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Abstract
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1 Introduction
Arai (2005) have introduced an approximate approach to the exponential utility
indifference valuation (EUIV, for short) by using a kind of power functions.

It is very important issue in mathematical finance that thc valuation and
the pricing of contingent claims in incomplete markets. Recently, there is much
literature having studied the utility indifference valuation method, which is one
of valuation methods for thc contingent claims. We start with an incomplete
market with the maturity $T>0$ , whose asset fluctuation is described by a
semimartingale $X$ . Moreover, we consider an investor having initial capital $x_{t}$

at time $t$ , and who intends to sell a contingent claim $B$ . Let $U$ be $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ utility
function, which is an $\mathrm{R}$-valued continuous increasing concave function defined
on R. Now, we define an adapted process $C_{t}(B)$ by

$\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in \mathrm{e}}E[U(x_{t}+G_{t,T}(\theta))|F_{t}]$

$=$ $\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in\ominus}E[U(x_{t}+C_{t}(B)+G_{t,T}(\theta)-B)|F_{t}]$ , (1)

where $G_{t,T}( \theta):=\int_{t}^{T}\theta_{9}dX_{S}$ and $\Theta$ a suitable set of predictable processes, rep-

resents the set of all self-financing strategies. Then, we call $C_{t}(B)$ the utility
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indifference valuation, which is one of candidates for the asking price of the
contingent claim $B$ . In addition, the valuation $C_{t}(B)$ strongly depcnds on thc
preference of the investor who intends to sell $B$ . Thc left hand side of (1) is thc
expected utility maximization problem when $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ does not sell thc contingent
claim $B$ . On the other hand, the right hand sidc is the case where $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{c}$ sclls
$B$ for the price $C_{t}(B)$ at time $t$ and agrees to pay $B$ at the maturity $T$ . In
particular, there has been much literature on the exponcntial utility case, that
is, the case where $U$ is givcn by $U(x)=-e^{-\alpha x}$ , for $\alpha>0$ . Remark that, for
the exponential utility $\mathrm{c}a\mathrm{s}\mathrm{e}$ , we call $C_{t}(B)$ the exponential utility indifference
valuation(EUIV). See Becherer (2004), Frittelli (2000), Rouge and El Karoui
(2000), Musiela and Zariphopoulou $(2004\mathrm{a}, 2004\mathrm{b})$ , Young (2004), and so on.
In particular, Musiela and Zariphopoulou (2004a) have obtained thc EUIV con-
cretely for the following model: They considered an incomplete market with
two risky assets. One is driven by a geometric Brownian motion and another is
nontraded, whose fluctuation is given by a diffusion process. Then, for a Euro-
pcan type claim, they provided the dynamics of the EUIV. On the other hand,
in Musiela and Zariphopoulou (2004b), thcy dealt with discretc time models
and yielded a pricing algorithm for a multiperiod incomplete market model. In
addition to this, Mania and Schweizer (2005) ( $\mathrm{M}\mathrm{S}$ , for short) havc provided
the dynamics for thc case where the asset price process is given by a general
continuous semimartingale.

On the other hand, when we dcfine the EUIV, we need to assume the
following strong condition with rcspcct to the underlying contingent claim:

$E[e^{\alpha B}]<\infty$ . (2)

Indeed, MS impose thc boundcdness of $B$ . For examplc, in the case where $B$ is a
European call option and $X$ is given by a geometric Brownian motion, (2) docs
not hold, because, roughly speaking, the distribution of $B$ is near to one of $e^{Y}$ ,
where $\mathrm{Y}$ is a normal random variable. Hence, models satisfying the condition
(2) do not include some typical important ones as the above examplc. At this,
we try to reduce the condition (2) to, for a sufficient large $n\in \mathrm{N}$ ,

$E[B^{n}]<\infty$ , (3)

equivalently $E[e^{nY}]<\infty$ . Now, we recall the dePnition of (
$‘ e$ ” as follows:

$e^{x}= \lim_{narrow\infty}(1+\frac{x}{n})^{n}$ ,

then, for $\mathrm{a},\iota \mathrm{l}\mathrm{y}$ sufficient large $n$ , we can say that $(1+ \frac{x}{n})^{n}$ is near to $e^{x}$ . If we
denote, for a sufficient large number $n$ ,

$U(x)=-(1+ \frac{\alpha\prime x}{n})^{-n}$ or $-(1- \frac{\alpha x}{n})^{n}$ ,

then we can approximate the EUIV under the condition (3). Remark that this
function $U$ is not a utility function exactly, since not concave. Although, for $x<$
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$n/\alpha,$ $U$ is concave, so that we can say that $U$ is almost concave. Instead of the
exponential utility, if we adopt thc function $U$ as the underlying utility function,
thcn we may obtain an approximatc approach to the EUIV. On the other hand,
it is difficult for us to $\mathrm{t}\mathrm{r}\mathrm{c}$-at $U$ directly. Thereforc, wc try to decompose thc
value $x_{t}+C_{t}(B)+G_{t,T}(\theta)-B$ into thc $F_{t}$-measurable part $x_{t}+C_{t}(B)$ , the
gain process part $G_{t,T}(\theta)$ and the contingcnt claim part $B$ . Thus, instead of $U$ ,
we consider, for $\alpha>0$ and $n\in \mathrm{N}$ ,

$U_{\alpha,n}(x, y, z):=-(1+ \frac{\alpha x}{n})^{-n}(1-\frac{\alpha y}{n})^{n+1}(1+\frac{\alpha z}{n})^{n}$

Note that, if $n$ is sufficient large, then $U_{\alpha,n}(x, y, z)$ is very near $\mathrm{t}\mathrm{o}-(1+\frac{\alpha}{n}(x+y-z))^{-n}$

$\mathrm{o}\mathrm{r}-(1-\frac{\alpha}{n}(x+y-z))^{n}$ On the other hand, if we dcnote

$U_{\alpha,\exp}(x, y, z):=-\exp(-\alpha(x+y-z))$ ,

then the EUIV, denoted by $C_{t}^{\alpha,\exp}(B)$ , satisfies the following:

$\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in\Theta}E[U_{\alpha,\exp}(x_{t}, G_{t,T}(\theta), 0)|\mathcal{F}_{t}]$

$=$ $\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in\ominus}E[U_{\alpha,\exp}(x_{t}+C_{t}^{r\mathrm{x},\exp}(B), G_{t,T}(’\{?), B)|F_{t}]$ .

Remark that $C_{t}^{\alpha,\exp}(B)$ does not dcpend on the initial capital $x_{t}$ . Thus, by
the same way as the EUIV, we define an adapted process $C_{t}^{\alpha,n}(B)$ as a process
satisfying

$\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in\Theta}E[U_{\alpha,n}(x_{t}, G_{t,\tau}(\theta), 0)|\mathcal{F}_{t}]$

$=$ $\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in\Theta}E[U_{\alpha,n}(x_{t}+C_{t}^{\alpha,n}(B), G_{t,T}({}^{t}\downarrow J(), B)|\mathcal{F}_{t}]$ .

This process $C_{t}^{\alpha,n}(B)$ may be a strong candidate of approximations to the EUIV.
Remark that $C_{t}^{\alpha,n}(B)$ depends on $x_{t}$ . Henceforth, we fix $x_{t}=0$ .

Remark that, in the complete market casc. $C_{t}^{\alpha,n}(B)$ does not equal to thc
fair price of $B$ . However, we can say that, if $n$ is sufficient large, then $C_{t}^{\alpha,n}(B)$

is very near to the fair price.
The structure of this paper is as follows: In Section 2, we state the standing

assumptions and the exact definition of our new valuation $C_{t}^{\alpha.n}(B)$ . In particu-
lar, we need the closedness of the set of all self-financing strategies in the $\mathcal{L}^{n+1}$

.

is close related to the projection of “1” onto a suitablc space of the stochastic
integrations.

In order to make sure that our new valuation is useful as an approximate
approach to the EUIV, we investigate its $\mathrm{b}\mathrm{a}s$ic properties and the asymptotic
behavior as $n$ tends to $0$ . In Section 3, we prove that our new valuation has
same basic properties as the EUIV approximatcly. In particular, wc show that
therc exists a duality relationship between a portfolio optimization problcm
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related to our new valuation and an optimization problem among equivalent

.

$n$ tends to oo in probability. To see this, it is worth whilc to notice that the
$p$-optimal martingale measure convergcs to the minimal martingale measure as
$p$ tends to 1, which has $\mathrm{b}e\mathrm{e}\mathrm{n}$ provcd by Grandits and Rheinl\"ander (2002) $(\mathrm{G}\mathrm{R}$ ,
for short).

2 Preliminaries
In this section, we prepare mathematical preliminaries. In particular, we intro-
duce the three standing assumptions and some notations in order to formulate
the exact definition of our new valuation $C_{t}^{\alpha,n}(B)$ , namely, givc the definition
of the set of all self-financing strategies.

Consider an incompletc financial market composed of one riskless asset
whose price is “1” at all time, and $d$ risky assets dcscribed by an $\mathrm{R}^{d}$-valued
continuous semimartingale $X$ . Suppose that the maturity is $T>0$ . Let
$(\Omega, \mathcal{F}, P;\mathrm{F}=\{F_{t}\}_{t\in[0,T]})$ be a completcd filtered probability space with a right-
continuous filtration $\mathrm{F}$ such that $F_{0}$ is trivial and contains all null sets of .7‘,
and .1 $T=\mathcal{F}$. Furthermore, in this paper, we treat a suitable set of $\mathrm{R}^{d}$-valued
predictable $X$-integrable processes $\theta$ as the set of all self-Pnancing strategies,
denoted by $\Theta$ . Let $B$ be an $F_{T}$-measurablc random variablc. Throughout this
paper, we regard $B$ as a contingent claim, that is, a pay-off at the maturity $T$ .
We fix a positive real number a and a large odd number $n$ . To simplify nota-
tions, we restrict $n$ within odd numbers. For all unexplained notations, we refer
to Dcllachcrie and Meyer (1982) and $\mathrm{G}\mathrm{R}$ . Throughout this paper, $C$ denotes a
constant in $(0, \infty)$ which may vary from line to line.

Firstly, we give one of the standing assumptions relatcd to thc underlying
contingent claim $B$ .

Assumption 1 We assume that $B\geq 0$ and $B\in \mathcal{L}^{n}(P)$ .
Next, we prcpare some notations in order to introduce the other standing

assumptions. Let $P^{0}$ be a probability measure which is equivalent to $P$ , and
$p>1$ .

Definition 2 (1) Let $S\leq T$ be a stopping time. We denote by $s_{\mathcal{V}(P^{0})}$ thc
linear subspacc of $\mathcal{L}^{\infty}(P^{0})$ spanncd by the simple stochastic integrals of the
form $h^{\mathrm{t}\mathrm{r}}(X_{T_{2}}-X_{T_{1}})$ , where $S\leq T_{1}\leq T_{2}\leq T$ are stopping times such that the
stopped process $X^{T_{2}}$ is bounded, and $h$ is a bounded $\mathrm{R}^{d}$ -valued $F_{T_{1^{-}}}\mathrm{m}e$asurable
random variable. Set $\mathcal{V}(P^{0})=0\mathcal{V}(P^{0})$ .
(2) A signed martingale measure under $P^{0}$ is a signed measure $Q\ll P^{0}$ with
$E_{P^{0}}[ \frac{dQ}{dP^{0}}]=1$ and $E_{P^{0}}[ \frac{dQ}{dP^{0}}f]=0$ for all $f\in \mathcal{V}(P^{0})$ .

(3) $\mathcal{M}^{s}(P^{0})$ is the space of all signed martingale measures under $P^{0}$ , and
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$\mathcal{M}^{e}(P^{0})$ is the subset of $\mathcal{M}^{s}(P^{0})$ consisting of probability measures being cquiv-
alent to $P^{0}$ . Moreover, we set $\mathcal{M}_{p}^{x}(P^{0}):=\mathcal{M}^{x}(P^{0})\cap \mathcal{L}^{p}(P^{0})$ for $x\in\{e, s\}$ .
(4) The $p$-optimal martingale measure with respcct to $P^{0}$ is defined as the elc-
ment of $\mathcal{M}_{\mathrm{p}}^{s}(P^{0})$ which minimizes $\mathcal{L}^{p}(P^{0})$ -norm.
(5) Let $Y$ be a uniformly integrable $P^{0}$-martingalc with $Y_{0}=1$ and $Y_{T}>0$ . We
say that $Y$ satisfies the reverse H\"older incquality $\mathcal{R}_{\rho}(P^{0})$ , if there is a constant
$C$ such that for every stopping time $S\leq T$ , we have

$E_{P^{0}}[( \frac{Y_{T}}{Y_{S}})^{\mathrm{p}}|\mathcal{F}_{S}]\leq C$.

The $1+ \frac{1}{n}$-optimal martingale measure will play a vital role, so that the following

assumption is essential.

Assumption 3 We assume that thc $1+$ $\frac{1}{n}$optimal martingale measure $Q^{(n)}$

exists in $\mathcal{M}_{1+\frac{1}{\mathfrak{n}}}^{e}(P)$ , and its density process $Z^{(n)}$ satisfies the reverse H\"oldcr

inequality $\mathcal{R}_{1+\frac{1}{n}}(P)$ .
Since $X$ is a continuous semimartingale, it is special under $P$ , and its canonical
decomposition is given by $X=X_{0}+M+A$ with $M$ a local martingale, $A$ a
predictable process, and $M_{0}=A_{0}=0$ . Moreover, if $P^{0}$ is equivalent to $P$ ,
then $X$ is also a special semimartingale under $P^{0}$ . Let us denote its canonical
decomposition under $P^{0}$ as follows:

$X=X_{0}+M^{0}+A^{0}$ .

Definition 4 (1) We denote by $s_{\mathcal{K}_{p}(P^{0})}$ the closure in $\mathcal{L}^{\mathrm{p}}(P^{0})$ of $s_{\mathcal{V}(P^{0})}$ for
a stopping time $S\leq T$ . In particular, let $\mathcal{K}_{\mathrm{p}}(P^{0}):=^{0}\mathcal{K}_{p}(P^{0})$ .
(2) Let $L^{p}(M^{0})$ be the spacc of all $\mathrm{R}^{d}$-valued predictable processes $\theta$ such that

$||\theta||_{L^{\mathrm{p}}(M^{0})}:=E_{P^{0}}^{1/p}[(.[\theta^{\mathrm{t}\mathrm{r}}d[M^{0}]\theta)_{T}^{\rho/2}]<\infty$ .

(3) Let $L^{\mathrm{p}}(A^{0})$ be the space of all $\mathrm{R}^{d}$-valued predictable processes $\theta$ such that

$|| \theta||L^{\mathrm{p}}(A0):=E_{P^{0}}^{1/p}[(\int|’\theta^{\mathrm{t}\mathrm{r}}dA^{0}|)_{T}^{p}]<\infty$ .

We define
$\Theta^{n+1}(P^{0})_{i}=L^{n+1}(A^{0})\cap L^{n+1}(M^{0})$

and
$G_{t,T}( \Theta):=\{\int_{t}^{T}\theta_{\mathrm{s}}dX_{s}|\theta\in\}$ ,

for $a$ suitable set O-of $\mathrm{R}^{d}$-valued $X$-integrable predictable processes. In par-
ticular, we denote $G_{T}(\Theta):=G_{0,T}(\Theta)$ . $\mathrm{R}\mathrm{c}^{\backslash }1\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{k}$ that we can rearrange the
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definition of $\Theta^{n+1}(P^{0})$ as $^{n+1}(P^{0}):=\{\theta|G(\theta)\in S^{n+1}(P^{0})\}$ . By Theorem
4.1 of Grandits and Krawczyk (1998), $G_{T}(^{n+1}(P))$ is $\mathcal{L}^{n+1}(P)$-closed under
Assumption 3. By Lemma 2.1 of $\mathrm{G}\mathrm{R}$ , we have $G_{t,T}(\Theta^{n+1}(P))=^{t}\mathcal{K}_{n+1}(P)$ .

Moreover, since $n$ is odd, Propositions 4.2 and 4.4 of GR imply, by passing
to a version if necessary,

$Z_{t,T}^{(n)}:=Z_{T}^{(n)}/Z_{t}^{(n)}=C_{t}^{(n)}(1+ \frac{{}^{t}f_{T}^{(n)}}{n})^{n}$ ,

where
$Z_{t}^{(n)}:=E[ \frac{dQ^{(n)}}{dP}|\mathcal{F}_{t}]$ ,

$C_{t}^{(n)}$ is an $F_{t}$-measurable positive random variable, and ${}^{t}f_{T}^{(n)}\in t\mathcal{K}_{n+1}(P)$ . In
particular, $-^{t}f_{T}^{(n)}/n$ is the projection of “1” onto $t\mathcal{K}_{n+1}(P)$ in $\mathcal{L}^{n+1}(P)$ .

Thirdly, we define a probability measure $P^{n,B}$ as

$\frac{dP^{n,B}}{dP}:=C^{n,B}(1+\frac{\alpha}{n}B)^{n}$ ,

where $C^{n,B}\in \mathrm{R}_{+}$ . Furthermore, we denote

$Z_{t,T}^{n,B}:= \frac{Z_{T}^{n,B}}{Z_{t}^{n,B}}=C_{t}^{n,B}(1+\frac{\alpha}{n}B)^{n}$ and $Z_{t}^{n,B}:=E[ \frac{dP^{n,B}}{dP}|F_{t}]$ ,

where $C_{t}^{n,B}$ is an $F_{t}$-measurable positive random variable. Remark that $X$ is
also a semimartingale under $P^{n,B}$ .

Assumption 5 We assume that the $1+\underline{1}$ -optimal martingale measure $Q^{(n),B}$

with respect to $P^{n,B}$ exists in $\lambda 4_{1+\frac{1}{n}}^{e}(P^{n,B})n$ , and its density process $Z^{(n),B}$ with

respect to $P^{n,B}$ satisfies $\mathcal{R}_{1+\frac{1}{n}}(P^{n,B})$ , where

$Z_{t}^{(n),B}:=E_{P^{\iota,B}},[ \frac{dQ^{(n),B}}{dP^{n,B}}|F_{t}]$ .

We have

$Z_{t,T}^{(n),B}:=Z_{T}^{(n),B}/Z_{t}^{(n),B}=C_{t}^{(n),B}(1+ \frac{{}^{t}f_{T}^{(n),B}}{n})^{n}$ ,

where $C_{t}^{(n),B}$ is an $F_{t}$-measurable positive random variable, and ${}^{t}f_{T}^{(r.),B}$
’

$\in$

$t\mathcal{K}_{n+1}(P^{n,B})$ . In particular, $-^{t}f_{T}^{(n),B}/n$ is the projection of “1” onto $t\mathcal{K}_{n+1}(P^{n,B})$

in $\mathcal{L}^{n+1}(P^{n,B})$ .
Remark that we have $G_{t,T}(\Theta^{n+1}(P^{n,B}))=t\mathcal{K}_{n+1}(P^{n,B})$ . Thus, there ex-

ists a solution to the following minimization problem:

$\theta\in \mathrm{e}^{\max_{\mathfrak{n}+1}E}(P^{\tau\iota,B})[(1-\frac{\alpha}{n}G_{t,T}(\theta))^{n+1}(1+\frac{\alpha}{n}B)^{n}|\mathcal{F}_{t}]$ .

Hence, $\Theta^{n+1}(P^{n,B})$ should be the set of all self-financing strategies.
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3 Basic properties
We shall provide basic properties of $C_{t}^{\alpha,n}(B)$ in this section. We are interesting
whether or not $C_{t}^{\alpha.7\iota}(B)$ satisfies the same basic properties as thc EUIV. Firstly,
we prepare some notations.

For an $F_{t}$-measurable random variable $x_{t}$ , we definc

$V_{t}^{\alpha,n,B}(x_{t}):= \mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in\Theta_{B}^{(n)}}E[U_{\alpha,n}(x_{t}, G_{t,T}(\theta), B)|F_{t}]$ .

Then, we can rewrite the definition of $C_{t}^{\alpha,n}(B)$ as

$V_{t}^{\alpha,n,0}(0)=V_{t}^{\alpha,n,B}(C_{t}^{\alpha,n}(B))$ .
We have

$\frac{V_{t}^{\alpha,n,B}(0)}{V_{t}^{\alpha,r\iota,0}(0)}=\frac{V_{t}^{\alpha,n,B}(0)}{V_{t}^{\alpha.n,D}(C_{t}^{\alpha,?l}(B))}=(1+\frac{\alpha}{n}C_{t}^{\alpha,\prime\downarrow}(B))^{n}$ ,

namely,

$C_{t}^{\alpha,n}(B)= \frac{n}{\alpha}\{(\frac{V_{t}^{\alpha,n,B}(0)}{V_{t}^{\alpha,n.0}(0)})^{\frac{1}{n}}-1\}$ .

Remark that, by Proposition 4.4 of GR and Assumption 3, we have

$V_{t}^{\alpha,n,0}(0)$ $=$ $\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{p},’ E|?\in\epsilon_{0}^{(’\iota)}[U_{\alpha,\gamma\downarrow}(0, G_{t,T}(\theta), 0)|\mathcal{F}_{t}]$

$\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in\Leftrightarrow \mathfrak{n}+1}(P)E[-(1-\frac{\alpha}{n}G_{t,T}(\theta))^{n+1}|F_{t}]$

$-E[(1+ \frac{{}^{t}f_{T}^{(n)}}{n})^{n+1}|F_{t}]$ .

Remark $V_{t}^{\alpha,n,0}(0)<0$ . For any $Q\in \mathcal{M}_{1+\frac{1}{n}}^{e}(P^{n,B})$ , we denote

$Z_{t,T}^{Q}:= \frac{Z_{T}^{Q}}{Z_{t}^{Q}}$ , and

Moreover, we define

$Z_{t}^{Q}:=E[ \frac{dQ}{dP}|F_{t}]$ .

$\overline{V}_{t}^{\alpha,n,B}:=\mathrm{e}\mathrm{s}\mathrm{s}\inf_{Q\in \mathcal{M}^{\epsilon}(\perp P^{n,B})1+_{n}}E_{Q}[(Z_{t,T}^{Q})^{\frac{1}{n}}(1+\frac{\alpha}{n}B)^{-1}|\mathcal{F}_{t}]$ .

Remark that we have

$\tilde{V}_{t}^{\alpha,n,0}=\mathrm{e}\mathrm{s}\mathrm{s}\inf_{Q\in \mathcal{M}’(\perp P)1+_{n}}.E_{Q}[(Z_{t,T}^{Q})^{\frac{1}{f}}‘|\mathcal{F}_{t}]=(C_{t}^{(n)})^{\frac{1}{1}}$

’

In order to investigate basic properties, we need to show a duality relation-
ship between a portfolio optimization problem and an optimization problcm
with respect to equivalent martingale measures.
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Theorem 6 We have the following duality relationship:

$\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\theta\in_{B}^{(\mathfrak{n})}}E[-(1-\frac{\alpha}{n}G_{t,T}(\theta))^{n+1}(1+\frac{(\mathrm{J}i}{n}B)^{n}|F_{t}]$

$- \{\mathrm{e}\mathrm{s}\mathrm{s}\inf_{Q\in \mathcal{M}^{e}(\perp P^{\mathrm{n},B})1+_{n}}E_{Q}[(Z_{t,T}^{Q})^{\frac{1}{n}}(1+\frac{\alpha}{n}B)^{-1}|\mathcal{F}_{t}]\}^{-n}(4)$

Theorem 6 provides the following representation of $C_{t}^{\alpha,;\iota}(B)$ :

Corollary 7 By the result of Theorem 6, we obtain
$V_{t}^{\alpha,n,B}(0)=-(\tilde{V}_{t}^{\alpha,n,B})^{-n}$

and
$C_{t}^{\alpha,n}(B)= \frac{n}{\alpha}\{\frac{\overline{V}_{t}^{\alpha,n,0}}{\tilde{V}_{t}^{\alpha,n,B}}-1\}$ .

Next, we study basic properties of $C_{t}^{\alpha,n}(B)$ by using the above duality
relation. First of all, we introduce thc basic properties of the EUIV, which have
been introduced in $\mathrm{M}\mathrm{S}$ .

Proposition 8 (Proposition 4 of $\mathrm{M}\mathrm{S}$ ) We assume that $B$ and $B’$ are bounded
(not necessarily positive). For fixed $t\in[0, T]$ and $\alpha>0,$ $C_{t}^{\alpha,\exp}(B)$ has the fol-
lowing properties:
(1) $-||B||_{\infty}\leq C_{t}^{\alpha,\exp}(B)\leq||B||_{\infty}$ ,
(2) if $B\leq B’$ , then $C_{t}^{\alpha,\exp}(B)\leq C_{t}^{\alpha,\exp}(B’)$ ,
(3) $C_{t}^{\alpha,n}(\lambda B+(1-\lambda)B’)\leq\lambda C_{t}^{\alpha,n}(B)+(1-\lambda)C_{t}(x,n(B’)$ , for any $\lambda\in[0,1]$ ,
(4) $C_{t}^{\alpha,n}(B+x_{t})=C_{t}^{\alpha,n}(B)+x_{t}$ , for any $x_{t}\in \mathcal{L}^{\infty}(F_{t})$ .

MS called $C_{t}^{\alpha,\exp}(B)$ a convex monetary utility functional. Furthermore, they
remarked that $C_{t}^{\alpha,\exp}(-B)$ is close related to a convex monetary risk measure
(see Cheridito, Delbaen and Kupper (2004)).

In order to see that our new valuation $C_{t}^{\alpha,n}(B)$ is available as one of ap-
proximate approaches to the EUIV, we wish to prove that $C_{t}^{\alpha,n}(B)$ satisfies
Proposition 8. Henceforth, we shall illustrate that this fact holds approximately.

Proposition 9 For any $t\in[0, T]$ , we have the following:
(1) For $B\in \mathcal{L}_{+}^{\infty}(P),$ $0\leq C_{t}^{\alpha,n}(B)\leq||B||_{\infty}$ .
(2) Under Assumptions 1 and 5 for $B’,$ $B\leq B’\Rightarrow C_{t}^{\alpha,n}(B)\leq C_{t}^{\alpha,\mathit{7}l}(B’)$ .
(3) Suppose that A $\in[0,1]$ and $B,$ $B’\in \mathcal{L}_{+}^{\infty}(P)$ . For suff ci $\mathrm{e}nt$ large $n$ , there
exists a constant $C>0$ depending on $||B||_{\infty}$ and $||B$

‘
$||_{\infty}$ such that

$C_{t}^{\alpha,n}( \lambda B+(1-\lambda)B’)\leq\lambda C_{t}^{\alpha,n}(B)+(1-\lambda)C_{t}^{\alpha,n}(B’)+C\frac{a}{n}$ .

(4) Let $x_{t}$ be a bounded $F_{t}$ -measurable random va$7\dot{?}able$ , For any sufficient large
$n$ , there exists a constant $C>0$ depending on $||x_{t}||_{\infty}$ and $||B||_{\infty}$ such that

$|C_{t}^{\alpha,n}(B+x_{t})-C_{t}^{\alpha,n}(B)-x_{t}| \leq C\frac{\alpha}{n}$ . (5)
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4 Asymptotic behavior
In this section, we trcat asymptotic behavior of $C_{t}^{\alpha,n}(B)$ as $n$ tends to $\infty$ . Our
aim of studying such asymptotic behavior is to make sure that $C_{t}^{\alpha.n}(B)$ is justi-
fied as an approximate approach to the EUIV. We prove that $C_{t}^{\alpha,n}(B)$ convergcs
to the EUIV in probability. Remark that GR have proved th\‘at the p-optimal
martingale measure converges to the minimal entropy martingale measure as $p$

tends to 1. In the proof of the following theorem, this asymptotic behavior will
be $\mathrm{e}\mathrm{s}\mathrm{s}e$ntial.

Theorem 10 Suppose that $B\in \mathcal{L}_{+}^{\infty}(P)$ . For fixed $t\in[0, T],$ $C_{t}^{\alpha,n}(B)$ converges
to $C_{t}^{\alpha,\exp}(B)$ in probability as $narrow\infty$ .
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