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Abstract

We consider the problem of estimating the $\mathrm{c}\mathrm{o}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}/\mathrm{c}o$ rrelation of two diffusion-type processes when
the processes are observed only at discrete times in a nonsynchronous manner. The purpose of the paper
is to overview the new methodology that the authors have been proposing since 2003, which is free of any
‘synchronization’ processing of original data. Specifically, it briefly presents major results obtained in [8], [6]
and [7], i.e., consistency and asymptotic normality of the proposed $\mathrm{c}\mathrm{o}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}/\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ estimators as the
observation interval size shrinks to zero.
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1 Introduction
Consider the case when two continuous diffusion processes are observed only at discrete times in a nonsyn-

chronous manner. We are interested in estimating the $covariance/cor\tau elation$ of the two processes accurately
in such a situation. This kind of problem arises typically in high-frequency finance. A popular approach to
this is to compute

$V_{n(m)}^{k,l}:= \sum_{*=1}^{m}(P_{t:}^{k}-P_{t_{5-1}}^{k})(P_{t_{\mathfrak{i}}}^{l}-P_{t_{1-1}}^{\iota})$ , $k,$ $l=1,2$ , (1.1)

which is often called the redized volatility estimator (case: $k=l$ ) or the realized covariance estimator (case:
$k\neq l)$ in the literature; see, e.g., [1]. Here, $P^{1}$ and $P^{2}$ are continuous semimartingales representing log-prices,
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$0=t_{0}<t_{1}<4\cdot<t_{rn}=T$ are grid points for measuring their respective changes with mesh size $\pi(m)$ $:=$

$\max_{1\leq i\leq n\iota}|t_{i}-t_{\iota-1}|$ . Similarly, the standardized covariance estimator, $R_{\pi(m)}^{kl}:=V_{\pi(m)}^{1,2}/\sqrt{V_{\pi(m)}^{11}V_{\pi(m)}^{2,2}}$ , is
called the realized correlation estimator. The popularity of the estimators come from its consistency, i.e.,
as $\pi(m)arrow \mathrm{O}$ , one has $V_{\pi(m)}^{kl}arrow\langle P^{k}, P^{l}\rangle_{T}$ in probability, not to mention from their ease of implementation.
For practical convenience it is standard to take equal spacing, i.e., $t_{i}-t_{l-1}’=T/m(=:h),$ $i\geq 1$ .

Actual transaction data are recorded at random times in a irregular manner. This fact requires one who
adopts (1.1) to ‘synchronize’ two time series a priori; choose a common interval length $h$ first, then impute
missing observations by some interpolation scheme –typically either previous-tick interpolation or linear
interpolation. Inevitably, the value of $V_{h}^{k,l}$ depends heavily on the choice of $h$ as well as an interpolation
method adopted, so does that of $R_{h}^{k,l}$ . It can be easily shown that such arbitrary choices would produce
biases in $V_{h}^{k,l}$ or $R_{h}^{k,l}$ ; see [8] and the references therein. By and large, most of the existing approaches rely
on the ‘synchronization’ of the original data.

Estimation problems of the diffusion parameter for diffusion processes based on discrete-time samples
have been well studied in statistics. See [12], [13], [14], [3], [4], and [10]; however, nonsynchronicity seems to
have been rarely treated. To tackle the nonsynchronicity estimation problem we proposed a new estimation
procedure in 2003, which is free of any ‘synchronization’ processing of original data (see [8]). We are going
to review the methodology and some theoretical results obtained since then ([6], [7]).

2 The theory
Suppose $P^{l}$ follows the one-dimensional It\^o process

$dP_{t}^{l}=\mu_{t}^{l}dt+\sigma_{t}^{l}dW_{t}^{l}$ , $P_{0}^{l}=p^{\mathrm{t}},$ $0\leq t\leq T,$ $l=1,2$ , (2.1)

with $d\langle W^{1}, W^{2}\rangle_{t}=\rho_{t}dt$ , where $\rho$ . $\in(-1,1)$ is an unknown, deterministic function, $p^{l}>0$ is a constant,
$\mu^{i}$. is a progressively measurable (possibly unknown) function, and $\sigma^{l}$. $>0$ is a deterministic and bounded
(possibly unknown) function. let $T\in(\mathrm{O}, \infty)$ be an arbitrary terminal time for observing $P^{l}\mathrm{s}$ .

Let $\Pi^{1}:=(I:)_{*=1,2},\ldots$ and $\mathrm{I}\mathrm{I}^{2}:=(J^{1}):_{=1,2},\ldots$ be random intervals reading from left to right, each of which
partitions $(0, T]$ . Let $T^{1,*}:= \inf\{t\in I^{i+1}\}$ represent the $i\mathrm{t}\mathrm{h}$ observation time of $P^{1}$ , and $T^{2,:}:= \inf\{t\in J^{\dot{\iota}+1}\}$

that of $P^{2},$ $i\geq 0$ . Let $n$ be an index representing the size of $\Pi^{1}$ and $\Pi^{2}$ . Let $r_{n}:= \max_{1\leq i<\infty}|I:|\vee$

$\max_{1\leq j<\infty}|J^{j}|$ , the largest interval size.

2.1 Consistency

First, we assume that the sampling intervals $\Pi$ satisfy the following conditions.

Condition $(\mathrm{C}\mathrm{O}):(i)(I^{1})$ and $(J^{i})$ are independent of $P^{1}$ and $P^{2}i(ii)$ As $narrow\infty,$ $r_{n}arrow 0$ in probability.

The parameter of interest is the (deterministic) covariation of $P^{1}$ and $P^{2}$ ,

$\langle P^{1},P^{2}\rangle_{T}=\int_{0}^{T}\sigma_{t}^{1}\sigma_{t}^{2}\rho_{t}dt=:\theta$ .

[8] have proposed the following estimator for $\theta$ constructed from the observations of $P^{1}$ and $P^{2}$ , and the
times they were recorded at.
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Deflnition 1 (Nonsynchronous covariance estimator):

$U_{n}:= \sum_{i,j}(P_{T^{1,\}}^{1}-P_{T^{1,:-1}}^{1})(P_{T^{2,\mathrm{j}}}^{2}-P_{T^{2,j-1}}^{2})1_{\mathrm{t}^{I}}:_{\cap J^{\mathrm{j}}\neq\emptyset\}}$
. (2.2)

That is, the product of any pair of increments $(P_{T^{1,:}}^{1}-P_{T^{1}}^{1},.-1)$ and $(P_{T^{2j}}^{2}-P_{T^{2,g-1}}^{2})$ will make a contribution
to the summation only when the respective observation intervals $I^{i}$ and $J^{j}$ are overlapping.

Theorem 2 ([8]) (Unbiasedness) If $\mu_{t}^{l}\equiv 0,$ $l=1,2$ , then $U_{n}$ is unbiased for $\theta$ .
(Consistency) Suppose $(C\mathrm{O})$ holds.
(1) If $\sup_{0\leq t\leq T}|\mu_{t}^{l}|\in L^{4},$ $l=1,2$ , then $U_{n}arrow\theta$ in $L^{2}$ as $narrow\infty$ .
(2) If $\sup 0\leq t\leq T|\mu_{\ell}^{l}|<\infty$ almost surely, $l=1,2$ , then $U_{n}arrow\theta$ in probability as $narrow\infty$ .

Suppose further that $p_{t}\equiv\rho$ and $\sigma_{t}^{l}\equiv\sigma^{\iota}$ for some constant, $p\in(-1,1)$ and $\dot{\sigma}^{\iota}>0,$ $l=1,2$ . We are now
interested in estimating the correlation $p$ .

Definition 3 (Nonsynchronous correlation estimators):

$R_{n}^{(1)}:= \frac{1}{T}\sum_{1,j}\frac{(P_{T^{1}}^{1},.-P_{T^{1,\ell-1}}^{1})(P_{T^{2,f}}^{2}-P_{T^{2,f-1}}^{2})}{\sigma^{1}\sigma^{2}}1_{\{I\cap J^{j}\neq\emptyset\}}$. ($\sigma^{l}$ are known),

$R_{n}^{(2\rangle}:= \frac{\sum_{i,j}(P_{T^{1,l}}^{1}-P_{T^{1,.-1}}^{1})(P_{T^{2,f}}^{2}-P_{T^{2,j-1}}^{2})1_{\{\neq\emptyset\}}\mathrm{J}^{\mathrm{i}}\cap JJ}{\{\sum_{i}(P_{T^{1}}^{1},.-P_{T^{1,l-1}}^{1})^{2}\}^{1/2}\{\sum_{j}(P_{T^{2,\mathrm{j}}}^{2}-P_{T^{2},j-1}^{2})^{2}\}^{1/2}}$
($\sigma^{l}$ are $unknown/knoum$).

Corollary 4 ([8]) Under $(C\mathrm{O}),$
$R_{n}^{(1)}$ and $R_{n}^{(2)}$ are consistent for $p$ as $narrow\infty$ .

Remark: In the financial econometrics literature is recently studied the estimate problem of realized volatility
subject to market microstructure; see, e.g., [15]. Because nonsynchronicity is a fundamental, salient feature
for the multivariate case, we focus on it, without taking microstructure noise into consideration. It is deferred
for future research.

2.2 Asymptotic normality

We have also obtained joint asymptotic normality of the proposed covariance estimator with the ‘raw’
realized volatilities (i.e., without synchronization) as the observation interval size shrinks to zero; [6], [7].

We basically maintain the same set-up as stated in the previous section with the following modification
regarding $U_{n}$ and $\theta$ : Let $U_{n}:=(U_{n}^{(0)},$

$U_{n}^{(1)},$ $U_{n}^{(2)})^{\mathrm{T}}$ where

$U_{n}^{(0)}:= \sum_{1,j}(P_{\mathrm{T}^{1}}^{1},. -P_{T^{1,.-1}}^{1})(P_{T^{2,j}}^{2}-P_{T^{2,\mathit{3}-1}}^{2})1_{\mathrm{t}I}:_{\cap J/\neq\emptyset\}}$
,

$U_{n}^{(1)}:= \sum_{i}(P_{T^{1}}^{1},$. $-P_{T^{1,.-1)^{2}}}^{1}$
$U_{n}^{(2)}:= \sum_{j}(P_{T^{2,j}}^{2}-P_{T^{2,j-\iota)^{2}}}^{2}$

and $\theta:=(\theta^{(0)}, \theta^{(1)}, \theta^{(2)})^{\mathrm{T}}$ , where

$\theta^{(0)}:=v^{0}((0, T])=\int_{0}^{T}\sigma_{t}^{1}\sigma_{t}^{2}p_{1}dt,$ $\theta^{(l)}:=v^{l}((0,T]):=\int_{0}^{T}(\sigma_{t}^{l})^{2}dt,$ $l=1,2$ .
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We are interested in asymptotic normality of the three-dimensional vector $U_{n}$ that consists of the nonsyn-
chronous covariance estimator and the two ‘raw realized volatility estimators (without synchronization).

Obviously, $(\mathrm{C}\mathrm{O})$ alone is insufficient to establish asymptotic normality of the estimator. We replace $(\mathrm{C}\mathrm{O})$

by a stronger set of conditions $(\mathrm{C}1)-(\mathrm{C}4)$ as follows.

Condition (C1): $(I^{i})$ and $(J^{i})$ are independent of $P^{1}$ and $P^{2}i$

We define (signed) measures by, for each $I\in \mathcal{B}_{[0,T]}$ , where $B_{[0,T]}$ is the Borel a-field on $[0, T]$ ,

$v(I):=v^{0}(I):= \int_{I}\sigma_{t}^{1}\sigma_{t}^{2}p_{t}dt;v^{l}(I):=\int_{I}(\sigma_{t}^{l})^{2}dt,$ $\mathit{1}=1,2$ .

Now, let $\mathrm{V}_{n}$ be a $(3\cross 3)- mat\dot{n}x$ whose elements are

$\mathrm{V}_{n}^{(0,0)}:=b_{n}^{-1}\{\sum_{i,j}v^{1}(I^{i})v^{2}(J^{j})1_{\{I^{i}\cap J^{j}\neq\emptyset\}}+\sum_{i}v(I^{i})^{2}+\sum_{j}v(J^{j})^{2}-\sum_{i,j}v(I^{i}\cap J^{j})^{2}\}$ ,

$\mathrm{V}_{n}^{(1,1)}:=b_{n}^{-1}\cdot 2\sum_{1}v^{1}(I^{i})^{2}$ $\mathrm{V}_{n}^{(2,2)}:=b_{n}^{-1}\cdot 2\sum_{j}v^{2}(J^{j})^{2}$

$\mathrm{V}_{n}^{(1,0)}:=\mathrm{V}_{n}^{(0,1)}:=b_{n}^{-1}\cdot 2\sum_{:}v^{1}(\Gamma)v(I^{i})$
,

$\mathrm{V}_{n}^{(2,0)}:=\mathrm{V}_{n}^{(\mathrm{t}1,2)}:=b_{n}^{-1}\cdot 2\sum_{j}v^{2}(J^{j})v(J^{j})$
,

$\mathrm{V}_{n}^{(2,1)}:=\mathrm{V}_{n}^{(1,2)}:=b_{n}^{-1}\cdot 2\sum_{1,j}v(I^{i}\cap J^{j})^{2}$ (2.3)

Condition (C2): There exist a sequence of positive numbers $(b_{n})$ and some non-random, nontrivial, sym-
$met\mathrm{r}ic_{f}$ positive semi-definite, $(3\cross 3)$-matrix $\mathbb{C}$ such that, as $narrow\infty,$ $b_{n}arrow 0$ and

$\mathrm{V}_{n}arrow P$ C. (2.4)

The condition (C2) postulates the (asymptotic) connection between the observation intervals $\Pi$ and the
variance-covariance structure of the given processes, $(v^{1} (.), v^{2}(\cdot),$ $v(\cdot))$ . When $\mu^{l}\equiv 0$ , (C2) is equivalent to
the condition that $b_{n}^{-1}var^{\mathrm{n}}[U_{n}]arrow CP$ as $narrow\infty$ .

Condition (C3): There exists some $\alpha\in(0,1/4)$ such that

$r_{n}=o_{P}(b^{\frac{3}{n^{4}}+\alpha})$ .

That is, we allow the random mesh size $\mathrm{r}_{n}$ of $\Pi$ to tend to zero slowly relative to the (deterministic) $b_{n}$ ,
but not too slowly.

For a continuous stochastic process $X$ , we define, for each $\omega\in\Omega$ and $\Delta>0$ , the modu$lus$ of continuity on
$[0, T]$ , by

6(X (w); $\Delta$ ) $:= \sup\{|X_{t}(\omega)-X_{s}(\omega)|;|t-s|\leq\Delta,0\leq s, t\leq T\}$ .

The following is a condition postulating that the (random) drifts of the underlying processes are sufficiently
smooth so that their contribution to $U_{n}$ in (2.2) would be asymptotically negligible (and that asymptotic
normality for the zero drift case would be generalized to the non-zero drift case).
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Condition (C4): For $l=1,2,$ $\mu^{l}$ is continuous and adapted, such that

$\delta(\mu^{l} ; r_{n})=O_{P}(^{1}r_{n}^{f}b_{n}^{-(\frac{1}{4}+\alpha)})$

for a given in $(C\mathit{3})$ .

For instance, an obvious sufficient condition for (C4) is that $t-\mu_{t}^{l}(\omega)$ is Lipschitz continuous.

Theorem 5 ([6], [7]) Under the Conditions $(Cl)-(C\mathit{4})$ , as $narrow\infty$ ,

$b_{n}^{-1/2}(U_{n}-\theta)arrow N(0, \mathbb{C})c$ . (2.5)

2.3 Refinement

[7] proposed how to upgrade the condition (C2) so as to make the central limit theory more applicable in
practice. Let us define

$H_{n}^{1}(t):= \sum_{1:T^{1,1}\leq t}|I^{1}|^{2},$ $H_{n}^{2}(t):= \sum_{j:T^{2,j}\leq\iota}|J^{j}|^{2}$
,

$H_{n}^{1\cap 2}(t):= \sum_{i:T^{1,\mathrm{t}}\leq tj:}\sum_{T^{2,\mathrm{j}}\leq t}|I^{i}\cap J^{j}|^{2},$ $H_{n}^{1*2}(t):= \sum_{i:T^{1,l}\leq tj:}\sum_{T^{2,g}\leq t}|I^{i}||J^{j}|1_{\{I\cap J^{\mathrm{j}}\neq 0\}}.$
.

The four functions describe the ‘distributions’ over $[0, T]$ of the sampling times for the bivariate process
$(P^{1}, P^{2})$ . The functions are piecewise constant, nondecreasing, right-continuous functions starting from $0$

at $t=0(\forall n)$ ; their ‘jumps” occur at (subsets of) the sampling times $(T^{1,i},T^{2,j}, i\geq 1,j\geq 1)$ . They are all
finite at $t=T(\forall n)$ and tend to zero as $narrow\infty$ (under $(\mathrm{C}\mathrm{O})(\mathrm{i}\mathrm{i})$ ; see [8]). Now we will replaces (C2) with the
following condition.

Condition $(\overline{C2})$ ; There exist a sequence of positive numbers $(b_{n})$ with $b_{n}arrow 0$ as $narrow\infty$ and non-random,
nondecreasing, nght-continuous functions $H^{1},$ $H^{2},$ $H^{1\cap 2}$ , and $H^{1*2}$ , respectively mapping fiom $[0, T]$ into
$[0, \infty)$ , such that $f(\mathrm{O})=0,0<f(T)<\infty$, and $b_{n}^{-1}f_{n}(t)arrow f(t)P$ as $narrow\infty$ for all continuity points of $f$ ,

for $f_{n}=H_{n}^{1},H_{n}^{2},$ $H_{n}^{1\cap 2},H_{n}^{1*2}$ and $f=H^{1},$ $H^{2},$ $fI^{1\cap 2},$ $H^{1*2}$ , in turn.

Notice that $(\overline{C2})$ is stated in light of the observation times alone, which would make the condition more
convenient than (C2). Evidently, $(\overline{C2})$ is more stringent than $(\mathrm{C}2)-\mathrm{t}\mathrm{h}\mathrm{e}$ former requires (local) convergence
of the four functions, regarded as stochastic processes. Its direct implication is that a stronger conclusion
than Theorem 5 can be drawn. As its expense we need additionally to impose the continuity condition on
the volatility and correlation functions as follows.

Condition (C5): $\sigma^{\iota},$ $l=1,2$ , and $p$ are continuous in $t$ .

Theorem 6 Under the Conditions $(C\mathit{1})(\overline{C2})(CS)(C\mathit{4})(C\mathit{5})$ , as $narrow\infty$ ,

$b_{n}^{-1/2}(U_{n}-\theta)arrow N(0, \mathbb{C}))c$

where the $3\cross 3$ matrix $\mathbb{C}:=(\mathbb{C}^{(l,k)})_{0\leq l,k\leq 2}$ comprises

$\mathbb{C}^{(0,0)}:=\int_{0}^{T}(\sigma_{t}^{1}\sigma_{t}^{2})^{2}dH^{1*2}(t)+\int_{0}^{T}(\sigma_{t}^{1}\sigma_{t}^{2}\rho_{t})^{2}d(H^{1}+H^{2}-H^{1\cap 2})(t),$ $\mathbb{C}^{(1,l)}:=2\int_{0}^{T}(\sigma_{\mathrm{t}}^{l})^{4}dH^{l}(t),$ $l=1,2$ ,

$\mathbb{C}^{(1,0)}:=\mathbb{C}^{(0,l)}:=2\int_{0}^{T}(\sigma_{t}^{l})^{2}(\sigma_{t}^{1}\sigma_{t}^{2}p_{t})dH^{\mathrm{t}}(t),$ $l=1,2,$ $\mathbb{C}^{(2,1)}:=\mathbb{C}^{(1,2)}:=2\int_{0}^{T}(\sigma_{t}^{1}\sigma_{\ell}^{2}pt)^{2}dH^{1\cap 2}(t)$ . (2.6)
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Therefore, in practice to invoke Theorem 6 the major task is to identify the limiting functions $H^{1},$ $H^{2}$ ,
$H^{1\cap 2}$ , and $H^{1*2}$ .

2.4 Correlation estimation

Suppose further that $p_{t}\equiv p$ and $\sigma_{t}^{l}\equiv\sigma^{\mathrm{t}}$ for some constant, $p\in(-1,1)$ and $\sigma^{l}>0,$ $l=1,2$ . We are
now interested in estimating the correlation $p$ of the two Brownian motions $W^{1}$ and $W^{2}$ . Let us recall the
correlation estimators we have proposed. $R_{n}^{(1)}:= \frac{1}{T}\sum_{i,j}\frac{\Delta P^{1}(I)\Delta P^{2}(J^{j})}{\sigma^{1}\sigma^{2}}K_{ij}$ when $\sigma^{l}$ are known, and

$R_{n}^{(2)}:=., \frac{\sum_{j}\Delta P^{1}(I^{1})\Delta P^{2}(J^{j})1_{\{I\cap J^{f}\neq\emptyset\}}}{\{\sum_{1}\Delta P^{1}(I^{1})^{2}\}^{1/2}\{\sum_{j}\Delta P^{2}(J^{j})^{2}\}^{1/2}}.\equiv\frac{U_{n}^{(0)}}{\sqrt{U_{n}^{(1)}}\sqrt{U_{n}^{(2)}}}$

when either $\sigma^{\iota}$ are unknown or known. The asymptotic distribution of $R_{n}^{(1)}$ is immediately found by stan-
dardizing $U_{n}^{(0)}$ with the (integrated) volatilities $\sigma^{1}\sqrt{T}$ and $\sigma^{2}\sqrt{T}$ . Regarding that of $R_{n}^{(2)}$ , we can simply
apply the standard delta-method (multi-dimensional). That is,

Theorem 7 ([7]) Under the Conditions $(Cl),$ $(C\mathit{2}),$ $(C\mathit{3})$ and $(C\mathit{4})$ , as $narrow\infty$ ,

$b_{n}^{-1/2}(R_{n}^{(k)}-p)arrow Nc(0,$ $c_{\rho}^{(k)}),$ $k=1,2$ ,

where

$c_{\rho}^{(1)}:= \frac{\mathbb{C}^{(0,0)}}{(\sigma^{1}\sigma^{2})^{2}T^{2}},$ $c_{\rho}^{(2)}:= \frac{1}{T^{2}}\{\mathbb{C}^{(0,0)}\frac{1}{(\sigma^{1}\sigma^{2})^{2}}+\mathbb{C}^{(1,1)}\frac{p^{2}}{4(\sigma^{1})^{4}}+\mathbb{C}^{(2,2)_{\frac{\rho^{2}}{4(\sigma^{2})^{4}}}}$

$- \mathbb{C}^{(1,0)}\frac{p}{(\sigma^{1})^{3}\sigma^{2}}-\mathbb{C}^{(2,0)}\frac{p}{\sigma^{1}(\sigma^{2})^{3}}+\mathbb{C}^{(2,1)}\frac{\rho^{2}}{2(\sigma^{1}\sigma^{2})^{2}}\}$ .

$Rem$ark: Suppose now that each diffusion process has feedback effect in its diffusion coefficient from $P^{1}$ ,
$\sigma^{l}(t)\equiv\sigma^{l}(t, P_{t}^{l})$ for a known, Borel-measurable function such that

$P[ \int_{0}^{T}|\mu^{l}(s)|ds+\int_{0}^{T}\sigma^{1}(s)^{2}ds<\infty]=1$, $l=1,2$ .

We assume that $\sigma^{\iota}(t, x)>0,$ $\forall(t, x)\in[0, T]\mathrm{x}\mathrm{E}$ , with an open subset $\mathrm{E}$ of $\mathrm{R}$ on which the process $P^{l}$. takes
its values, and that $\sigma^{l}(t,x)$ is of $C^{1,2}([0, \infty)\mathrm{x}\mathrm{E}),$ $l=1,2$ . Since $\Delta P^{l}(I^{t})\simeq\sigma^{\iota}(T^{l,i-1})\Delta W^{l}(I^{i})$ , by the
“pre-whitening” $\infty_{\sigma(\tau-)}^{\Delta P^{l}(l)}\neg_{1}\neg$ , one may cxpect to extract approximately the variation of $W^{l}$ over $I^{\mathrm{i}}$ , which leads
to an estimator of a similar form to $R^{(1)}$ . Note that, since $\sigma^{\iota}(t, x)$ are known functions, $\sigma^{\mathrm{t}}(T^{\iota,1})$ are to be
observed for every $i$ ; hence we can define as a statistic

$R_{n}^{(3)}:= \frac{1}{T}\sum_{i,j}\frac{\Delta P^{1}(I^{i})\Delta P^{2}(J^{j})}{\sigma^{1}(T^{1,i-1})\sigma^{2}(T^{2,j-1})}1_{\{I\cap J^{j}\neq\emptyset\}}.$ . (2.7)

Consistency of $R_{n}^{(3)}$ is shown, for instance, by direct application of Corollary 2.3 of [5]. However, the limiting
divtribution of this estimator has yet to be found.

3 Special cases
3.1 Perfectly synchronous sampling

Suppose synchronous and equidistant sampling, $I^{f}\equiv J^{i},$ $|I^{1}| \equiv\frac{T}{n}$ .
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Corollary 8 ([6], [7]) Under $(Cl),$ $(C\mathit{4})$ and $(C\mathit{5}),$ $U_{n}$ is asymptotically normal with mean $\theta$ and vamance

$\mathbb{C}$ $:=T[ \int_{2}0(\sigma_{t}^{1}\sigma_{t}^{2})^{2}(1+p_{t}^{2})dt2\int\int_{T,0}^{T}0(T\sigma_{t}^{1})^{2}(\sigma_{t}^{1}\sigma_{t}^{2}p_{t})dt(\sigma_{t}^{2})^{2}(\sigma_{t}^{1}\sigma_{t}^{2}p_{t})dt$

$2 \int_{2\int_{0}^{T}}\mathrm{o}(\tau\sigma_{t}^{1})^{4}dt(\sigma_{t}^{1}\sigma_{t}^{2}p_{t})^{2}dt$

2
$\int_{0}^{T}(\sigma_{t}^{2})^{4}dt]$ .

This result has been indeed known in the literature (e.g., [9], [2]); i.e., $\mathbb{C}$ is nothing more than the
asymptotic variance-covariance matrix of the realized volatilities and covariance.

Moreover, regarding the asymptotic distributions of the correlation estimators, under the assumptions
that $\sigma_{t}^{l}\equiv\sigma^{l}>0$ and $\rho_{t}\equiv\rho$ , Theorem 7 implies that:

Corollary 9 ([7]) Under the Conditions $(Cl)$ and $(C\mathit{4})$ , as $narrow\infty$ ,

$\sqrt{n}(R_{n}^{(k)}-\rho)arrow Nc(0,$ $c_{\rho}^{(k)}),$ $k=1,2$ , (3.1)

where $c_{\rho}^{(1)}:=(1+p^{2})$ and $c_{p}^{(2)}:=(1-p^{2})^{2}$ .

3.2 Nonsynchronous alternating sampling at $\mathrm{o}\mathrm{d}\mathrm{d}/\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}$ times

We now consider the following deterministic, regularly spaced sampling scheme. $P^{1}$ is sampled at ‘odd’
times, i.e., $t= \frac{2k-1}{2n}T,$ $k=1,2,$ $\ldots,$

$n$ , while $P^{2}$ is at ‘even’ times, $t= \frac{2k}{2n}T$ (Note that $\#(\Pi^{\iota})\simeq n$ ). Also, we
maintain the assumption that the two processes are observed together at $t=0$ and $T$ just for convenience,
which is not essential to the argument. Hence, $P^{1}$ and $P^{2}$ are sampled in a nonsynchronous, altemating way.
Note that the sampling scheme consists only of ‘incomplete’ pairs (except at the end points, $t=0,$ $T$) in the
sense used in the missing data literature.

Corollary 10 ([7]) Under $(Cl),$ $(C\mathit{4})$ and $(C\mathit{5}),$ $U_{n}$ is asymptotically nornal with mean $\theta$ and variance

$\mathbb{C}$$:=T$ 2 $\int_{0}^{T}(\sigma_{\ell}^{1})^{4}dt$

$\int_{0}^{T}(\sigma_{t}^{1}\sigma_{t}^{2}\rho t)^{2}dt$ 2

$\int_{0}^{T}(\sigma_{t}^{2})^{4}dt]$ .

Remark: In case the two processes are identical $(p_{t}\equiv 1)$ , the sub-matrix $(\mathbb{C}^{(k,l)})_{1\leq k,l\leq 2}$ is equivalent to the
asymptotic variance-covariance matrix of two realiz\’e volatilities $U^{(l)},$ $l=1,2$ , based on ‘sub-samples’ of
the univariate process, taken at sub-grids $\mathcal{G}^{(1)}$ (consisting of odd times), say, and another $\mathcal{G}^{(2)}$ (even times),
respectively. See [11].

Regarding the asymptotic distributions of the correlation estimators, under the assumptions that $\sigma_{\mathrm{t}}^{l}\equiv$

$\sigma^{\mathrm{t}}>0$ and $p_{t}\equiv p$ , Theorem 7 implies that

Corollary 11 ([7]) Under the Conditions $(C\mathrm{J})$ and $(C\mathit{4})$ , as $narrow\infty$ ,

$\sqrt{n}(R_{n}^{(k)}-p)arrow Nc(0,$ $c_{\rho}^{(k)}),$ $k=1,2$ ,

where $c_{\rho}^{(1)}:=2(4+3p^{2})$ and $c_{\rho}^{(2)}:=2\{(1-\rho^{2})^{2}+(3-\rho^{2})\}$ .
Remark: In both case\S , since $c_{\rho}^{(2)}\leq c_{\rho}^{(1)}$ ( $c_{\rho}^{(2)}=c_{p}^{(1)}$ if and only if $p=0$), $R_{n}^{(2)}$ is always (asymptotically)
more efficient than $R_{n}^{(1)}$ even in the case when $\sigma^{l}$ are known. Its practical implication is that, even $\dot{?}f\sigma^{\mathrm{t}}$

were known, it would probably be better to use $R_{n}^{(2)}$ . It seems reasonable; because the realized volatilities,
$U^{(1)},$

‘ and $U_{n}^{(2)}$ , are generally correlated with the covariance estimator $U_{n}^{(0)}$ , the division by $\sqrt{U_{n}^{(1)}U_{n}^{(2)}}$ can
attenuate the variation of $U_{n}^{(0)}$ .
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3.3 Poisson sampling

Consider the case of Poisson arrival time sampling with $\lambda^{1}.=np^{1}$ and $\lambda^{2}:=np^{2}$ , for $p^{1}\in(0, \infty)$ ,
$p^{2}\in(0, \infty),$ $n\in \mathrm{N}$ . Let $\Pi^{1}:=(I^{i})_{i=1,2},\ldots$ and $\Pi^{2}:=(J^{i})_{t=1,2},,.$ . be the corresponding inter-arrival intervals,

where $I^{i}:=(\tilde{T}^{1,i-1},\tilde{T}^{1,l}]’\cap(0, T]$ and $J^{i}:=(\tilde{T}^{2,i-1},\overline{T}^{2,i}]\cap(0, T]$ . Here $\overline{T}^{l,i}$ represent the ith arrival times
of the $l\mathrm{t}\mathrm{h}$ Poisson process, $l=1,2$ , with $(\tilde{T}^{1,i})$ and $(\overline{T}^{2,i})$ independent. We assume that $P^{1}$ and $P^{2}$ are
observed at $t=0$ for simplicity. Accordingly, each $I^{i}$ (resp. $J^{i}$ ) represents the i-th sampling interval of $P^{1}$

(resp. $P^{2}$ ).

Corollary 12 ([6], [7]) Under $(Cl)(C\mathit{4})(C\mathit{5}),$ $U_{n}$ is asymptotically normal with mean $\theta$ and variance $\mathbb{C}$ $:=$

$(\mathbb{C}^{(l,k)})_{0\leq l,k\leq 2}$ , where

$\mathbb{C}^{(0,0)}:=(\frac{2}{p^{1}}+\frac{2}{p^{2}})\int_{0}^{T}(\sigma_{t}^{1}\sigma_{t}^{2})^{2}dt+(\frac{2}{p^{1}}+\frac{2}{p^{2}}-\frac{2}{p^{1}+p^{2}})\int_{0}^{T}(\sigma_{t}^{1}\sigma_{t}^{2}p_{t})^{2}dt$ ,

$\mathbb{C}^{(l,l)}:=\frac{4}{p^{l}}\int_{0}^{T}(\sigma_{t}^{l})^{4}dt,$ $l=1,2$ ,

$\mathbb{C}^{(l,0)}:=\frac{4}{p^{l}}\int_{0}^{T}(\sigma_{t}^{l})^{2}(\sigma_{t}^{1}\sigma_{t}^{2}\rho_{t})dt,$ $l=1,2,$ $\mathbb{C}^{(2,1)}:=\frac{4}{p^{1}+p^{2}}\int_{0}^{T}(\sigma_{t}^{1}\sigma_{t}^{2}\rho_{t})^{2}dt$.

For the asymptotic distributions of the correlation estimators, under the assumptions that $\sigma_{t}^{l}\equiv\sigma^{\iota}>0$

and $p_{t}\equiv\rho$ , we have the following result.

Corollary 13 ([7]) Under the Conditions $(Cl)(C\mathit{4})$ , as $narrow\infty$ ,

$\sqrt{n}(R_{n}^{(k)}-p)arrow N\mathcal{L}(0,$ $c_{\rho}^{(k)})$ , $k=1,2$ ,

where
$c_{p}^{(1)}:= \frac{2}{T}\{(\frac{1}{p^{1}}+\frac{1}{p^{2}})+(\frac{1}{p^{1}}+\frac{1}{p^{2}}-\frac{1}{p^{1}+p^{2}})p^{2}\}$ .

It can be shown in all the three cases that $c_{\rho}^{(2)}\leq c_{\rho}^{(1)}$ ( $c_{\rho}^{(2)}=c_{\rho}^{(1)}$ if and only if $p=0$); therefore, even
when $\sigma^{l}$ are known, it is more desirable to use $R_{n}^{(2)}$ . It seems reasonable; because the $\mathrm{r}e$alized volatilities
$U_{n}^{(1)}$ and $U_{n}^{(2)}$ (appearing in the denominator of $R_{n}^{(1)}$ ) are generally correlated with the numerator $U_{n}^{(0)}$ , the

division by $\sqrt{U_{n}^{(1)}U_{n}^{(2)}}$ can attenuate the variation of $U_{n}^{(0)}$ .

4 Concluding remarks
We presented an estimation procedure for the $\mathrm{c}\mathrm{o}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}/\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of two diffusion-type processes when

they are observed only at discrete times in a nonsynchronous manner. Consistency and asymptotic normality
of the proposed estimators were discussed.

[5] extended [8] to a general case where underlying processes are continuous semimartingales and obser-
vation times are stopping times and showed consistency of the estimators is preserved. It is worth pursuing
asymptotic distributions under such a situation. Consideration of jumps will also be a rewarding research
project. Since the theory is at the ‘hatchling’ stage, there are lots to be done.
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