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The Logarithmic Singularities of
the Bergman Kernels for model domains

HANJIN LEE

1 Introduction

Let Q be a bounded strictly pseudoconvex domain in C" with smooth boundary and r its defining
function. Let B be the Bergman kernel of the domain €2 restricted to the diagonal of 2 x €.
It was shown by Fefferman {F] that

Ba=pr " l4ylogr

where ¢, ¥ € C®(f). Since singularities of the Begman kernel, ¢, ¥ have geometric information
of the domain, it is natural to use it to characterize domains. To be precise, we consider
expansions of ©, ¥

n oo
=Y wxr* mod O(r"*!), P~ > wr*
k=0 k=0

If we choose r = r¥' which satisfies certain transformation rule under biholomorphism, then
@k, Yk are CR invariants, that is, polynomials in Moser’s normal form coefficients. satisfying
certain transformation rule with weight k¥ and n + 1 + k. By Chern-Moser theory, Moser’s
normal form coefficients are expressed in terms of CR curvature tensors. It implies that certain
conditions on singularities ¢,y decide the geometry of domains. (See [Hi2],[HK] for detail )

In this context Burns and Graham [G] proved :

Theorem 1. Let @ C C2. The boundary of  is locally CR equivalent to the sphere if = O(r?).

To the direction of global characterization of domains, a well known conjecture by Ra-
madanov [R] is as follows:

Conjecture 1. Let Q be a bounded strictly pseudoconvez domain of C™. If its Bergman kernel
does not have log term, then S} is biholomorphic to the ball.

Pertaining to this conjecture, Boichu and Coeuré [BC], and Nakazawa[N} proved that if
Q2 c C? is a bounded strictly pseudoconvex complete Reinhardt domain and v vanishes then Q
is biholomorphic to the ball. Hirachi [Hil] proved that for general dimension, if the domains are
ellipsoids close to the ball, then vanishing of log term 3 implies that the domain is the ball.



Let us state our main theorem. A domain Q2 € M if and only if
Q = {(20,2) € CxC": Y(20) > F(2)}
F : real a;nalytic strictly plurisubharmonic function on C" such that
1. F(0)=VF(0)=0 |
2. F(eizy,..- ,e‘o"z,;) = F(21,"++ ,2n) for any 6; € R

3. There are small p(;sitive numbers ¢ and € such that F(z) > c|z|® for sufficiently large
|2 = (T 122

Theorem 2. Let Q be a domain that belongs to the class M. Then 2 is biholomorphic to the

ball if, and only if, its Bergman kernel function does not have logarithmic singularity at the
boundary.

Remark In the aspect of technique to get asymptotic expansion of Bergman kernel and
compute @, 1 in terms of defining function, Kashiwara’s microlocal analysis was used in [BC], [N],
[Hil]. Graham computed expansion of 1 using higher asymptotics of Monge-Ampére equation
and Moser’s normal form coefficients. As a pertaining result, Hanges [Han] used Boutet de
Monvel-Sjéstrand’s [BS] expression of Szegé projection as Fourier integral operator to compute
singularity of Szeg6 kernel.

2 Main ideas of Proof

First step We have an expansion formula for Bg on the diagonal:

Proposition 1.

n+l

Ba(ao,2) = g 3 #i(@)820) 97 + 2= 3 E 4 (2) (@20 og()
j=0 p=0 )

Our formula is based on Haslinger’s formula [Has], which Kamimoto [K] used to get asymp-

totic expansion of the Bergman kernel for wider class of domains than ours. Haslinger’s formula
is as follows:

o0
Ba(20,2) = i_/‘ e_2g(z°)TK(z;*r)’rd‘r
2T 0

where K(-;7) is Bergman kernel for

H,(C*) ={geOC"): / 19122 FdV < oo}.
Cﬂ
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In particular
|2a

K(z;71) = Z |2

2
oezy Cal7)

where |2]2* = |%|?* ... |z,|?*", and
ca(T)Z - /C lzIZcz e—2-rF(z) dV(z).
n

Next we expand . By assumption on F' we have

n

F(z)= Z |.2:j|2 + ZPk(|z1|2, sy lan)

7=1 k>2

where

Pk(yla .. ay‘n) = E Cgc)yﬂ
|Bl=k

Set Sy = {y € R} : y1 + -+ yn = 1}. Set du to be surface measure on S} and due = y*du
Now expansion of 9 is given as
¥p(2) = Z Yoo |2

a€Zl

where

Ypa = / Fotial+n+3 dhta
Sy
+ / Pp+|a|+n+2 Pdps + / -Pp+|a|+n+2 dﬂ'a/ P dpa
S+ S4 St
+ / Pptjal+n+1 P3dpa + / Pytja|+n+1 Gba / P dpa
St S+ St

/ Pyyioj+n+1 P3 dpa + / Potjaj+n+1 P2 dita / Py dpa
St ’ St S4

P, du / Py du, / Podu
-/5+ poktntl * S+ * Sy ¢

pHal+n+2

+ Y Y [ Prdue [ Pdu
k=1 Sy S+

L+ o+
=pHlal+n+2

+

+

where each term has proper constants, but we do not consider them here. We use method of
stationary phase to expand c,(7)? in 7 (See {K], section 6 ), which leads to the formula for ¥ q-
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Second step

Proposition 2. If logarithmic singularity ¥ = g; ;‘_L_O t%!fﬁqpp(z)(%zo)l’ =0, that is Ypq =
0, then P, =0 for all k > 2. '

We consider (Cgc)) as an vector in R¥, where v; = the number of all possible monomials
in n variables of degree k. We can show that vy = (k+1)-:-(k+n —1)/(n — 1)!. We denote
it simply as C®). Then we can consider ¥, as a polynomial in CPHlal+n+3)  ©@) By
algebraic operation we can show that the system 9, = 0, p > 0, o € Z" can be changed into a
system of such form as

EM@E®,...,c®) =0, j=1,.., N k=n+3,n+4,...
where E{(C®, ..., C®@) is linear in C®) and Ny is meximum number of all such polynomials

deduced from the system o = 0. There are two ways of getting such equations for each k.
Set k = I +n — 3. First note that for p+ |a =

%,a:/s Piints y*du+ (Pj:j <l+n+2).
+

It gives desired equations for Ej(k)(C(k),...,C(z)) = 0 and the number of such equation is
Card {a € Z" : |o| < I}, which is Z;-=1 v;j. Second way of getting such equations is to use
Js, Prn+3P5y*dy which is found in :

Ypa = /s Piiminssy®dp+ (Pj:j<l4+m+n+2)
+
where p + |a| =1 + m. By counting all such equations we can show that

k—n—3
R R e

r=0

where M\ (r) € {1,2,3}.

Our goal is to decide the zero set of suitable finite subsystem. We expect the zero set of such
subsystem is trivial. At the same time we need some inductive relations between equations such
that vanishing of C®,...,C® for some k implies that C*+1) = 0, C*+2) = 0.... First note
that for small k, Nx < vx, furthermore N = 0 for k < n + 3. But for sufficiently large & we
can show that N > vy. For such k we have extra equations. By canceling C(k), we can rewrite
such extra equations as equations in C*~1 ..., C®?). Thus by choosing k, say ko, big enough
we come to have enough equations to show that zero set of E®) =9 ..., E(®) = 0 ig trivial.
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Set again k = | 4+ n + 3. First we show that Nj4n+3 — Yi4n+3 > 0 for some large I. It follows
from

N _ @02 (@+2en-2) R+ tn-2)
I4+n+3 — Vi4nt3 = (n—2)! = =~ (n—2)!
B+ (rtn-2)
r=i+1 (n—2)!
_ (@424 (ni(z; 1)/2+n-2)) +Qn—1(!‘_?];) _ RaaQ)

where Qn—1 is a polynomial of degree n — 1 with positive leading coefficient and R, is a
polynomial of degree n — 2.

Now canceling of C(®) in E(*) = 0 for k such that N > vy is based on the observation that
EJ(-k)(C’("), ..., 0®)=0, j=1,..., Nk can be considered as

Y ¢PB(8,5) = polynomial(C*D,...,0®) j=1,..., Ny
\Bl=k

and B(B,7), |8l =k, j =1,...,v is nonsingular. B(f,j) is n-dimensional beta function with
some weight which increase as j increase. We finally have a system of such form as

E}k)(c(k),”',oﬂ)) =01 j= 1,---)’/1(7' k=2’3a"-1k0

We can show that EJ(.z) (0(2)) =0, j=1,...,1 has trivial zero set, which implies that P> = 0.
Inductively we can show that P, = 0 for all k> 2.
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