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Abstract

A general Gram-Charlier expansion gives an approximation of a dcnsity function
by an arbitrary dcnsity function. We apply the method to an approximation of a
swaption price by using a dcnsity function of a zero coupon bond with our hope to
obtain the accuracy. The alternative method is constructed efficiently by combining
the results of Tanaka, Yamada and Watanabe (2005), Jarrow and Rudd (1982) and
Fourier inversion techniques.

1 Introduction

The valuation technique of interest rate derivatives has been receiving much attention
from researchers. Tanaka, Yamada and Watanabe (2005) (“$\mathrm{T}\mathrm{Y}\mathrm{W}$” hereafter) provides
an efficient mcthod to approximate priccs of several derivativc products including a
swaption. They use a Gram-Charlier expansion of a density function with a normal
distribution. The efficiency is gained by the fact that all terms in the expansion can be
obtained very accurately owing to the normal distribution. However, the approximation
performance depends on the distribution of the underlying state variables that drives the
interest rates.

The purpose of this paper is to describe an alternative method to approximate a
swaption price by using a density function of a zero coupon bond with a general Gram-
Charlier expansion. The idea comes from the fact that the main factor to affect the value
of a swap is the price of zero coupon bond maturing on the final payment date of the
swap. Originally such a general approximation formula is presented by Jarrow and Rudd
(1982) for a stock option. We apply their approach with a swap value which may take
both positive values and negative. We call it the expansion the general Gram-Charlier
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expansion to keep the consistency in the terminology with TYW though Jarrow and
Rudd (1982) call it the general Edgeworth expansion. To replace the normal distribution
with an arbitrary distribution, numerical calculations are required. Fourier inversion
techniques are useful for the numerical integration as discussed in Carr and Madan
(1999) and Chen and Scott (1995). Hopefully our approach may contribute to improve
the approximation accuracy.

The rest of this paper is organized as follows. In Section 2, we introduce the Gram-
Charlier expansion along with TYW. In Section 3, we discuss the alternative method by
a bond price. Section 4 concludes the paper.

2 Gram-Charlier Expansion

First we will review the results of Gram-Charlier expansion by TYW. The basic idea is
to approximate a density function with one of a standard normal distribution to obtain
an approximated swaption price.

The stochastic interest rates are assumed to be driven by a vector of the state variables
$X$ which is a Markov diffusion process satisfying

$dX_{t}=\mu(X_{t})dt+\sigma(X_{t})dW_{t}$ ,

where $W$ is an $n$-dimensional Brownian motion on $(\Omega, F, Q)$ . We assume that $Q$ is a risk-
neutral probability measure. A filtration $\{\mathcal{F}_{t} : t\in[0, T"]\}$ is the augmented filtration
generated by $W$ .

Consider a receiver’s swaption with the expiry $T_{0}$ and the fixed rate $K$ during a
period $[T_{0}, T_{N}]$ . The relevant dates are $T_{0}<T_{1}<\cdots<T_{N}$ , which are set at regularly
spaced time intervals, with $\delta=T_{i}-T_{i-1}$ for all $i$ . The time-t price of a zero coupon
bond with a maturity date of $T$ is denoted by $P(t,T)$ . By the linearity of the valuation,
the value $SV(t)$ of the underlying swap at time $t$ is written as a linear combination of
the zero coupon bond prices

$SV(t)=-P(t, T_{0})+ \delta K\sum_{i=1}^{N}P(t, T_{i})+P(t, T_{N})\equiv\sum_{i=0}^{N}a_{i}P(t, T_{i})$ , (1)

where $a_{i}$ is the amount of cash flow at time $T_{i}$ . Then the swaption value $SOV(t)$ at
time $t$ is the discounted value of the expectation of the gain from exercising under the
$T_{0}$-forward measure $Q^{T_{0}}$

$SOV(t)=P(t, T_{0})E^{T_{0}}[1_{\{SV(T_{0})>0|SV(\tau_{0})}|F_{t}]=P(t,T_{0}).[_{0}^{\infty}xf(x)dx$ , (2)

where $f$ is the density function of the swap value $SV(T_{0})$ at the expiry date $T_{0}$ under
the $T_{0}$-forward measure conditioned on $F_{t}$ . Therefore, it is enough to obtain the den-
sity function of the value of the underlying swap under the $T_{0}$-forward measure for the
calculation of the swaption price.

The first step to obtain the density function is to calculate the bond moment of the
bonds involved in the valuation of the cash flow upon the exercise of the swaption. For a
given set of dates $T,$ $T_{0},$ $U_{1},$

$\ldots$ , $U_{m}$ ($T\leq T_{0}\leq U_{i}$ for all $i=1,$ $\ldots$ , $m$ )
$’$
. the bond moment
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is defined under the forward measure as

$\mu^{T}(t, T_{0}, \{U_{1}, \cdots \dagger U_{m}\})\equiv E^{T_{0}}[\prod_{i=1}^{m}P(T_{0}, U_{i})|X_{t}]$

and it can be calculated as a function of $X_{t}$ either analytically or numerically.
As the second step it is easy to obtain the m-th swap moment with the bond moments

and the cash flows as

$M_{m}(t)$ $=$ $E^{T_{0}}[SV(T_{0})^{m}|X_{t}]$

$=$ $E^{T_{0}}[( \sum_{i=0}^{N}a_{\mathrm{t}}P(T_{0},T_{i}))^{m}|X_{t}]$

$=$

,
$\sum_{0\leq i_{1\cdot\cdot\prime},i_{m}\leq N}a_{i_{1}}\cdots a_{i_{m}}\mu^{T_{0}}(t, T_{0}, \{T_{i_{1}}, \cdots, T_{i_{m}}\})$

.

Then we know the n-th cumulant $c_{n}(t)$ from the set of the moments $\{M_{m}(t)\}_{m}$ . Define
the weighted cumulant $C_{n}=c_{n}(i)P(t, T_{0})^{n}$ for $n\geq 1$ , and coefficients $q_{n}$ as $q_{0}=1,$ $q_{1}=$

$q_{2}=0$ , and for $n\geq 3$

$q_{n}= \sum_{m=1}^{[n/3]}\sum_{n_{1}+\cdots+n_{m}=n,n.\geq \mathrm{s}}\frac{c_{n_{1}}\cdot\cdot.\cdot.c_{n_{m}}}{m!n_{1}!\cdot n_{m}!}(\frac{1}{\sqrt{c_{2}}})^{n}=\sum_{m=1}^{[n/3]}\sum_{n_{1}+\cdots+n_{m}=n,n.\geq 3}\frac{C_{n_{1}}\cdot\cdot.\cdot.C_{n_{m}}}{m!n_{1}!\cdot n_{m}!}(\frac{1}{\sqrt{C_{2}}})^{\mathrm{n}}$

The definition of $q_{n}$ looks complicated but the calculation is easy to do, for example,

$q_{3}= \frac{C_{3}}{3!C_{2}^{3/2}}$ , $q_{4}= \frac{C_{4}}{4!C_{2}^{2}}$ , $q_{5}= \frac{C_{5}}{5!C_{2}^{5/2}}$ , $q_{6}= \frac{C_{6}+10C_{3}^{2}}{6!C_{2}^{3}}$ , $q_{7}= \frac{C_{7}+35C_{3}C_{4}}{7!C_{2}^{7/2}}$ .

Now, let di be the density function of a standard normal distribution $N(\mathrm{O}, 1)$ , and $H_{n}$

be the n-th Hermite polynomial defined by $H_{n}(x)=(-1)^{n} \phi(x)^{-1}\frac{d^{n}}{dx^{n}}\phi(x)$ . By definition,

$H_{0}(x)=1$ , $H_{1}(x)=x$ , $H_{2}(x)=x^{2}-1$ , $H_{3}(x)=x^{3}-3x$ ,
$H_{4}(x)=x^{4}-6x^{2}+3$ , $H_{5}(x)=x^{5}-10x^{3}+15x$ ,
$H_{6}(x)=x^{6}-15x^{4}+45x^{2}-15$, $H_{7}(x)=x^{7}-21x^{5}+105x^{3}-105x$.

The Gram-Charlier expansion is an orthogonal decomposition of a density function by
$\{H_{n}\}_{n}$ with a weight of $\phi$ . The Gram-Charlier expansion states that the continuous
density function $f$ of a random variable $Y$ can be expanded as a series

$f(x)= \sum_{n=0}^{\infty}\frac{q_{n}}{\sqrt{c_{2}}}H_{n}(\frac{x- c_{1}}{\sqrt{c_{2}}})\phi(\frac{x- c_{1}}{\sqrt{c_{2}}})$ . (3)

The expansion is obtained by making use of the Fourier transforms of the characteristic
function as shown in TYW. Since the Hermite polynomials have the orthogonal prop-
erty $\int_{-\infty}^{\infty}H_{k}(x)H_{l}(x)\phi(x)dx=\delta_{kl}k!$ with respect to the Gaussian measure, $q_{n}$ is also
represented as $q_{n}= \frac{1}{n!}E[H_{n}(^{Y}\neq_{c_{2}}^{-c})]$ . By the properties of the Hermite polynomials the
Gram-Charlier expansion may be interpreted as the Wiener-Chaos expansion.
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Applying the Gram-Charlier expansion to $Y=SV(T_{0})$ , the swaption value is ex-
panded as

$SOV(t)$

$=$ $P(t, T_{0})E^{T_{0}}[1_{\{SV(T_{0})>0\}}SV(T_{0})|F_{t}]$

$=$ $P(t, T_{0})[c_{1}N( \frac{c_{1}}{\sqrt{c_{2}}})+\sqrt{c_{2}}\phi(\frac{c_{1}}{\sqrt{c_{2}}})+\sqrt{c_{2}}\phi(\frac{c_{1}}{\sqrt{c_{2}}})\sum_{n=3}^{\infty}(-1)^{n}q_{n}H_{n-2}(\frac{c_{1}}{\sqrt{c_{2}}})]$

$=$ $C_{1}N( \frac{C_{1}}{\sqrt{C_{2}}})+\sqrt{C_{2}}\phi(\frac{C_{1}}{\sqrt{C_{2}}})+\sqrt{C_{2}}\phi(\frac{C_{1}}{\sqrt{C_{2}}})\sum_{n=3}^{\infty}(-1)^{n}q_{n}H_{n-2}(\frac{C_{1}}{\sqrt{C_{2}}})$ , (4)

where $N$ is the distribution function of a standard normal distribution $N(\mathrm{O}, 1)$ . For
some integer $L$ , by truncating higher terms than $n=L$ in (4), the swaption value is
approximated as

$SOV(t) \approx C_{1}N(\frac{C_{1}}{\sqrt{C_{2}}})+\sqrt{C_{2}}\phi(\frac{C_{1}}{\sqrt{C_{2}}})+\sqrt{C_{2}}\phi(\frac{C_{1}}{\sqrt{C_{2}}})\sum_{n=3}^{L}(-1)^{n}q_{n}H_{n-2}(\frac{C_{1}}{\sqrt{C_{2}}})$ . (5)

TYW suggests either $L=3$ or $L=7$ for a practical application.

3 Approximation of Swaption Price by Bond Price
Jarrow and Rudd (1982) shows an approximation method of an option price with an
arbitrary process. It is worthwhile of regarding (3) as a decomposition by a normal dis-
tribution. Following the spirit of Jarrow and Rudd (1982), we will present an alternative
approximation of the density function of the underlying swap value.

For a random variable $Y$ we denote the characteristic functions by $\phi_{Y}$ and the n-th
cumulant by $c_{n}(\mathrm{Y})$ under the $T_{0}$-forward measure. Suppose that two random variables
$F$ and $G$ have the density function $f$ and $g$ , respectively, under the $T_{0}$-forward measure.
By definition, the characteristic functions $\phi_{F}$ of $F$ and $\phi_{G}$ of $G$ are expanded as

$\ln\phi_{F}(u)$ $=$ $\sum_{n=1}^{\infty}\frac{c_{n}(F)}{n!}(iu)^{n}$,

$\ln\phi_{G}(u)$ $=$ $\sum_{n=1}^{\infty}\frac{c_{n}(G)}{n!}(iu)^{n}$ .

Then since $\ln\frac{\phi_{F}(u)}{\emptyset c(u)}=\sum_{n=1}^{\infty}\frac{c_{n}(F)-c_{n}(G)}{n!}(iu)^{n}$, we have

$\phi_{F}(u)=\exp(\sum_{n=1}^{\infty}\frac{c_{n}(F)-c_{n}(G)}{n!}(iu)^{n})\phi_{G}(u)=[1+\sum_{k=1}^{\infty}\frac{1}{k!}(\sum_{n=1}^{\infty}\frac{c_{n}(F)-c_{n}(G)}{n!}(iu)^{n})^{k}]\phi_{G}(u)$.

By reordering the terms of $(iu)^{n}$ , the ratio of the two functions is written as a series

$\phi_{F}(u)=\sum_{n=0}^{\infty}\frac{Q_{n}}{n!}(iu)^{n}\phi_{G}(u)$ ,
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with appropriate coefficients $Q_{n}$ such as

$Q_{0}=1$ , $Q_{1}=c_{1}(F)-c_{1}(G)$ , $Q_{2}=c_{2}(F)-c_{2}(G)+(c_{1}(F)-c_{1}(G))^{2}$ ,
$Q_{3}=c_{3}(F)-c_{3}(G)+3(c_{1}(F)-c_{1}(G))(c_{2}(F)-c_{2}(G))+(c_{1}(F)-c_{1}(G))^{3}$.

Then by operating inverse Fourier transforms on the characteristic functions Jarrow and
Rudd (1982) concludes that the density function $f$ is expressed with $g$ as

$f(x)= \sum_{n=0}^{\infty}\frac{Q_{n}}{n!}\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-iux}(iu)^{n}\phi_{G}(u)du=\sum_{n=0}^{\infty}\frac{(-1)^{n}Q_{n}}{n!}g^{(n)}(x)$. (6)

We call the expansion (6) the general Gram-Charlier expansion to keep the consistency in
the terminology with TYW though Jarrow and Rudd (1982) call it the general Edgeworth
expansion. The Gram-Charlier expansion (3) is a special case of (6) with $g(x)=\phi((x-$

$c_{1})/\sqrt{c_{2}})$ .
By assuming $\lim_{xarrow\infty}g^{(n)}(x)=0$ and using integration by parts, it is easy to observe

that the expectation of the positive part of a random variable is formulated as

$\int_{0}^{\infty}xf(x)dx$ $=$ $\int_{0}^{\infty}x\sum_{n=0}^{\infty}\frac{(-1)^{n}Q_{n}}{n!}g^{(n)}(x)dx$

$=$ $Q_{0} \int_{0}^{\infty}xg(x)dx+Q_{1}\int_{0}^{\infty}g(x)dx+\frac{Q_{2}}{2}g(0)+\sum_{n=3}^{\infty}\frac{(-1)^{n}Q_{n}}{n!}g^{(n-2)}(0)$.

(7)

For the application of the general Gram-Charlier expansion to a swaption valuation,
the basic idea to choose the approximating random variable is that the main factor to
affect the value of a swap is the price of zero coupon bond maturing on the final payment
date of the swap. For simplicity of notations we assume $t=0$ . For the application the
two random variables $F$ and $G$ are defined as follows. Let the approximated random
variable $F$ be the swap value at the expiry $SV(T_{0})$

$F$ $=$ $-1+ \delta K\sum_{1=\perp}^{N}P(T_{0},T_{i})+P(T_{0}, T_{N})$ .

And let the approximating random variable $G$ be the zero coupon bond price $P(T_{0}, T_{N})$

with maturity $T_{N}$ plus a $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}-A$ which is the forward value of the coupon and the
initial payment

$G$ $=$ $P(T_{0}, T_{N})-A=-1+ \delta K\sum_{i=1}^{N}P(0,T_{i})/P(0,T_{0})+P(T_{0},T_{N})$ .

The difference between $F$ and $G$ is the terms representing the coupon payments but the
expected values coincide so that $Q_{1}=0,$ $Q_{2}=c_{2}(F)-c_{2}(G),$ $Q_{3}=c_{3}(F)-c_{3}(G).$ By
truncating the higher orders than $n=3$ in (7) we have

$SOV( \mathrm{O})\approx C(A)+\frac{c_{2}(F)-c_{2}(G)}{2}P(0,T_{0})g(0)-\frac{c_{3}(F)-\mathrm{c}_{3}(G)}{6}P(0,T_{0})g’(0)$ , (8)
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where $C(x)$ is the call option price on the $T_{N}$-zero coupon bond with expiry $T_{0}$ and strike
price $x$ .

The cumulants $c_{2}(F),$ $c\mathrm{s}(F)$ and $c_{2}(G),$ $c_{3}(G)$ are easily calculated with the moments

$E^{T_{0}}[F^{m}]$ $=$ $E^{T_{0}}[(-1+ \delta K,\sum_{t=1}^{N}P(T_{0}, T_{i})+P(T_{0}, T_{N}))^{m}]$ ,

$E^{T_{0}}[G^{m}]$ $=$ $E^{T_{0}}[(P(T_{0},T_{N})-A)^{m}]$ ,

which can be easily obtained from bond moments.
The remaining issue is the derivation of $C(A),$ $g(\mathrm{O})$ and $g’(0)$ in (8). These num-

bers may be calculated either analytically or numerically within affine term structure
models. Indeed it is an actually easy task if the state variables are Gaussian. Even
in a $\mathrm{n}\mathrm{o}\mathrm{u}$-GaussiaIl case it may bc possiblc by fully utilizing thc features of the affinc
structure. Chen and Scott (1995) examines a zero coupon bond option price within a
two-factor Cox-Ingersoll-Ross (CIR) model and presents a method to numerically calcu-
late the distribution function based on Fourier inversion techniques. For a non-negative
random variable $Y$ with the known characteristic function $\phi_{Y}$ , the distribution function
is obtained as

$Q^{T_{0}}( \mathrm{Y}\leq x)=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{\sin ux}{u}\phi_{Y}(u)du$ (9)

by a version of the Fourier inversion formula as shown in Chen and Scott (1995) and
otbcr papcrs cited there. Recall that within an afiinc tcrrn structure model, the zero
coupon bond price $P(T_{0}, T_{N})$ is written a.s an exponentially affine fimction of $X_{T_{0}}$

$P(T_{0}, T_{N})=\exp(\alpha(T_{N}-T_{0})-\beta(T_{N}-T_{0})^{\mathrm{T}}X_{T_{0}})$

with some deterministic functions a and $\beta$ . Let $Y=\beta(T_{N}-T_{0})^{\mathrm{T}}X_{T_{0}}$ . The characteristic
function $\phi_{Y}$ of $\mathrm{Y}$ is available in some cases including the CIR model with independent
state variables. If that is the case, by applying (9) to $Y=-\ln(G+A)+\alpha(T_{N}-T_{0})$ , we
have

$Q^{T_{0}}(G\leq x)$ $=$ $1-Q^{T_{0}}(\mathrm{Y}\leq-\ln(x+A)+\alpha)$

$=$ $1+ \frac{1}{\pi}\int_{-\infty}^{\infty}\frac{\sin(u(\ln(x+A)-\alpha(T_{N}-T_{0})))}{u}\phi_{Y}(u)du$ .

Then $g(\mathrm{O})$ and $g’(\mathrm{O})$ can be calculated with a numerical integration algorithm by

$g^{(n)}(x)$ $=$ $\frac{d^{n+1}}{dx^{n+1}}Q^{T_{0}}(G\leq x)$ . (10)

Similarly the call option price $C(A)$ can be obtained numerically by noting

$C(x)=P(\mathrm{O}, T_{N})Q^{T_{N}}(P(T_{0},T_{N})>x)-xP(\mathrm{O},T_{0})Q^{T_{0}}(P(T_{0},T_{N})>x)$. (11)

At last by plugging the results by (10) and (11) into (8) we get an approximated swaption
price.
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4 Concluding Remarks

We demonstrate a method to approximate a swaption price by using a density function
of a zero coupon bond with a general Gram-Charlier expansion. A linear combination of
the state variables might be an alternative choice as the approximating random variable.
Fourier inversion techniques are also useful for the numerical integration. Our approach
may contribute to improve the approximation accuracy which is left for future research.
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