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ABSTRACT. We exemplify some problems of equilibrium refinement in cheap-talk

games and show a new refinement criterion of ‘suggestive domination,’ which is intro-

duced by Shirataki and Ishikawa (2005). Following this criterion, we define suggestive

dominant $eq^{l}uilib\dot{n}urn$ and explain how this equilibrium concept solves the problems of

the refinement in cheap-talk games.

1. INTRODUCTION

Our purpose of this article is to explain the refinement problerns and a new refinement concept,

the suggestive dominant equilibrium in cheap-talk games, which is introduced by Shirataki and

Ishikawa (2005).
Cheap-talk games are a kind of signaling games with costless communication. Therefore the

Sender’s action does not depend on the players’ payoffs. As known broadly, the cheap-talk games

have many equilibria and the standard refinement concepts do not work on the game. Therefore

the refinement concepts for the cheap-talk games are developed. Among others, Blume and Sobel

(1995) define the trumping relation in order to compare with all possible agreements between

the Sender and Receiver.
While their concepts of the trumping relation can be defined for the several equilibrium

concepts, the credibility of the agreements is not necessarily guaranteed. In this article, we
point out this problern and define a new equilibrium, the suggestive dominant equilibrium, in

order to overcome it.

The suggestive dominant equilibrium has the following favorable properties:(i) It can be de-

fined more simply and can be found more easily, (ii) the existence is guaranteed, (iii) it achieves

the Pareto optimal communication.
This article is organized as follows: In Section 2, we show the basic notions of cheap-talk games

and exemplify the infinite many equilibria and the difficulty of the refinements in cheap-talk

games. In section 3, we explain the Blume-Sobel’s trumping relations and the problems of their

concepts. To improve them, we introduce a new criterion, the suggestive domination, introduced

by Shirataki and Ishikawa(2005). This domination concept guarantees the Sender’s messages
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and the stable communication. In section 4, we define the suggestive dominant equilibrium
$\mathrm{b}\mathrm{a}s$ed on the above domination concept. We show several characters of the equilibrium.

2. BASIC CHARACTERS OF CHEAP-TALK GAMES

2.1. Basic notions. We consider a cheap-talk game with two players. $\{S, R\}$ is the set of the
two players, in which $S$ and $R$ represent Sender and Receiver, respectively. Let $T$ be the finite
set of the Sender’s types and let $A$ be the finite set of actions available to the Receiver. In
this game, the Sender can privately know his own type $t\in T$ , and sends some messages to the
Receiver. We denote the set of the Sender’s messages as $M$ . The cardinality of $M$ is assumed
to be sufficiently large. The Receiver decides her action after receiving the messages sent by the
Sender.

In this game, their payoffs do not depend on the Sender’s messages, that is, his messages are
costless or cheap talks. Then player $i’ \mathrm{s}$ payoff is denoted as a mapping $u_{i}$ : $A$ $\mathrm{x}Tarrow \mathbb{R}$ for each
$i\in\{S, R\}$ . Let $\pi$ be the Receiver’s prior on the types: $\pi\in\Delta T$ with $\pi(t)>0$ for any $t\in T$ .
Then we define a cheap-talk game $\mathcal{G}$ as

$\mathcal{G}:=\langle\{S, R\}, (T, \pi), A, M, u_{S}, u_{R}\rangle$ .

The game $\mathcal{G}$ is proceeded as follows: The Sender observes his own type $t\in T$ occurred
with probability $\pi(t)$ . Then he sends the message to the Receiver according to his strategy
$\sigma$ : $Tarrow\Delta(M)$ . We denote the marginal on $m\in M$ given $t\in T$ as $\sigma(m|t)$ . After the Receiver
obtains his message, she decides her own action $a$ $\in A$ according to her strategy or : $Marrow\Delta(A)$ .
Also, we denote the marginal on $a$ $\in A$ given $m\in M$ as $\alpha(a|m)$ . Finally both two players would
get their payoffs depending on both the Sender’s type and the Receiver’s action.

Given a strategy pair $(\sigma, \alpha)$ , the payoffs of the type $t’ \mathrm{s}$ Sender and the Receiver are respectively
given as follows:

$U_{S}(\sigma, \alpha|t)$ $:=$
$\sum_{m\in M}\sum_{a\in A}\sigma(m|t)\alpha(a|m)us(a, t)$ for each $t\in T$ ; (1)

$U_{R}(\sigma, \alpha)$ $:=$
$\sum_{t\in T}\pi(t)\sum_{m\in M}\sum_{a\in A}\sigma(m|t)\alpha(a|m)u_{R}(a,t)$ . (2)

Then a strategy pair $(\sigma, \alpha)$ is called a Bayesian Nash equilibnum of a cheap-talk game $\mathcal{G}$ if the
following two conditions satisfy;

if $\sigma(m|t)>0$ , then
$m \in\arg\max_{m},\sum_{\in aA}\alpha(a|m’)u_{S}(a,t)$ ; (3)

if $\alpha(a|m)>0$ , then $a \in\arg\max_{a},$ $\sum_{t\in T}\beta(t|m, \pi, \sigma)u_{R}(a’, t)$
(4)

where
$\beta(t|m, \pi, \sigma)=\frac{\pi(t)\sigma(m|t)}{\sum_{s\in T}\pi(s)\sigma(rn|s)}$
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TABLE 1

The condition (4) requires that the posterior $\beta$ is consistent with the Bayesian rule when the
Sender sends his message $m$ following the strategy $\sigma$ .

2.2. Some difficulty of the refinement. In cheap-talk games, the standard refinement con-
cepts as the sequential equilibriurn do not work well because the payoffs of both the Sender and
Receiver are independent of the Sender’s messages, i.e., the costless messages. As pointed out in
Farre11(1993), the messages, themselves, are meaningless. If anything, the question is how the
Receiver expects the Sender’s type when receiving a message from the Serider. Nevertheless it
is possible to construct many meaningless equilibria in cIleap-talk games by considering several
kinds of the Sender’s strategy’s mapping. To understand this, we now consider the following
example:

Example 2.1. Consider $\Gamma:=\{\{S, R\},$ $(T, \pi),$ $A,$ $M,$ $u_{S},$ $u_{R}\rangle$ where $T$ consists of four types,
$t_{1},$ $t_{2},$ $t_{3},t_{4,\pi}(t)=1/4$ for each $t\in T,$ $A=\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\},$ $M=\{m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\}$ , and
the players’ payoffs are given as Table 1. The left number in each parenthesis is the Sender’s
payoff and the right one is the Receiver’s in the table.

Then we have three Bayesian Nash equilibria $E_{0}=(\sigma_{0}, \alpha_{0}),$ $E_{1}=(\sigma_{1}, \alpha_{1}),$ $E_{2}=(\sigma_{2}, \alpha_{2})$

shown as follows.’The first equilibrium $E_{0}$ is a pooling equilibrium, i.e. $\sigma_{0}(m_{2}|t)=1$ for all
$t\in T$ and $\alpha_{0}(a_{2}|rn_{2})=1$ . The second equilibrium $E_{1}$ is given as $\sigma_{1}(m_{2}|t)=1$ for $t=t_{1},$ $t_{2},$ $t_{3}$ ,
$\sigma_{1}(m_{3}|t_{4})=1$ , and $\alpha_{1}(a_{\iota}|m_{i})=1$ for $i=1,2,3,4,5$ . The third Bayesian Nash equilibrium $E_{2}$ is
given as follows:

$\sigma_{2}(m|t)=\{$ a2 $(m_{1}|t)= \sigma_{2}(m_{2}|t)=\frac{1}{2}$ if $t=t_{2}$

a2 $(m_{1}|t)=1$ if $t=t_{1},$

$t_{3}\alpha_{2}(a|m)=\{$

a2 $(m_{3}|t)=1$ if $t=t_{4}$

$\alpha_{2}(a_{2}|m)=1$ if $m=m_{2}$

$\alpha_{2}(a_{3}|m)=1$ if $m=m_{3}$

$\alpha_{2}(a_{1}|m)=1$ otherwise.

Then, for instance, we construct other Bayesian Nash equilibrium $E_{21}=(\sigma_{21}, \alpha_{2})$ by replacing
$\sigma_{2}$ of $E_{2}$ with the following $\sigma_{21}$ : For any $x\in(\mathrm{O}, 1]$ ,

$\sigma_{21}(m|t_{1})=\sigma_{21}(m|t_{3})=\{$
$\sigma(m_{1}|t_{1})=1-x$

$\sigma(m_{4}|t_{1})=x$ ,

and $\sigma_{21}(m_{3}|t_{4})=1$ .

$\sigma_{21}(m|t_{2})=\{$

$\sigma(m_{1}|t_{2})=\frac{1}{2}(1-x)$

$\sigma(m_{2}|t_{2})=\frac{1}{2}$

$\sigma(m_{4}|t_{2})=\frac{1}{2}x$ ,

188



However, $\mathrm{t}\}_{1}\mathrm{i}\mathrm{s}$ equilibrium $E_{21}$ is essentially the same one as $E_{2}$ because $E_{21}$ is the equilibrium
obtained just by replacing the probability on $m_{1}$ with the probability (1–x). Indeed $\sigma_{21}$ lead
the same expectations as $\sigma_{2}$ to the Receiver and then it is the best response for her to play the
same strategy $\alpha_{2}$ .

Therefore we need to consider such different strategies as the same one when they are es-
sentially same. Now we focus on the outcome following Park(1997). Given a pair $(\sigma, \alpha)$ , the
outcome $\mathit{0}_{(\sigma,\alpha)}$ : $Tarrow\Delta A$ is defined as follows: For each $t\in T$ ,

$o_{(\sigma,\alpha)}(a|t) \equiv o(a|t, \sigma, \alpha)=\sum_{m\in M}\sigma(m|t)\alpha(a|m)$
for each $a\in A$ .

This distribution represents the realized probability of each action $a$ no matter which messages
are sent. Look at the previous example again, and we observe that both $E_{2}$ and $E_{21}$ lead the
same outcome as follow:

$o(a|t, \sigma_{2}, \alpha_{2})$ $=$ $\{$

$o(a_{1}|t_{1}, \sigma_{2}, \alpha_{2})=o(a_{1}|t_{3}, \sigma_{2}, \alpha_{2})=1$

$o(a_{1}|t_{2}, \sigma_{2}, \alpha_{2})=o(a_{2}|t_{2}, \sigma_{2}, \alpha_{2})=\frac{1}{2}$

$o(a_{3}|t_{4}, \sigma_{2}, \alpha_{2})=1$

$=$ $o(a|t, \sigma_{21}, \alpha_{2})$

Park(1997) defined the reduce-form equilibrium and refined the equilibrium led to the same
outcomes. However, even when we focus on the difference of the outcomes, we need refine
the outcomes in cheap-talk games. In the following, we regard the equilibria leading the same
outcome as the same equilibrium and discuss the refinernent among the different outcomes.

3. NEw CRITERIA OF EQUILIBRIUM REFINEMENT

There are many refinement concepts in cheap-talk games (E.g. see Farre11(1993)). Blume and
Sobel (1995) especially give the comprehensive concept to compare with two different equilibria,
called the trumping relations. Nevertheless their equilibrium concept based on the relations
seems to have some problems. Therefore we define another refinement concept, the suggestive
dornination, and reconsider the refinement in cheap-talk games.

3.1. Blume-Sobel’s trumping relations. Blume and Sobel (1995) consider a situation that
the Receiver revises her prior $\pi$ on types after receiving a message from the Sender. The game
given $p$ is the game where the Receiver places probability $p(t)$ on each type $t\in T$ . Then $(\sigma, \alpha)$ is
called an equilibrium given $p$ if (3) and (4) hold for $\pi(\cdot)\equiv p(\cdot)$ . Then, the $a_{\mathit{9}}reement$ is defined
as a triple of the form $A=(\sigma, \alpha,p)$ , where $p$ is a probability distribution $\mathrm{o}\mathrm{v}e\mathrm{r}$ types and $(\sigma, \alpha)$

is a perfect Bayesian equilibrium for the game given $p$ .
Their idea of the refinements means to consider the deviation from the original agreement to

another agreement. This idea is based on the stable set in cooperative games. Now we show
Blume-Sobel’s communication proof trumping relation ( $\mathrm{C}\mathrm{P}$-trumping relation).
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Definition 3.1. $(\sigma, \alpha,p)$ is $\mathrm{C}\mathrm{P}$-trumped by $(\sigma‘, \alpha’p’))$ at $m^{*}$ if and only if there exists a message
$m^{*}$ such that

(i) there exists $t’$ such that $p(t’)\sigma(m^{*}|t’)>0$ , and for all $t\in T,$ $p’(t)=\beta(t|m^{*},p, \sigma)$

(ii) for all $t\in T$ with $\sigma(m^{*}|t)>0,$ $U_{S}(\sigma, \alpha|t)<U_{S}(\sigma’, \alpha’|t)$ .

Condition (i) requires that the new prior $p’$ is consistent with the revision of $p$ based on the
Bayesian rule given $\sigma(m^{*})$ . Condition (ii) guarantees that the new agreement leads the higher
expected payoff than the original agreement to the Sender when the message $m^{*}$ is sent with
positive probabilities. When $m^{*}$ is sent under $\sigma$ ‘, it implies tfiat the Sender has the incentive to
deviate from the original agreement by changing the Receiver’s strategies from $\alpha$ to a‘. Note
that all the agreements are Bayesian Nash equilibrium and then $\alpha’$ is the best response for the
Receiver when the Sender plays on $\sigma$‘. In the previous example, the $e$quilibrium $E_{2}$ is CP-
trumped at $m_{1}$ by following agreement $A”=(\sigma$”, $\alpha$”, $p$

”
$)$ :

$\sigma$
” $(m|t)=\{$

$\sigma$
” $(m_{4}|t_{1})=1$

$\sigma$
” $(m_{4}|t_{2})=\sigma$

”
$(m_{5}|t_{2})= \frac{1}{2}$ $\alpha$

”$(a|m)=$ $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{i}\mathrm{f}m=m_{5}$

,
$\sigma$

” $(m_{5}|t_{3})=1$ ,

$p$
”

$(t)=(p” (t_{1}),p" (t_{2}),p" (t_{3}),p" (t_{4}))=( \frac{2}{5}, \frac{1}{5}, \frac{2}{5},0)$ .
3.2. Problems of $\mathrm{C}\mathrm{P}$-trumping relation and suggestive domination. While the CP-
trumping relation enables to refine the equilibria in cheap-talk games, we have a doubt that
the Receiver believes the message credible. Indeed, Condition (ii) doesn’t restrict on $U_{S}(|t)$ if
type $t$ doesn’t send the message $m^{*}$ i.e., $\sigma(m^{*}|t)=0$ . Consider, for example, that the Receiver
conceives the belief $p”=\beta(m_{1}, \pi, \sigma_{2})$ when she merely get the message $m_{1}$ . In addition, when
she knows the Sender agrees to the new agreement $A$”, she can reconsider the belief: “Is it
impossible that the Sender is type $t_{4}?$” This fact has been pointed out by a referee of Blume-
Sobel’s paper. The referee has suggested appending the following condition to the definition of
the $\mathrm{C}\mathrm{P}$-trumping relation:

(iii) For all $t\in T$ with $\sigma(m^{*}|t)=0$ ,

$U_{S}( \sigma, \alpha|t)\geq\max_{\hat{m}\in M}\sum_{a\in A}\alpha’(a|\hat{m})u_{S}(a, t)$ (5)

Blume and Sobel call the trumping relation satisfying (i), (ii), and (iii) the $R$-trumping relation.
In the contrary to the condition (ii), (iii) requires that the type which doesn’t send the message

$m^{*}$ does not deviate from $A$ . In the previous example of the game $\Gamma$ , if the Sender of type $t_{4}$

preferred the action $a_{4}$ or $a_{5}$ to $a_{3}$ , the Receiver possibly thinks that the Sender at $t_{4}$ sent the
message $m_{1}$ in order to let the Receiver take the action $a_{4}$ or $a_{5}$ . In that case, the Receiver
might revise her belief from $p$

” and we can no longer describ$e$ the situation by game with $p$
”

As stated before, Condition (ii) requires that all the types who deviate from the trumped
agreement can get higher or equal payoff in the new trumping agreement. Furthermore, Condi-
tion (iii) guarantees that the types who don’t deviate can not get higher payoff. These conditions
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can be taken for “ credibility” in the sense that they don’t have any incentive to tell a lie on $\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$

types. This concept often has been referred as incentive compatibility when discussing the com-
munication among players. Therefore the $\mathrm{R}$-trumping relation is the criterion that guarantees
the credibility about $p’$ for the $\mathrm{C}\mathrm{P}$-trumping relation. However we still think that the condition
(iii) does not sufficiently guarantee the credibility.

Consider the agreement $A$” $in$Example refflX. The Receiver believes that the Sender’s type
cannot be $t_{4}$ according the condition (iii). As a result, the Receiver just obtain the information
that the Sender’s type is $t_{1},$ $t_{2}$ , or $t_{3}$ and then there can be innumerable distributions of the
belief. To avoid this ambiguity, we present a new criterion, suggestive domination, in order to
require the credibility of the distribution of $p’$ .

As the first step, we revise (ii) and (iii) as follows:
$(\mathrm{i}\mathrm{i})$

’ For all $t\in T$ with $\sigma(m^{*}|t)\geq 0,$ $U_{S}(\sigma, \alpha|t)<U_{S}(\sigma’, \alpha’|t)$ , and the inequality is strictly
held for at least one type;

$(\mathrm{i}\mathrm{i}\mathrm{i})$

’ For all $t\in T$ with $\sigma(m^{*}|t)<1,$
$U_{S}( \sigma, \alpha|t)\geq\max_{\hat{m}\in M}\sum_{a\in A}\alpha’(a|\hat{m})us(a, t)$

.

We require the strict inequality not for the all types but for at least one type in $(\mathrm{i}\mathrm{i})’$ . On
the other hand, we impose the same condition as (5) on all the mixed strategies as well as the
zero-probability strategy in the messages $m$“. That is, $\mathrm{t}\mathrm{I}_{1}\mathrm{e}$ types who deviate with some positive
probabilities of mixed actions get the equal payoff between two agreements with satisfying both

$(\mathrm{i}\mathrm{i})$
’ and $(\mathrm{i}\mathrm{i}\mathrm{i})’$ .
In $\Gamma$ of Example 2.1, the Receiver’s belief $p^{)}$

’ in $A$” is based on the Sender’s action that the
Sender at $t_{2}$ would deviate with the probability 1/2. But the Sender at $t_{2}$ gets his expected
payoff 1 by either $m_{1}$ or $m_{2}$ in $E_{2}$ , and can get 2 in $A$”. Then he could always get more by
sending $m_{1}$ and deviating from $E_{2}$ to $A$”.

However this deviation seems to be insufficient. Consider the equilibrium $E_{21}$ in the game $\Gamma$

again. As is discussed before, $E_{21}$ is essentially equivalent to $E_{2}$ . Nevertheless, Conditions $(\mathrm{i}\mathrm{i})$

’

and $(\mathrm{i}\mathrm{i}\mathrm{i})$

’ are independently required for the same outcomes $E_{2}$ and $E_{21}$ . To avoid this problem,
we redefine the suggestive domination for the set of messages used with positive probabilities.

Now we denote the set of messages used with a positive probability on a pair $(\sigma,p)$ as
$M( \sigma,p):=\{m\in M|\sum_{t\in T}p(t)\sigma(m|t)>0\}$ . Then we formally define the following concept
of dominated agreements:

Definition 3.2. An agreement $A=(\sigma, \alpha,p)$ is $suggestir’ el_{\mathrm{t}/},dominate,d,$ ( $S$-dominated) by another
agreement $A’=(\sigma’, \alpha’,p’)$ in $M^{*}$ if and only if

(I) there is a nonempty set $M^{*}$ as follows:

$M^{*}:=$ { $m^{*}\in M(\sigma,p)|p’=\beta(m^{*},p,$ $\sigma)$ for all $t\in T$ };

(II) for all $t\in T$ with $\sum_{m^{*}\in M}$. $\sigma(m^{*}|t)>0$ ,

$U_{S}(\sigma, \alpha|t)\leq U_{S}(\sigma’, \alpha’|t)$ ,
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and the inequality is strictly held for at least one type;
(III) for all $t\in T$ with $\sum_{m^{\mathrm{r}}\in M^{*}}\sigma(m^{*}|t)<1$ ,

$U_{S}( \sigma, \alpha|t)\geq\max_{\hat{m}\in M}\sum_{a\in A}\alpha’(a|\hat{m})u_{S}(a, t)$
. (6)

We require (II) or (III) for the messages that the Sender sends with positive probabilities
$p’$ except $p’=1$ . In fact, it makes no difference if we revise the definition of $\mathrm{C}\mathrm{P}$-trumping or
$\mathrm{R}$-trumping in the same way as the second step.

4. SUGGESTIVE DOMINANT EQUILIBRIUM

First of all we define the equilibria based on the trumping relations by Blume and Sobel.
Their conc$e\mathrm{p}\mathrm{t}$ makes use of the idea of stable sets in cooperative garnes. The problem of their
equilibrium is due to the partial use of the stable sets. We make it clear in this section and
define our new equilibrium concept, the suggestive dominant equilibrium.

4.1. Equilibrium concepts on the trumping relations. In order to define the equilibrium
based on the trumping relations, Blume and Sobel introduce the consistent partition on the set
of all agreements.

Deflnition 4.1. $\{G, B\}$ is a consistent partition of the set of agreements relative to a trumping
relation if and only if. every agreement in $G$ is trumped only by agreements in $B$ ;. every agreement in $B$ is trumped by some agreement in $G$ .

For a consistent partition $\{G, B\}$ , we call the elements in $G$ good agreements and those in $B$

bad agreements relative to the trumping relation, respectively. Consistent partition means the
following situation. First a good agreement cannot be trumped by any other good agreement,
i.e. there is no trumping relation among good agreements. Secondly, a bad agreement must be
trumped by sorne good agreement, i.e. even if a good agreernent is trumped by a bad agreement,
there exists another good agreement which trumps the bad agreement.

For the $\mathrm{C}\mathrm{P}$-trumping relation, a unique consistent partition is guaranteed (Blume and So-
bel (1995, Proposition 1, p. 366) $)$ . Then they define the following equilibrium with the consistent
partition.

Definition 4.2. An equilibrium $(\sigma, \alpha)$ is communication-proof if and only if $(\sigma, \alpha;\pi)$ is a good
agreement relative to the $\mathrm{C}\mathrm{P}$-trumping relation.

The existence of communication-proof equilibria is also guaranteed by Proposition 2 in Blume
and Sobel [1, p. 368]. We also define the $\mathrm{R}$-proof equilibrium by substituting the R-trumping
relation for the $\mathrm{C}\mathrm{P}$-trumping relation. These definitions may induce unnatural results because of
the partial use of stable sets. Indeed, according to the definition of the consistent partition, the
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whole set of good agreements can be stable against bad agreernents. However, the agreements
of the equilibria are a subset of the good agreements. Then, when a communication-proof or
$\mathrm{R}$-proof equilibrium is trumped by a bad agreement, there are no good agreements which trurnp
the bad agreement in the set of equilibria. While the whole use of good agreements keeps the
stability in the stable set, $\mathrm{t}\mathrm{l}$)$\mathrm{e}$ partial use does not keep the stability any longer. Therefore, in
the next section, we define the “ the suggestive dominant equilibrium” without the consistent
partition.

Before proceeding to the next section, we exemplify the instability due to the partial use
of stable sets in Example 2.1. We has shown three Bayesian Nash equilibria $E_{0},$ $E_{1},$ $E_{2}$ , and
another agreement $A$”. In this game we can have one more agreement $A’=(\sigma’, \alpha’,p’)$ as follows:

$\sigma’(m|t)=$ $\alpha’(a|m)=\{$

1 for $a_{1}\in A$ at $m_{1}\in M$

1 for $a_{2}\in A$ at $m\neq m_{1}$

$0$ otherwise;

$p’(t)=(p’(t_{1}),p’(t_{2}),p’(t_{3}),p’(t_{4}))=( \frac{1}{3}, \frac{1}{3}, \frac{1}{3},0)$ .

Among these agreements, $A”$ achieves the highest expected payoff and then it is a good
agreement. Since both $A’$ and $E_{2}$ are $\mathrm{C}\mathrm{P}$ -trumped and $\mathrm{R}$-trumped by $A”$ at message $m_{1}$ , these
two are bad agreements. Moreover, since $E_{0}$ is trumped by $E_{1}$ and $E_{1}$ is not trumped by any
other agreements than $A’,$ $E_{2}$ is a good agreement. Then $E_{1}$ is both a communication-proof
and $\mathrm{R}$-proof equilibrium. It is, however, doubtful that this equilibrium is unstable because $A$”

is also a good agreement and $E_{1}$ is trumped by $A’$ . Furthermore, both the Sender at every type
and the Receiver could get higher expected payoffs in $E_{2}$ tllan those in $E_{1}$ . Nevertheless, Why
is $E_{1}$ preferred to $E_{2}$ ? We think it might be due to $\mathrm{t}\mathrm{I}\mathrm{l}\mathrm{e}$ partial use of the stable sets. In the
following we define our equilibrium concept in order to improve this problem.

4.2. Suggestive dominant equilibrium. We now define the equilibrium based on the S-
dornination as follows.

Deflnition 4.3. A Bayesian Nash equilibrium $(\sigma, \alpha)$ is a suggestive dominant equilibrium if
there is no message such that $(\sigma, \alpha, \pi)$ is $S$-dominated by any agreement.

In contrast to both the communication-proof and $\mathrm{R}$-proof equilibria, the suggestive dominant
equilibrium considers the maximal elements of all the agreements. To consider whether an
equilibrium $(\sigma, \alpha)$ is suggestive dominant, we don’t need consider all agreements, but only need
to examine agreements $(\sigma’, \alpha’,p’)$ such that $p’=\beta(m, \pi, \sigma)$ for $m\in M(\sigma, \pi)$ . Moreover, our
main theorem guarantees the existence of an $\mathrm{S}$-dominant equilibrium as follows:

Theorem 4.4 (Shirataki and Ishikawa(2005)). There enists a suggestive dominant equilibrium
in any chap-talk game.
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We here give a sketch of the proof for the theorern. Now suppose that a Bayesian Nash
equilibriurn $A:=(\sigma, \alpha, \pi)$ is $S$-dorninated by $A’=(\sigma’, \alpha’,p’)$ at $M^{*}$ . In this proof, we suppose
$M(\sigma, \pi)\cap M(\sigma’,p’)=\emptyset$. Note that this assumption does not lose the generality because many
messages achieve the same equilibrium outcome in a cheap-talk game. Then we construct an-
other agreement $A^{*}$ by using both $A$ and $A’$ . Then we consider the other pair of probability
distributions $A^{*}=(\sigma^{*}, \alpha^{*}, \pi)$ constructed as follows: For each $t\in T$ ,

$\sigma^{*}(m|t)$ $=$ $\{$

$\sigma’(m|t)\sum_{m^{*}\in M}.\sigma(7r\iota^{*}|t)$ if $rr\iota\in M(\sigma’,p’)$

$0$ if $m\in M^{*}$

$\sigma(m|t)$ otherwise;

$\alpha^{*}(m)$ $=$ $\{$

$\alpha’(m)$ if $m\in M(\sigma’,p’)$

$\alpha(m)$ otherwise.
First we prove that $A^{*}$ is a Bayesian Nash equilibrium and second that $A^{*}$ is not S-dominated

by $A$‘. If $A^{*}$ is $S$-dominated by another agreement, we repeat the construction of an agreement.
Finally we show that the repetitive construction is completed in the finite steps.

4.3. Efflciency of $S$-dominant equilibrium messages. The suggestive dominant equilib-
rium is a maximal element which is not $S$-dominated by any agreernents at any message. There-
fore the Sender follows the equilibrium agreement $e$ven when he has an additional communi-
cation. We also show below that $\mathrm{t}$ }$\iota \mathrm{e}$ suggestive domination achieves a Pareto improvement.
Therefore the agreement of the equilibrium is suggestive for the Receiver.

Let us consider again two agreements $A,$ $A’$ such that $A=(\sigma, \alpha, \pi)$ is $S$-dominated by $A’=$

$(\sigma’, \alpha’,p’)$ at $M$“. We also consider the other agreement $A^{*}$ as constructed above. We can find
that $A^{*}$ is constructed from $A’$ for the typ$e$ such that $U_{S}(\sigma, \alpha|t)\leq U_{S}(\sigma’, \alpha’|t)$ and from $A$

for the type such that $U_{S}(\sigma, \alpha|t)\leq U_{S}(\sigma’, \alpha’|t)$ Then the following proposition $\mathrm{g}\mathrm{u}\mathrm{a}\mathrm{I}^{\cdot}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{t}\mathrm{e}\mathrm{e}\mathrm{s}$ the
higher or equal expected payoff for the Receiver as follows:

Proposition 4.5. The constructed agreement $A^{*}=(\sigma^{*}, \alpha^{*}, \pi)$ guarantees that the $e\varphi e\mathrm{c}ted$

payoffs of both the players are higher or equal in comparison with $A=(\sigma, \alpha, \pi)$ .
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