function $f\in A$ can be considered as a function on $\mathcal{M}(A)$ by
means of the Celfand transform:

$\hat{f}(m):=m(f)$ , $m\in \mathcal{M}(A)$ .

If $A$ separates points on $X$ , then $X$ is naturally embedded into $\mathcal{M}(A),$ $xrightarrow\delta_{x}$ ,
$x\in X$ , where $\delta_{x}$ is the evaluation functional at $x$ . In this case we identify $X$ with
its image in $\mathcal{M}(A)$ and by $\overline{X}\subset \mathcal{M}(A)$ denote the closure of $X$ in $\mathcal{M}(A)$ . The
set $C(A):=\mathcal{M}(A)\backslash \overline{X}$ is called corona. Then the corona problem is to determine
whether $C(A)=\emptyset$ for certain algebras $A$ . As it was mentioned above, the celebrated
Carleson corona theorem states that $C(A)=\emptyset$ for $A=H^{\infty}(\mathrm{D})$ .
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Let us briefly describe further developments in the corona problems for Riemann
surfaces.

A number of authors have proved the corona theorem for finite bordered Riemann
surfaces, see, e.g., [JM] for the references. We will single out the proof given by Forelli
[F] in which he constructed a linear projector $p$ from $H^{\infty}(\mathrm{D})$ onto the subspace

$H_{G}^{\infty}$ of bounded holomorphic functions invariant with respect to the action of the
fundamental group $G$ of a bordered Riemann surface $S$ satisfying

$p(fg)=p(f)g$, $f\in H^{\infty}(\mathrm{D}),$ $g\in H_{G}^{\infty}$ .
Using this projector one can easily prove the corona theorem for $S$ . Further de-
velopments of this idea were given by Carleson [C2], Jones and Marshall [JM] and
the author [Brl], [Br2]. In particular, in [JM] the authors constructed a similar
Forelli-type projector for Riemann surfaces $S$ such that critical points of Green’s
function on $S$ form an interpolating sequence for $H^{\infty}(S)$ , and using this proved the
corona theorem for such $S$ . This class of Riemann surfaces contains, e.g., surfaces
of the form $\mathbb{C}\backslash E$ , where $E\subset \mathbb{R}$ is homogeneous. In this way the authorv obtained
another proof of the result of Carleson [C2]. It was also observed in [JM] that every
Riemann surface from the above class is of Widom type, i.e., its topology grows
slowly as measured by the Green function. Finally, by using different techniques,
in [GJ] the corona theorem was proved for all Denjoy domains, i.e., domains of the
form $\overline{\mathbb{C}}\backslash E$ where $E\subset$ R.

There are also examples of (nonplanar) Riemann surfaces for which the corona
theorem fails, see, e.g., references in [JM] and [Brl]. However, the general corona
problem for planar domains is still open, as is the problem in several variables for
the ball and polydisk.
1.2. In this part we consider matrix-valued corona theorems which, in a sense, are
nonlinear analogs of the corona theorem. First, let us recall that the corona theorem
for a uniform algebra $A$ on a topological space $X$ such that $A$ separates points on
$X$ is equivalent to the following statement, see, e.g., [G]:

For every collection $f_{1},$
$\ldots$ , $f_{n}\in A$ satisfying the corona condition

$\max_{1\leq 1\leq n}.|f_{1}(x)|\geq\delta>0$ , for all $x\in X$ , (1.1)

there are functions $g_{1},$ $\ldots,g_{n}\in A$ such that

$\sum_{i=1}^{n}f_{1g_{1}}=1$ . (1.2)

Similarly, the matrix-valued corona problem is formulated as follows:
Let $F=(f_{ij})_{f}1\leq i\leq k,$ $1\leq j\leq n,$ $k<n$ , be a matrix with entries in $A$ such

that the family of all minors of order $k$ of $F$ satisfies the corona condition (1.1). Is
there an $n\cross n$ matrix $\tilde{F}$ with entries in A whose first $k$ rows coincide utth $F$ and
such that $det(\tilde{F})=1^{q}$

Clearly, the necessary condition of the existence of such matrices for all $n$ is the
validity of the corona theorem for $A$ . However, it is not sufficient: some topological
characteristics of $\mathcal{M}(A)$ do not allow to find such $\tilde{F}$ for a generic $F$ , see [L].
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We will formulate now some positive results in this area for algebras $H^{\infty}$ defined
on Riemann surfaces.

The matrix-valued corona theorem for $H^{\infty}(\mathrm{D})$ was proved by Tolokonnikov, see,
e.g., [Ni]. Later on using the above cited Forelli theorem, the Oka principle for
holomorphic vector bundles proved by Grauert [Gr] together with Beurling type
theorems for $H^{\infty}(\mathrm{D})$ he also proved in [T] the matrix-valued corona theorem for
bordered Riemann surfaces. Recently we proved, see [Br2], the matrix-valued corona
theorem for subdomains $D$ of coverings $C$ of bordered Riemann surfaces such that
the embedding $Darrow C$ induces an injective homomorphism of the corresponding
fundamental groups. In the proof we used a new Forelli-type theorem for $H^{\infty}$ on
Stein manifolds, see [Brl], a generalized Oka principle for certain complex vector
bundles on maximal ideal spaces of some algebras of bounded holomorphic functions
on Stein manifolds, see [Br2], together with the classical techniques of $H^{\infty}(\mathrm{D})$ .
Recently we obtained also the following result, see [Br3]. Suppose that $S$ is a
Riemann surface of a finite type (that is, the rank of the first cohomology group
$H^{1}(S, \mathbb{Z})$ is finite). Let $C$ be a Galois covering of $S$ . Then the matrix-valued corona
theorem is valid for $H^{\infty}(C)$ . Surprisingly, together with some techniques developed
in [Brl] and [Br2] we used in the proof some $L_{2}\mathrm{K}\mathrm{o}\mathrm{d}\mathrm{a}\mathrm{i}\mathrm{r}\mathrm{a}_{r}\mathrm{N}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{n}\mathrm{o}$vanishing theorems.
Also, we conjecture that the matrix-valued corona theorem is valid for any (not
necessarily Galois) covering of a Riemann surface of a finite type.

2. Banach Spaces Predual to $H^{\infty}$

2.1. Our purpose is to present a general approach to the corona problems for $H^{\infty}$ .
To this end we first describe the structure of Banach spaces predual to $H^{\infty}$ .

Suppose that $M$ is a complex manifold such that the algebra $H^{\infty}(M)$ separates
points on $M$ . Then there is a complex Banach space $X(M)$ such that $X(M)^{*}=$

$H^{\infty}(M)$ . Such a space is constructed as follows: it is the minimal closed subspace
of the dual space $H^{\infty}(M)^{*}$ containing all evaluation functionals $\delta_{m},$ $m\in M$ . It is
easy to see that the closed unit ball of $X(M)$ is the closure in $H^{\infty}(M)^{*}$ of the set

$\{\sum_{i=1}^{k}\mathrm{q}_{n_{2}}\delta_{m_{i}}$ : $\mathrm{q}\in \mathbb{C}$ , $m_{i}\in M$ , $k\in \mathrm{N},$ $\sum_{i=1}^{k}|\mathrm{c}_{i}|\leq 1\}$ .

It is also obvious that the map $\phi_{M}$ : $Marrow X(M),$ $m-\rangle\delta_{m}$ , is injective and
holomorphic, that is, for every $f\in H^{\infty}(M)(=X(M)^{*})$ the function $f\mathrm{o}\phi_{M}\in$

$H^{\infty}(M)$ . In what follows we identify $M$ with its image $\phi_{M}(M)\subset X(M)$ .

Proposition 2.1 The family $\{\delta_{m}\}_{m\in M}\subset X(M)$ consists of linearly independent
elements and the space generated by this famdy is dense in $X(M)$ .

Sketch of the Proof. The first statements follows from the fact that any finite set
of points in

$M\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{s}\square$

an interpolating sequence for $H^{\infty}(M)$ . The second statement
is obvious.
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Let $P_{2}^{h}[X(M)]$ be the linear space of holomorphic polynomials on $X(M)$ gener-
ated by polynomials of the form

$p(v):=f(v)g(v)$ , $f,g\in H^{\infty}(M)$ .

By definition each $f\in H^{\infty}(M)$ admits a continuous extension to $H^{\infty}(M)^{*}$ given by

$f(\xi):=\xi(f)$ , $f\in H^{\infty}(M),$ $\xi\in H^{\infty}(M)^{*}$ .

Thus every polynomial from $P_{2}^{h}[X(M)]$ also admits an extension to $H^{\infty}(M)^{*}$ . (With-
out loss of generality we assume that $P_{2}^{h}[X(M)]$ is already defined on $H^{\infty}(M)^{*}.)$

Let 1 be the functional on $H^{\infty}(M)^{*}$ corresponding to the constant function 1. By
$Z(M)$ we denote the affine subspace of $H^{\infty}(M)^{*}$ defined by

$Z(M):=\{\xi\in H^{\infty}(M)^{*} : 1(\xi)=1\}$.

(Observe that $M\subset \mathcal{Z}(M)\cap X(M)$ and the closure in the weak’-topology on
$H^{\infty}(M)^{*}$ of $Z(M)\cap X(M)$ coincides with $\mathcal{Z}(M).)$

Finally, for a bounded subset $S\subset H^{\infty}(M)^{*}$ by $h_{2}(S)$ we denote the polynomially
convex hull of $S$ with respect to polynomials from $P_{2}^{h}[X(M)]$ , that is,

$\xi\in h_{2}(S)$ $\Leftrightarrow$

$|p( \xi)|\leq\sup_{\mu\in S}|p(\mu)|$ for all $p\in P_{2}^{h}[X(M)]$ .

This definition is well-defined because every $p\in P_{2}^{h}[X(M)]$ is bounded on a bounded
subset of $H^{\infty}(M)^{*}$ by the Banach-Alaoglu theorem. The one can easily check

Proposition 2.2 The $maximal$ ideal space $\mathcal{M}(H^{\infty}(M))$ of $H^{\infty}(M)$ coincides with
the set $Z(M)\cap h_{2}(M)$ .

Let us consider another characterization of $\mathcal{M}(H^{\infty}(M))$ . Let us introduce the
norm on $P_{2}^{h}[X(M)]$ by the formula

$||p||:= \sup_{v\in B}|p(v)|$ , $p\in P_{2}^{h}[X(M)]$ ,

where $B$ is the unit closed ball in $X(M)$ . Let $X_{2}(M)$ be the minimal closed subspace
of the dual space $(P_{2}^{h}[X(M)])^{*}$ (constructed with respect to this norm) generated
by delta functionals $\delta_{v},$ $v\in X(M)$ . One can prove using the Hahn-Banach theorem
that the closed unit ball of $X_{2}(M)$ is the closure in $(P_{2}^{h}[X(M)])^{*}$ of the set

$\{\sum_{i=1}^{k}\mathrm{c}_{v}\dot{.}\delta_{v\iota}$ : $c_{i}\in \mathbb{C},$ $v:\in B,$ $k\in \mathrm{N},$ $\sum_{:=1}^{k}|c_{i}|\leq 1\}$ .

We identify $X(M)$ with its image in $X_{2}(M)$ under the map $\phi_{X(M)}$ : $v\vdasharrow\delta_{v},$ $v\in$

$X(M)$ . Then clearly every element of $\mathcal{P}_{2}^{h}[X(M)]$ belongs to the dual space $X_{2}(M)^{*}$

and has norm $\leq 1$ there. Using the Banach-Alaoglu theorem one can also check
that $P_{2}^{h}[X(M)]$ is dense in $X_{2}(M)^{*}$ in the weak’-topology. We will call elements
of $X_{2}(M)^{*}$ homogeneous polynomials of degree 2 on $X(M)$ . Let $V$ be the minimal
closed subspace of $X_{2}(M)$ containing $M(=\phi_{X(M)}(M))$ .
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Proposition 2.3 (a) $V$ is isometric to $X(M)$ and $X_{2}(M)^{*}|_{V}$ is isometric to
$H^{\infty}(M)$ .

(b) $TheclosureofVintheweak^{*}- topologyof(P_{2}^{h}[X(M)])^{*}isisomet\dot{m}ctoH^{\infty}(M)^{*}$ .

Proof. (a) Clearly there exists a continuous linear map from $X(M)$ into $V$ . By $\hat{B}$

we denote the closure of the image under this map of the unit ball in $X(M)$ . Let
$B(V)$ be the closed unit ball in $V$ . By definition, $\hat{B}\subset B(V)$ . Assume that $\hat{B}$ is
a proper subset of $B(V)$ . Then by the Hahn-Banach theorem there is an element
$f\in X_{2}(M)^{*}$ such that $f(v_{0})=1$ for some $v_{0}\in B(V)$ , but $\sup_{w\in\hat{B}}|f(w)|=s<1$ .
Let $f’=f|_{M}$ . Then the element $h:=f’\cdot 1\in P_{2}^{h}[X(M)]$ and $h-f$ equals $0$ on
$M$ . Thus $h=f$ on $V$ . But by definition $||h||_{V}=s<1$ , a contradiction. Hence,
$\hat{B}=B(V)$ and $X(M)$ is isometric to $V$ . The second part of (a) is then obvious.
(b) By definition, for every $f\in V^{*}$ there is an element $\hat{f}\in P_{2}^{h}[X(M)]\subset X_{2}(M)^{*}$

such that $\hat{f}|_{V}=f$ and $||\hat{f}||_{X_{2}(M)}=||f||_{V}$ . This gives a linear continuous projection
$P_{2}^{h}[X(M)]arrow V^{*}$ . Its dual map is an embedding $i$ : $V^{**}arrow(P_{2}^{h}[X(M)])^{*}$ continuous
in the corresponding weak“-topologies and such that the restriction of $i$ to $V$ co-
incides with the original embedding $Varrow(P_{2}^{h}[X(M)])^{*}$ . This implies the required
statement. $\square$

Identifying $V$ with $X(M)$ we have the following decomposition of $X_{2}(M)^{*}$ .
Let $f\in X_{2}(M)^{*}$ . By definition, $g:=f|_{X(M)}\in H^{\infty}(M)$ . Thus

$f=g+(f-g)$ , $g\in H^{\infty}(M),$ $(f-g)\in X(M)^{\perp}$ , $||g||\leq||f||$ , $||f-g||\leq 2||f||$ .

Here $||\cdot||$ is the norm on $X_{2}(M)^{*}$ . This implies the natural decomposition $X_{2}(M)$ $:=$

$X(M)\oplus X(M)^{0}$ where $X(M)^{0}\subset X_{2}(M)$ is such that $(X(M)^{0})^{\perp}=H^{\infty}(M)$ . Using
this we identify the image of the map $\phi_{X(M)}$ : $X(M)arrow X_{2}(M)$ with the graph
$\Gamma_{X(M)}$ of the map $\pi_{0}0\phi_{X(M)}$ : $X(M)arrow X(M)^{0}$ where $\pi_{0}$ : $X_{2}(M)arrow X(M)^{0}$ is
the natural linear projection. It is easy to check that $\Gamma_{X(M)}$ is a complex Banach
submanifold of $X_{2}(M)$ biholomorphic to $X(M)$ . Let $\pi$ : $X_{2}(M)arrow X(M)$ be the
natural projection. For any $p\in P_{2}^{h}[X(M)]$ by $\hat{p}\in X_{2}(M)^{*}$ we denote the linear
functional representing $p$ . It is easy to prove

Proposition 2.4 $\Gamma_{X(M)}$ is the set of zeros
$\square of$

the family $\{p\mathrm{o}\pi-\hat{p} : p\in P_{2}^{h}[X(M)]\}$

of polynomials of degree 2 on $X_{2}(M)^{*}$ .
Let $\tilde{\mathcal{Z}}(M)\subset\Gamma_{X(M)}$ denote $\phi_{X(M)}(Z(M)\cap X(M))$ . Then $\tilde{\mathcal{Z}}(M)$ is a complex

submanifold of $\Gamma_{X(M)}$ biholomorphic to $Z(M)\cap X(M)$ . By $\mathrm{c}1(\tilde{Z}(M))$ we denote the
closure of $\tilde{Z}(M)$ in the weak*-topology of $(P_{2}^{h}[X(M)])^{*}$ . (Recall that according to
our construction $X_{2}(M)$ is a closed subspace of $(P_{2}^{h}[X(M)])^{*}.)$ Then we have

Proposition 2.5
$\mathcal{M}(H^{\infty}(M))=\mathrm{c}1(\tilde{Z}(M))\cap \mathcal{Z}(M)$ .

Sketch of the Proof. Assume that $4\in \mathcal{M}(H^{\infty}(M))$ . Then $\xi\in X(M)^{**}\subset$

$(P_{2}^{h}[X(M)])^{*}$ by Proposition 2.3, and $p(\pi(\xi))-\hat{p}(\xi)=0$ for all $p\in P_{2}^{h}[X(M)]$ (here
we naturally extend $p\mathrm{o}\pi$ and $\hat{p}$ to $(P_{2}^{h}[X(M)])^{*}8S$ continuous in the weak’-topology
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functions). Also, by definition, $\xi\in Z(M)$ . Let $\{\chi_{\alpha}\}\subset X(M)$ be a bounded net
that converges in the weak*-topology to $\pi(\xi)\subset X(M)^{**}$ . Passing if necessary to
a subnet we may assume without loss of generality that $\{\phi_{X(M)}(\chi_{\alpha})\}$ converges to
some X $\in \mathrm{c}1(\overline{Z}(M))$ in the weak’-topology of $X_{2}(M)^{**}$ so that $\pi(\xi)=\pi(\chi)$ . From
here for every $p\in P_{2}^{h}[X(M)]$ we have $\hat{p}(\xi)=\hat{p}(\chi)$ . Since the weak’-topology on
$X_{2}(M)^{**}$ is generated by elements $\hat{p}$, we have $\xi=\chi\in \mathrm{c}1(\tilde{Z}(M))$ . The converse
implication of the theorem is obvious. $\square$

2.2. Let $f_{1},$
$\ldots,$

$f_{n}\in H^{\infty}(M)$ be such that

$1\leq|.\leq n\mathrm{m}\mathrm{a}\mathrm{x}||f_{i}||_{H}\infty(M)\leq 1$ and $\max_{1\leq i\leq n}|f_{1}(x)|\geq\delta>0$ , for all $x\in M$.

By $K(f_{1}, \ldots, f_{n})$ we denote the set of zeros of $f_{1},$
$\ldots,$

$f_{n}$ in $X(M)\cap Z(M)$ . Then
from Theorem 2.5 follows easily

Proposition 2.6 The corona theorem is valid for $H^{\infty}(M)$ if and only if for every
$K(f_{1}, \ldots, f_{n})$ as above one has

$\mathrm{c}1(\phi_{X(M)}(K(f_{1}, \ldots, f_{n})))\cap Z(M)=\emptyset$ . $\square$

Assume now that $M$ stands for the open unit Euclidean ball $\mathrm{B}^{N}$ or the open unit
polydisk $\mathrm{D}^{N}$ in $\mathbb{C}^{N}$ . The first step in the proof of the corona theorem for such $M$ is
the following result whose proof is based on Theorem 3.4 of the next section.

Theorem 2.7 There is a constant $c=c(N)$ such that

$||\phi_{X(M)}(v)-v||_{X_{2}(M)}\geq c\cdot(dist(v,M))^{2}$ for all $v\in X(M)$ .

Here
dist$(v,M):= \inf_{z\in M}||v-z||_{X(M)}$ , $v\in X(M)$ .

In particular, this theorem implies that

dist $(\phi_{X(M)}(K(f_{1}, \ldots, f_{n})), K(f_{1}, \ldots, f_{n}))\geq c\delta^{2}$ .

However, we still don’t know whether this inequality leads to the required conclusion
of Proposition 2.6. Let us mention that taking into account the latter inequality
one can consider the statement of the corona theorem as a nonlinear analog of the
Hahn-Banach separation theorem. Namely, if we assume for a while that $\phi_{X(M)}$ is
a linear map, then the required statement $\mathrm{c}1(\phi_{X(M)}(K(f_{1}, \ldots,f_{n})))\cap Z(M)=\emptyset$

follows from the classical Hahn-Banach theorem. But, unfortunately, $\phi_{X(M)}$ in our
case is a holomorphic quadratic map....

Finally, we will mention that from Theorem 2.7 it follows

Proposition 2.8 There is a continuous plunsubharmonic function of logarithmic
growth $g$ on $X(M)equals-\infty$ on $M$ such that for some constant $c\sim=c(\sim N)$

$g(v)\geq\sim c+\ln(dist(v,M))$ for all $v\in X(M)$ .
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Let us consider now the uniform algebra of functions on the closed unit ball
$B\subset X(M)$ generated by $H^{\infty}(M)$ and the function $e^{g}$ . Let $\mathcal{M}(B)$ be the maximal
ideal space of this algebra.

Problem 2.9 Is it true that $B$ is dense in the Gelfand topology of $\mathcal{M}(B)^{q}$

The positive answer in this problem leads to the solution of the corona problem for
$\mathrm{B}^{N}$ and $\mathrm{D}^{N}$ . Indeed, the collection of functions $e^{g},$ $f_{1},$

$\ldots,$
$f_{n}$ with $f_{1},$

$\ldots,$
$f_{n}$ as above

satisfy condition (1.1) (i.e., the corona condition) on $B$ . Then from the positive
answer in Problem 2.9 it follows that there are complex polynomials $p_{0},$ $\ldots p_{n}$ in
variables $e^{\mathit{9}},$ $f_{1},$

$\ldots,$
$f_{n}$ vuch that

$|p_{0}(v)e^{g(v)}+ \sum_{k=1}^{n}p_{k}(v)f_{k}(v)|>\frac{1}{2}$ for all $v\in B$ .

Since $M\subset B$ and the restriction of each $p_{k}$ to $M$ is a holomorphic polynomial
in $f_{1}|_{M},$ $\ldots f_{n}|_{M}$ only, $0\leq k\leq n$ , the latter inequality implies the solution of the
corona problem for the family $f_{1},$

$\ldots$ , $f_{n}\in H^{\infty}(M)$ .
Let us consider the general version of Problem 2.9 for $B$ a closed ball in a

Banach space $V$ and for an arbitrary logarithmically plurisubharmonic function $e^{g}$

on $V$ such that $g$ is of logarithmical growth. Then the only result obtained for this
general setting is the following

Proposition 2.10 Suppose that the function $e^{g}$ is a norm on V. Then $B$ is dense
in the Gelfand topology of $\mathcal{M}(B)$ .

Remark 2.11 Of course, Problem 2.9 is also valid for the trivial case of $e^{g}\equiv\omega nst$ .

3. Geometry of Banach Spaces Predual to $H^{\infty}$

3.1. Let $M$ be a Caratheodory hyperbolic complex manifold of bounded geometry,
i.e., there exists a constant $C\geq 1$ such that every point $z\in M$ has a neighbourhood
$U_{z}$ admitting a biholomorphism

$\psi_{z}$ : $U_{z}arrow \mathrm{B}^{N}$

such that

$\frac{1}{C}d_{E}(\psi_{z}(v_{1}),\psi_{z}(v_{2}))\leq d_{M}(v_{1},v_{2})\leq Cd_{E}(\psi_{z}(v_{1}),\psi_{z}(v_{2}))$ for all $v_{1},$ $v_{2}\in U_{z}$ .

Here $d_{E}$ is the Euclidean distance on $\mathbb{C}^{N}$ and $d_{M}$ is the Caratheodory distance on
$M$ . Let $S_{\epsilon}\subset M$ be a separated $\epsilon$-net with respect to $d_{M}$ . This means that for every
$z\in M$ there exists $s\in S$ such that $d_{M}(z, s)<\epsilon$ and for every distinct $s_{1},$ $s_{2}\in S$ ,
$d_{M}(s_{1}, s_{2})\geq\epsilon$. Then from the definition of the bounded geometry for a sufficiently
small $\epsilon$ (depending on $C$) it follows that

Proposition 3.1 The restriction $H^{\infty}(M)arrow H^{\infty}(M)|_{S_{\mathrm{e}}}$ determines an isometric
embedding of $H^{\infty}(M)$ into $l^{\infty}(S_{\epsilon})$ continuous in the corresponding weakd-topologies.
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Thus this embedding determines a surjective bounded linear map li $(S_{\epsilon})arrow X(M)$

of norm 1 whose dual map coincides with the embedding of the proposition. The
$\delta$-functionals of points of $S_{\epsilon}$ in $l^{1}(S_{\epsilon})$ go under this map to the corresponding $\delta-$

functionals of points of $S_{\epsilon}$ in $X(M)$ . In particular, we obtain

Proposition 3.2 Given $v\in X(M)$ and $\epsilon>0$ there is a sequence $\{\alpha_{t}\}_{t\in S_{\epsilon}}\subset \mathbb{C}$

such that

$v= \sum_{t\in S_{\mathrm{e}}}\alpha_{t}\delta_{t}$
with $||v||_{X(M)} \leq\sum_{t\in S}.|\alpha_{t}|\leq||v||_{X(M)}+\epsilon$ .

Remark 3.3 (1) An open and interesting question is whether $X(M)$ possesses a
Shauder basis.
(2) A similar result can be proved for any $X(M)$ with $M$ Caratheodory hyperbolic,
where instead of $S_{\epsilon}$ one chooses “more dense“ countable subsets of M. (We don’t
know whether it is possible to take here separated $\epsilon$-nets, as well.)

3.2. In this subsection $M$ stands for $\mathrm{B}^{N}$ or $\mathrm{D}^{N}$ . Let $B(M)$ be the group of bi-
holomorphic transformations of $M$ . Then each $g\in B(M)$ determines an isometry
$g^{*}:$ $H^{\infty}(M)arrow H^{\infty}(M),$ $g^{*}f:=f\circ g$ , continuous in the weak’-topology of $H^{\infty}(M)$ .
This implies existence of a linear isometry $\overline{g}$ : $X(M)arrow X(M)$ of the predual space
such that $\overline{g}^{*}=g^{*}$ . Identifying $M$ with a subset of $X(M)$ as in the preceding sec-
tion, we have $\overline{g}|_{M}=g$ . The group of all such $\overline{g}$ will be also denoted by $B(M)$ .
Let $z_{1},$

$\ldots,$ $z_{N}$ be holomorphic coordinates on $\mathbb{C}^{N}$ . By the same symbols we denote
the corresponding elements of $H^{\infty}(M)$ . Let $Z(c)\subset X(M),$ $c=(c_{1}, \ldots , c_{N})\in \mathbb{C}^{N}$ ,
be the set of zeros of the equations $z_{1}=c_{1},$ $\ldots$ , $z_{N}=c_{N}$ . It is a complex affine
subspace of $X(M)$ of codimension $N$ . In the following result 1 is considered as the
linear functional on $X(M)$ corresponding to $1\in H^{\infty}(M)$ .
Theorem 3.4 Suppose that $v\in X(M)$ and $1(v)\neq 0$ . Then for every $c\in 1(v)\cdot M$

there exits $\overline{g}\in B(M)$ such that $\overline{g}(v)\in Z(c)$ .

This result is the main point in the proof of Theorem 2.7.
Sketch of the Proof. We will show how to prove the result for $M=\mathrm{B}^{N}$ . The
proof for $\mathrm{D}^{N}$ follows easily from this case.

Recall that for every point $a\in \mathrm{B}^{N}$ there is a biholomorphism $\phi_{a}$ : $\mathrm{B}^{N}arrow \mathrm{B}^{N}$

satisfying

(1)
$\phi_{a}(0)=a$ , $\phi_{a}(a)=0$ ;

(2)
$\phi_{a}=\phi_{a}^{-1}$ ;

(3) $\phi_{a}$ has the unique fixed point.
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This map can be written explicitly by

$\phi_{a}(z)=$

.
$-Z$ , $a=0$ ,

$\frac{a-P_{a}z(1-|a|^{2})^{1/2}Q_{a}z}{1<z,a>}=$ , $a\in \mathrm{B}^{N}\backslash \{0\}$

where
$P_{a}z= \frac{<z,a>}{<a,a>}a$ , $Q_{a}z=z- \frac{<z,a>}{<a,a>}a$

and $<z,$ $a>\mathrm{i}\mathrm{s}$ the inner product on $\mathbb{C}^{N}$ .
Observe that $\phi_{a}$ is defined also for $a\in \mathrm{S}^{N}$ , the boundary of $\mathrm{B}^{N}$ , and in this

case $\phi_{a}\equiv a$ . Suppose now that $v\in X(M)$ and l(v) $\neq 0$ . Using Proposition 3.2
we present $v$ as $\Sigma_{t\in S_{e}}\alpha_{t}\delta_{t}$ with $\Sigma_{t\in S_{\epsilon}}|\alpha_{t}|\leq 2||v||_{X(M)}$ . Consider the linear map
$z:=(z_{1}, \ldots, z_{n})$ : $X(\mathrm{B}^{N})arrow \mathbb{C}^{N}$ . Then

$z( \overline{\phi}_{a}(v)):=\sum_{t\in S_{e}}\alpha_{t}z(\phi_{a}(t))$
.

According to the above condition this series converges uniformly for $a\in\overline{\mathrm{B}}^{N}$ and
therefore $z\mathrm{o}\overline{\phi}.(v)$ : $\overline{\mathrm{B}}^{N}arrow \mathbb{C}^{N}$ is a continuous map. Also, for $a\in \mathrm{S}^{N}$ we have

$z( \overline{\phi}_{a}(v))=\sum_{t\in S_{\epsilon}}\alpha_{t}a=1(v)\cdot a$
.

Since $1(v)\neq 0$ , and $+^{z\circ\phi v}1^{-}v$

) : $\overline{\mathrm{B}}^{N}arrow \mathbb{C}^{N}$ is identity on the boundary, by the Brower

fixed point theorem the image of $z\mathrm{o}\overline{\phi}.(v)$ contains 1(v) $\cdot\overline{\mathrm{B}}^{N}$ Therefore for every
$c\in 1(v)\cdot \mathrm{B}^{N}$ there exists $\overline{\phi}_{a}$ for some $a\in \mathrm{B}^{N}$ such that $\overline{\phi}_{a}(v)\in Z(c)$ . $\square$

3.3. In this part we describe in more details the structure of the space $X(\mathrm{D}^{N})$

predual to $H^{\infty}(\mathrm{D}^{N})$ . We will consider the $\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}\overline{\mathrm{D}}^{N}$ of $\mathrm{D}^{N}$ as an abelian semigroup
with multiplication defined for $z^{i}:=(z_{1}^{i}, \ldots, z_{N}^{i})\in\overline{\mathrm{D}}^{N},$ $i=1,2$ , by

$z^{1}\cdot z^{2}:=$ $(z_{1}^{1}\cdot z_{1}^{2}, \ldots, z_{N}^{1} . z_{N}^{2})$ .

Next, for every $\alpha\in\overline{\mathrm{D}}^{N}$ by $K_{\alpha}$ we denote the map defined by

$K_{\alpha}(z):=\alpha\cdot z$ , $z\in \mathrm{D}^{N}$ .

Then $K_{\alpha}^{*}$ : $H^{\infty}(\mathrm{D}^{N})arrow H^{\infty}(\mathrm{D}^{N}),$ $K_{\alpha}^{*}f:=f\mathrm{o}$ $K_{\alpha}$ , is a linear operator continuous in
the weak’-topology of $H^{\infty}(\mathrm{D}^{N})$ . Hence there is a linear operator $X(\mathrm{D}^{N})arrow X(\mathrm{D}^{N})$

predual to $K_{\alpha}^{*}$ which coincides with $K_{\alpha}$ on $\mathrm{D}^{N}\subset X(\mathrm{D}^{N})$ . We will denote it by the
same symbol $K_{\alpha}$ . Also, the set $K:=\{K_{\alpha}\}_{\alpha\in\overline{\mathrm{D}}^{N}}$ is an abelian semigroup isomorphic

to $\overline{\mathrm{D}}^{N}$ Observe, that every $K_{\alpha}$ with $\alpha\in \mathrm{D}^{N}$ is a compact operator and every $K_{\alpha}$

with $\alpha\in \mathrm{T}^{N}$ , the \S ilov boundary of $\mathrm{D}^{N}$ , is an isometry. Moreover, for a sequence
$\{\alpha_{n}\}_{1\leq n<\infty}\subset\overline{\mathrm{D}}^{N}$ convergent to $\alpha\in\overline{\mathrm{D}}^{N}$ we have

$\lim_{narrow\infty}K_{\alpha_{\hslash}}(v)=K_{\alpha}(v)$ for every $v\in X(\mathrm{D}^{N})$ . (3.1)
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(For $\alpha\in \mathrm{T}^{N}$ , however, $\{K_{\alpha_{n}}\}$ does not converge to $K_{\alpha}$ in the operator norm.)
For every $v\in X(\mathrm{D}^{N})$ by $\mathrm{T}_{v}$ we will denote the orbit of $v$ with respect to the

action of the group $\{K_{\alpha}\}_{\alpha\in \mathrm{F}^{N}},$ . Let us determine the Cauchy integral operator on
$\mathrm{T}_{v}$ (for $z=(z_{1},$

$\ldots,$
$z_{N})\in \mathrm{D}^{N},$ $\xi=(\xi_{1},$

$\ldots,$
$\xi_{N})\in \mathrm{T}^{N}$ ) by the formula

$\mathcal{K}_{z}(v):=(\frac{1}{2\pi i})^{N}\int\cdots\int_{\mathrm{T}^{N}}\frac{K_{\xi\iota.\cdot\cdot.\cdot\xi_{N}}(v)}{(\xi_{1}-z_{1})\cdot(\xi_{N}-z_{N})}d\xi_{1}\cdots d\xi_{N}$ . (3.2)

Proposition 3.5 For every $v\in X(\mathrm{D}^{N})$ we have

$\mathcal{K}_{z}(v)=K_{z}(v)$ .

Sketch of the Proof. The statement is obvious for every $v:=\delta_{t},$ $t\in \mathrm{D}^{N}$ . Now
according to Proposition 3.2 we have

$v= \sum_{t\in S_{e}}\alpha_{t}\delta_{t}$
,

$||v||_{X(\emptyset^{N})}- \epsilon\leq\sum_{t\in S_{\epsilon}}|\alpha_{t}|$
.

Hence,
$\mathcal{K}_{z}(v)=\sum_{t\in S}.\alpha_{t}\mathcal{K}_{z}(\delta_{t})=\sum_{t\in S_{\epsilon}}\alpha_{t}K_{z}(\delta_{t})=K_{z}(v)$

. $\square$

Proposition 3.6 Given $v\in X(\mathrm{D}^{N})$ the correspondence $zrightarrow \mathcal{K}_{z}(v)$ determines a
continuous map $\psi_{v}$ : $\overline{\mathrm{D}}^{N}arrow X(\mathrm{D}^{N})$ holomorphic on $\mathrm{D}^{N}$ .

Sketch of the Proof. For every $f\in H^{\infty}(\mathrm{D}^{N})$ by Propositions 3.2, 3.5 and formula
(3.2) we have

$f( \mathcal{K}_{z}(v))=\sum_{t\in S}‘\alpha_{t}f(zt)\in H^{\infty}(\mathrm{D}^{N})$ .

This shows that $\psi_{v}$ is holomorphic on $\mathrm{D}^{N}$ . The continuity follows easily from formula
(3.1). $\square$

Let $z^{:}=(z_{1}, \ldots, z_{i-1},0, z_{1+1}, \ldots, z_{N})\in\overline{\mathrm{D}}^{N}$ . We study the image of $K_{z^{l}}(X(\mathrm{D}^{N}))$ .
Let $\pi_{\iota’}$ : $\mathrm{D}^{N}arrow \mathrm{D}^{N-1},$ $\pi_{i}(z)=z^{i}$ , be the natural projection. Then as before this map
gives rise to a bounded linear map $X(\mathrm{D}^{N})arrow X(\mathrm{D}^{N})$ which coincides with $\pi$: on
$\mathrm{D}^{N}\subset X(\mathrm{D}^{N})$ . (We denote this map also by $\pi_{i}.$ ) Moreover, $\pi_{i}(X(\mathrm{D}^{N}))$ is isometric
to $X(\mathrm{D}^{N-1})$ and $\pi_{i}$ : $X(\mathrm{D}^{N})arrow\pi_{i}(X(\mathrm{D}^{N}))$ is a linear continuous projection. Set
$X(\mathrm{D}_{1}^{N}$. $):=\pi_{i}(X(\mathrm{D}^{N}))$ . Clearly we have (for $0\in \mathbb{C}^{N}$ )

Proposition 3.7

$K_{z}:(X(\mathrm{D}^{N}))\subset X(\mathrm{D}_{i}^{N})$ and $\bigcap_{i=1}^{N}X(\mathrm{D}_{1}^{N})=X_{0}:=\{c\delta_{0} : c\in \mathbb{C}\}$ ロ

Notice that $(\pi_{N}\circ\cdots\circ\pi_{1})(X(\mathrm{D}^{N}))=X_{0}$ and $(\pi_{N}\circ\cdots\circ\pi_{1})(v)=1(v)\delta_{0}$ .

Proposition 3.8 Suppose that for some $x,y\in\overline{\mathrm{D}}^{N}$ there are $v,$ $w\in X(\mathrm{D}^{N})$ such
that $K_{x}(v)=K_{y}(w) \not\in X(\mathrm{D}^{N})\backslash (\bigcup_{1\leq i\leq N}X(\mathrm{D}_{i}^{N}))$ . Then one of the sets $\psi_{v}(\overline{\mathrm{D}}^{N}),$ $\psi_{w}(\overline{\mathrm{D}}^{N})$

contains the other.
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Sketch of the Proof. From the assumption of the proposition we obtain that
$x,$

$y\in(\overline{\mathrm{D}}^{*})^{N},$ $\overline{\mathrm{D}}^{*}:=\overline{\mathrm{D}}\backslash \{0\}$ , and $\psi_{v}(x\cdot z)=\psi_{w}(y\cdot z),$ $z\in \mathrm{D}^{N}$ . Without loss of
generality we may assume, e.g., that $y=\alpha\cdot x$ with $\alpha\in\overline{\mathrm{D}}^{N}$ . Then since by the
$\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{s}x\cdot \mathrm{D}^{N}\square$

is an open polydisk in $\mathrm{D}^{N}$ , we get $\psi_{v}(z)=\psi_{w}(\alpha\cdot z)$ for all $z\in\overline{\mathrm{D}}^{N}$

Observe also that for $v \not\in\bigcup_{1\leq i\leq N}X(\mathrm{D}_{i}^{N})$ we have

$\psi_{v}((\overline{\mathrm{D}}^{*})^{N})=\psi_{v}(\overline{\mathrm{D}}^{N})\backslash \bigcup_{1\leq i\leq N}X(\mathrm{D}_{i}^{N})$ . (3.3)

For every $v \in X(\mathrm{D}^{N})\backslash (\bigcup_{1\leq i\leq N}X(\mathrm{D}_{1}^{N}))$ by $G_{v}$ we denote the union of all possible
sets $\psi_{w}((\mathrm{D})^{N}\neg)$ containing $v$ . Then from (3.3) and Proposition 3.8 we get

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}3.9G_{v}.\square X(\mathrm{D}^{N})\backslash (\bigcup_{1\leq i\leq N}X(\mathrm{D}_{i}^{N}))$

is the disjoint union of a family of sets

Remark 3.10 The closure $\partial_{v}\subset X(\mathrm{D}^{N})$ of $G_{v}$ coincides with the image of a holo-
morphic map St $arrow X(\mathrm{D}^{N})$ ; here $\Omega\subset \mathbb{C}^{N}$ is of the form $\Omega=\Omega_{1}\cross\cdots\Omega_{N}$ , where
each $\Omega_{i}\subset \mathbb{C}$ is either $\mathrm{D}$ or $\overline{\mathrm{D}}$ or C.

An interesting question is for which $v \in X(\mathrm{D}^{N})\backslash (\bigcup_{1\leq i\leq N}X(\mathrm{D}_{i}^{N}))$ the map $\psi_{v}$ :
$(\overline{\mathrm{D}}^{*})^{N}arrow X(\mathrm{D}^{N})$ is an embedding? (Observe that for $v \in\bigcup_{1\leq i\leq N}X(\mathrm{D}_{i}^{N})$ the map
$\psi_{v}$ : $\overline{\mathrm{D}}^{N}arrow X(\mathrm{D}^{N})$ is always not injective.) Let us formulate a partial answer to
this question.

Proposition 3.11 Suppose that $v \in X(\mathrm{D}^{N})\backslash (\bigcup_{1\leq \mathfrak{i}\leq N}X(\mathrm{D}_{i}^{N}))$ is either presented
as $\Sigma_{k=1}^{l}\mathrm{c}_{k}\delta_{x_{k}},$ $c_{k}\in \mathbb{C}_{f}x_{k}\in \mathrm{D}^{N}$ , or does not belong to the union of the spaces
$V_{1}:=\{v\in X(\mathrm{D}^{N}) : z_{i}(v)=0\},$ $1\leq i\leq N$ . Then the map $\psi_{v}$ : $(\overline{\mathrm{D}}^{*})^{N}arrow X(\mathrm{D}^{N})$

is an embedding.

Sketch of the Proof. In the first case the proof follows from the fact that any
finite subset of $\mathrm{D}^{N}$ is an interpolating sequence for $H^{\infty}(\mathrm{D}^{N})$ . In the second case we
consider the linear map $z:=(z_{1}, \ldots, z_{N})$ : $X(\mathrm{D}^{N})arrow \mathbb{C}^{N}$ . Then it is easy to see
that $z\circ\psi_{v}$ : $\overline{\mathrm{D}}^{N}arrow \mathbb{C}^{N}$ is one-t$(\succ \mathrm{o}\mathrm{n}\mathrm{e}$. $\square$

Finally, we will show how to convert $X(\mathrm{D}^{N})$ into a Banach algebra over $\mathbb{C}$ (with-
out unit). To this end we introduce multiplication : $X(\mathrm{D}^{N})\cross X(\mathrm{D}^{N})arrow X(\mathrm{D}^{N})$

by the formula

$v \cdot w:=(\sum_{t\in \mathit{3}_{*}}\alpha_{t}\delta_{t})(\sum_{\epsilon\in S_{\epsilon}}\beta_{\epsilon}\delta_{\delta})=\sum_{t,s\in S_{e}}\alpha_{t}\beta_{\epsilon}\delta_{t\cdot\epsilon}$ . (3.4)

Here $v=\Sigma_{t\in S_{\mathrm{e}}}\alpha_{f}\delta_{t}$ and $w=\Sigma_{s\in S_{\mathrm{e}}}\beta_{\delta}\delta_{s}$ are some presentations of $v$ and $w$ as
in Proposition 3.2. It is easy to check that (3.4) does not depend on the choice of
presentations of $v$ and $w$ and so the multiplication is well-defined. Clearly, $v\cdot w=w\cdot v$

and
$||v \cdot w||_{X(\mathrm{I}\})}N\leq\sum_{t,s\in S_{\epsilon}}|\alpha_{t}|\cdot|\beta_{\epsilon}|\leq||v||_{X(\mathrm{I}))}N$

. $||w||_{X(\mathrm{D}^{N})}$ .
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All other axioms from the definition of a Banach algebra are trivially hold. Notice
also that for every $z\in \mathrm{D}^{n}$ on has

$K_{z}(v):=\delta_{z}\cdot v$ , $v\in X(\mathrm{D}^{N})$ . (3.5)

Thus we can define a bounded linear map $K$ : $X(\mathrm{D}^{N})$ — $B(X(\mathrm{D}^{N}))$ , to the
Banach space of bounded linear operators on $X(\mathrm{D}^{N})$ , by the formula

$K(v):= \sum_{t\in S_{e}}\alpha_{t}K_{t}$
, (3.6)

where $v= \sum_{t\in S_{\mathrm{c}}}\alpha_{t}\delta_{t}$ is a presentation of $v$ . (Note that the above formula does not
depend on the choice of the presentation.) Then we have

Proposition 3.12 The map $K$ : $X(\mathrm{D}^{N})arrow B(X(\mathrm{D}^{N}))$ is an isometric embedding
and homomorphism of Banach algebras.

Identifying $X(\mathrm{D}^{N})$ with its image under $K$ we can naturally complete it to the
Banach algebra with unit, just adding to this algebra the one-dimensional vector
subspace of $B(X(\mathrm{D}^{N}))$ generated by the identity map $I$ .
Remark 3.13 Consider the minimal closed subspace $X$ in $B(H^{\infty}(\mathrm{D}^{N}))$ generated
by operators $K_{z}^{*}$ . Then from Proposition 3.12 it follows that $X$ is a Banach algebra
isomorphic to $X(\mathrm{D}^{N})$ . In this way one obtains an inner description of $X(\mathrm{D}^{N})$

in terms of $H^{\infty}(\mathrm{D}^{N})$ only. Every $f\in H^{\infty}(\mathrm{D}^{N})$ determines a continuous linear
functional on $X\cong X(\mathrm{D}^{N})$ defined by the formula $f(x):=[x(f)](1),$ $x\in X$ , where
$1\in \mathrm{T}^{N}$ is the unit. (Observe that every $x(f)$ belongs to $H^{\infty}(\mathrm{D}^{N})\cap C(’\mathrm{F}^{N}).$ )

Now the set of nonzero complex homomorphisms of $X(\mathrm{D}^{N})$ is the set of functionals
$\{z_{1}^{\alpha_{1}}\cdots z_{N^{N}}^{\alpha} : \alpha_{k}\in \mathbb{Z}_{+}, 1\leq k\leq N\}$ , where $z_{1},$

$\ldots,$
$z_{N}$ are the coordinate functionals

on $\mathbb{C}^{N}$ . The set of maximal ideals of $X(\mathrm{D}^{N})$ is then identified with $(\mathbb{Z}_{+})^{N}$ . Next,
the Gelfand transform of every $v\in X(\mathrm{D}^{N})$ is the bounded function $f_{v}$ on $(\mathbb{Z}_{+})^{N}$

defined by

$f_{v}(\alpha_{1}, \ldots, \alpha_{N}):=z_{1}^{\alpha_{1}}(v)\cdots z_{N^{N}}^{\alpha}(v)$ , $(\alpha_{1}, \ldots, \alpha_{N})\in(\mathbb{Z}_{+})^{N}$ .
The function $f_{v}$ also satisfies

$\lim$ $f_{v}(\alpha_{1}, \ldots, \alpha_{N})=0$ .
$( \max\alpha_{i})arrow\infty$

The Gelfand transform $F:X(\mathrm{D}^{N})arrow \mathrm{c}_{0}((\mathbb{Z}_{+})^{N}),$ $v\vdasharrow f_{v}$ , is an injective homomor-
phism of Banach algebras. However, the image of $X(\mathrm{D}^{N})$ under $F$ is not closed!
Also, we have

$\lim_{narrow\infty}$ Il $v^{n}||^{1/n}= \sup_{\alpha}|f_{v}(\alpha)|$ .

For every $v\in X(\mathrm{D}^{N})$ the map $F\circ\psi_{v}$ : $\overline{\mathrm{D}}^{N}arrow c_{0}((\mathbb{Z}_{+})^{N})$ is holomorphic, and the
map $\psi_{v}$ is an embedding if and only if $F\circ\psi_{v}$ is. Further, let us consider the linear
bounded functional $l$ on $l_{1}((\mathbb{Z}_{+})^{N})$ defined by the formula:

$l( \{v_{\alpha}\}_{\alpha\in(\mathrm{z}_{+})^{N}}):=\sum_{\alpha}v_{\alpha}$ .
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In the next result we use the definition of the Marcinkiewicz space $M^{1/N}(\mathrm{T}^{N})$ . It is a
quasi-Banach space of measurable functions $f$ on $\mathrm{T}^{N}$ (with respect to the Lebesgue
measure) satisfying

$mes \{z\in \mathrm{T}^{N} : |f(z)|\geq\lambda\}\leq\frac{C}{\lambda^{1/N}}$ , $\lambda>0$ .
The optimal for all $\lambda>0$ constant $C$ in such inequalities is the norm of $f$ . Then we
have

Proposition 3.14 For each $z\in \mathrm{D}^{N}f(F\mathrm{o}\psi_{v})(z)\in l_{1}((\mathbb{Z}_{+})^{N})$ , the function $l\mathrm{o}F\mathrm{o}\psi_{v}$ :
$\mathrm{D}^{N}arrow \mathbb{C}$ is holomorphic and is extended to $\mathrm{T}^{N}$ as a function from $M^{1/N}(’\mathrm{F}^{N})$ . The
linear map $M:X(\mathrm{D}^{N})arrow M^{1/N}(\mathrm{T}^{N}),$ $v\mapsto l\mathrm{o}F\mathrm{o}\psi_{v}|_{\mathrm{F}^{N}}’$ , is continuous and injective.

Rom this result we obtain another description of $X(\mathrm{D}^{N})$ . Consider the com-
plex space $L^{1}(\mathrm{T}^{N})$ . Observe that the Cauchy projector $C$ : $L^{2}(\mathrm{T}^{N})arrow H^{2}(\mathrm{D}^{N})$ is
extended to $L^{1}(\mathrm{T}^{N})$ and then its image belongs to $M^{1/N}(\mathrm{T}^{N})$ .
Proposition 3.15 The image $C(L^{1}(\mathrm{T}^{N}))$ equipped with the quotient norm is natu-
rally isometric to $X(\mathrm{D}^{N})$ .
(Similar to the above proposition results are valid also for other spaces $X(M)$ with
$M\subset \mathbb{C}^{N}$ a bounded domain.)

Finally, we recall that the Hadamard product of two formal power series

$f_{i}(z)= \sum_{\alpha\in(\mathrm{z}_{+})^{N}}a:,\alpha z^{\alpha}$
, $i=1,2$,

on $\mathbb{C}^{N}$ where $z^{\alpha}$ $:=z^{\alpha_{1}}\cdots z^{\alpha_{N}}$ for $\alpha$ $:=$ $(\alpha_{1}, \ldots , \alpha_{N})$ is the series

$\mathcal{H}(f_{1}, f_{2})(z):=\sum_{\alpha\in(\mathrm{z}_{+})^{N}}(a_{1,\alpha}a_{2,\alpha})z^{\alpha}$
.

For formal Fourier series on $\mathrm{T}^{N}$ the Hadamard product coincides with the convolu-
tion of $\mathrm{s}e\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{s}*$ .
Proposition 3.16 The operator $M:X(\mathrm{D}^{N})arrow M^{1/N}(\mathrm{T}^{N})$ satisfies

$M(v_{1}\cdot v_{2})=M(v_{1})*M(v_{2})$ , $v_{1},$
$v_{2}\in X(\mathrm{D}^{N})$ .

In particular, for $f_{1},$ $f_{2}\in C(L^{1}(\mathrm{T}^{N}))$ we have $f_{1}*f_{2}\in C(L^{1}(\mathrm{T}^{N}))$ and.
$||f_{1}*f_{2}||_{M^{1/N}(\mathrm{T}^{N})}\leq||f_{1}*f_{2}||\leq||f_{1}||\cdot||f_{2}||$

where $||\cdot||$ is the quotient norm induced from $L^{1}(\mathrm{T}^{N})$ by C. Therefore
$M$ : (X $(\mathrm{D}^{N}),$

$\cdot,$
$|\cdot|_{X(\mathrm{D}^{N})}$ ) $arrow(C(L^{1}(\mathrm{T}^{N})), *, ||\cdot||)$

is an isomorphism of Banach algebras.
Moreover, for $f\in C(L^{1}(\mathrm{T}^{N}))$ we have

$\lim_{narrow\infty}||f*\cdots*f||^{1/n}=\sup_{\alpha\sim,n\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}}|a_{\alpha}|$

where $a_{\alpha}$ are Fourier coefficients of $f$ .
Similar results are valid for functions from different Hardy spaces.
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