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Abstract

An elementary formal system, EFS for short, is a
kind of logic program over strings, and regarded
as a set of rules to generate a language. For an
EFS $\Gamma$ , the language $L(\Gamma)$ denotes the set of all
strings generated by F. Many researchers stud-
ied the learnability of EFSs in various learning
models. In this paper, we introduce a subclass
of EFSs, denoted by $r\epsilon \mathcal{P}S$ , and study the learn-
ability of $r\epsilon \mathcal{P}S$ in the exact learning model. The
class $r\epsilon\pi$ contains the class of regular patterns,
which is extensively studied in Learning Theory.

Let $\Gamma_{*}$ be a target EFS of learning in $r\mathcal{E}\mathcal{F}S$ . In
the exact learning model, an oracle for superset
queries answers “yes” for an input EFS $\Gamma$ in $r\epsilon FS$

if $L(\Gamma)$ is a superset of $L(\Gamma_{*})$ , and outputs a string
in $L(\Gamma.)-L(\Gamma)$ , otherwise. An oracle for mem-
bership queries answers “yes” for an input string
$w$ if $w$ is included in $L(\Gamma_{*})$ , and answers “ $no^{)}’$ ,
otherwise.

We show that any EFS in $rS\mathcal{P}S$ is exactly iden-
tifiable in polynomial time using membership and
superset queries. Moreover, for other types of
queries, we show that there exists no polyno-
mial time learning algorithm for $r\mathcal{E}FS$ by using
the queries. This result indicates the hardness
of learning the class $r\mathcal{E}FS$ in the exact learning

model, in general.

1 Introduction
An elementary formal system, EFS for short, is
a kind of logic program which directly manipu-
lates strings, and is regarded as a set of rules to
generate a language. A pattern is a nonempty fi-
nite string of constant symbols and variables. In
EFSs, patterns are used as terms in a logic pro-
gram. A rule (or definite clause) in EFSs is a
clause of the form $Aarrow B_{1,)}\ldots B_{m}(m\geq 0)$ ,
where $A,$ $B_{1},$

$\cdots,$
$B_{m}$ are atoms. Learning of rules

from string data is important in machine learning
[1] and it can be applied to learning of rules from
HTML files since HTML files are considered to be
string data. Learning of EFSs has been long stud-
ied in $\mathrm{A}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{i}\mathrm{c}/\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ Learning The-
ory [4, 8, 10, 11]. The purpose of this work is to
give a new learnability of EFSs.

Consider examples of EFSs defined as follows.
Let $p$ be a unary predicate symbol, $a$ and $b$ con-
stant symbols, $x$ and $y$ variables. $p(ab)arrow$ and
$p(axb)arrow p(x)$ are examples of rules. $\Gamma_{1}=$

$\{p(ab) arrow, p(axb)arrow p(x)\}$ is an example of
EFS consisting of the above two rules. EFSs
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$\Gamma_{2}=\{p(axb)arrow, p(ayb)arrow p(y)\}$ and F3 $=$

$\{p(axb)arrow, p(aybzc)arrow p(y),p(z)\}$ are defined
similarly. The language $L(\Gamma)$ generated by an
EFS $\Gamma$ is the set of all constant strings by sub-
stituting non-empty constant symbols for vari-
ables and applying Modus Ponens to rules in
F. Let $\Sigma=\{a, b, c\}$ be a finite alphabet. In
the above examples, $L(\Gamma_{1})=\{a^{n}b^{n}|n\geq 1\}$ ,
$L(\Gamma_{2})=\{a^{n}wb^{n}|w\in\Sigma^{+}, n\geq 1\}$ , and $L(\Gamma_{3})=$

{ $aab,$ $abb,$ $acb$ , aaabbaabc, aabbbaabc, . . .}.
In this paper, we give a polynomial time learn-

ing algorithm fora subclass of EFSs in the exact
learning model. The framework of EFSs for study-
ing formal language theory was established by [3]
and the unifying framework of language learning
using EFSs was originated by [4]. A pattern is reg-
ular if each variable appears in the pattern at most
once. The target class of learning $\mathrm{r}\mathit{8}\mathcal{P}S$ in this pa-
per is defined as the set of EFSs $\Gamma$ which satisfy
the following two conditions. (1) All patterns in
the heads of all definite clauses in $\Gamma$ are regular.
(2) $\Gamma$ consists of one or two definite clauses of the
form $p(\pi)arrow$ , or exactly two definite clauses of the
forms $p(\pi’)$ -and $p(\tau)arrow p(x_{1}),$ $\cdots,p(x_{n})$ , where
$P$ is a unary predicate symbol, $x_{1},$ $\cdots$ , $x_{n}(n\geq 1)$

are all of the variables appearing in $\tau$ , and $\pi’$ con-
tains at least one variable. By the definition, the
classes of regular patterns and unions of two reg-
ular patterns are included in $r\mathit{8}\hslash \mathrm{S}$. In the above
examples, $\Gamma_{1}$ is not in $r\varpi$ since the pattern $ab$

contains no variable. $\Gamma_{2}$ and $\Gamma_{3}$ are in $r\epsilon \mathcal{P}S$.
Let $\Gamma_{*}$ be an EFS in $r\mathcal{E}\mathcal{P}S$ to be identified by a

learning algorithm, and we say that the EFS $\Gamma_{*}$ is
a target. We introduce the exact learning model
via queries due to Angluin [2]. In this model,
learning algorithms can access to oracles that an-
swer specific kinds of queries about the unknown
language $L(\Gamma_{*})$ . We mainly consider the follow-
ing two oracles in this paper. (1) Superset oracle:
The input is an EFS $\Gamma$ in $r\mathit{8}\mathcal{F}S$ . If $L(\Gamma)\supseteq L(\Gamma_{*})$ ,
then the output is “yes“. Otherwise, it returns
a counterexample $t\in L(\Gamma.)-L(\Gamma)$ . The query
is called a superset query. (2) Membership ora-
$cle$ : The input is a string $t$ in $\Sigma^{+}$ . The output
is “yes” if $t\in L(\Gamma_{*})$ , and “$no’$’ otherwise. The
query is called a membership query. A learning
algorithm $A$ collects information about $L(\Gamma_{*})$ by
using queries and outputs an EFS $\Gamma$ in $r\mathcal{E}\mathcal{F}S$ . We
say that a learning algorithm $A$ exactly identifies a
target $\Gamma_{\mathrm{r}}$ in polynomial time using a certain type
of queries if $A$ halts in polynomial time and out-
puts an EFS $\Gamma\in r\mathcal{E}FS$ such that $L(\Gamma)=L(\Gamma_{\mathrm{s}})$

using queries of the specified type.
We discuss the related works of this work. A

pattern $\pi$ is regarded as a very restricted form

of EFS $\{p(\pi)arrow\}$ in $r\mathit{8}FS$ . Angluin [1] origi-
nated the research of pattern learning under an-
other learning model of inductive inference, which
is an infinite process of learning. Angluin also
showed that patterns are exactly learnable in poly-
nomial time using restricted superset queries [2].
We showed that regular patterns are exactly learn-
able in polynomial time using membership queries
and a positive example [5]. We showed that fi-
nite unions of subsequences are exactly learnable
in polynomial time using membership and equiv-
alence queries [6]. Moreover, we showed that fi-
nite unions of tree patterns are exactly learnable in
polynomial time using restricted subset and equiv-
alence queries [7].

The paper [10] deals with a class of restricted
EFSs (called primitive EFSs), which is similar but
incomparable to $r\epsilon n$ , under the learning model
of inductive inference of positive examples without
allowing empty string to be substituted for vari-
ables. The paper [11] extended this learnability by
allowing empty string to be substituted for vari-
ables. The work [8] deals with a class of EFSs un-
der the exact learning model using equivalence and
extensions of membership queries. The work [8] is
known so far about the learnability of EFSs under
exact learning model.

2 Preliminaries

Let $S$ be a finite set. We denote by $|S|$ the number
of elements in $S$ . Let $\Sigma$ be a finite alphabet, $X$ a
countable set of vartables, and II a set of predicate
symbols. We assume that $|\Sigma|\geq 2$ and these sets
$\Sigma,$ $X$ and $\Pi$ are mutually distinct. Each predicate
symbol is associated with a positive integer called
arity. Let $w$ be a string. We denote by $|w|$ the
length of $w$ . We denote by $w[i]$ the i-th symbol in
string $w$ , and by $w[i:j]$ the substring $w[i]\cdots w\mathrm{b}]$

of $w$ . We define $w[i:j]=\epsilon$ (empty string) if $i>j$ .
For convenience, a prefix $w[1 : i]$ is abbreviated
as $w[:i]$ , and a suffix $w[i : |w|]$ as $w[i$ : $]$ , where
$1\leq i\leq|w|$ . For a nonempty set $\Delta$ , let $\Delta^{+}$ denote
the set of all nonempty strings.

A pattern is a nonempty string over $\Sigma$ $\cup X$ .
In particular, we say that a pattern $\pi$ is regudar
if each variable in $\pi$ appears at most once. An
atom is an expression of the form $p(\pi_{1}, \cdots , \pi_{n})$ ,
where $p$ is a predicate symbol with arity $n$ and
$\pi_{1},$ $\cdots,$ $\pi_{n}$ are patterns. A definite clause is a
clause of the form $Aarrow B_{1},$ $\cdots,$ $B_{m}(m\geq 0)$ ,
where $A,$ $B_{1},$

$\cdots,$
$B_{m}$ are atoms. The atom $A$ is

called the head and the part $B_{1},$
$\cdots,$

$B_{m}$ the body
of the definite clause.
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Definition 1 An elementary formal system, EFS
for short, is a finite set of definite clauses. For an
EFS $\Gamma$ , each definite clause in $\Gamma$ is called an axiom
$\mathrm{o}\mathrm{f}\Gamma$ .

A substitution $\theta$ is a homomorphism from pat-
terns to patterns such that $\theta(a)=a$ for each $a\in\Sigma$

and each variable is replaced with any patterns.
By $\pi\theta$ , we denote the image of a pattern $\pi$ by a
substitution $\theta$ . For an atom $A=p(\pi_{1}, \cdots, \pi_{n})$ and
a clause $C=Aarrow B_{1},$ $\cdots,$

$B_{m}$ , we define $A\theta=$

$p(\pi_{1}\theta, \cdots,\pi_{n}\theta)$ and $C\theta=A\thetaarrow B_{1}\theta,$
$\cdots,$

$B_{m}\theta$ .
For patterns $\pi$ and $\tau$ , we introduce binary rela-

$\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\preceq \mathrm{a}\mathrm{n}\mathrm{d}\equiv \mathrm{a}\mathrm{s}$follows: $\pi\preceq\tau$ if $\pi=r\theta$ for some
substitution $\theta$ , and $\pi\equiv\tau$ if $\pi\preceq\tau$ and $\tau\preceq\pi$ . If
$\tau\preceq\pi$ and $\tau\not\geq\pi$ , then we write $\tau\prec\pi$ .

Let $\pi$ be a pattern, $i(1\leq i\leq|\pi|)$ a positive
integer, and $\alpha$ a symbol in $\Sigma$ . We denote by $\pi_{i,\alpha}$

the string obtained from $\pi$ by replacing $\pi[i]$ with
$\alpha$ , that is, $\pi_{1,q}=\pi[:i-1]\alpha\pi[i+1:]$ .

For a pattern $\pi$ , we denote by $S_{1}(\pi)$ the set of all
strings which are obtained from $\pi$ by replacing all
variables with a string of length 1. For a nonempty
set $P$ of Patterns, we define $S_{1}(P)= \bigcup_{\pi\in P}S_{1}(\pi)$ .
Let $T,T’$ be nonempty sets of patterns. We write
$T$ ! $T’$ if for any pattern $\pi\in T$ , there is a pattern
$\pi’\in T’$ such that $\pi\preceq\pi’$ . If $T\subseteq T’$ and $\tau \mathrm{Z}T’$ ,
then we write $T$ : $T’$ .

A definite clause $C$ is provable fhom an EFS $\Gamma$ ,
denoted by $\Gamma\vdash C$ , if $C$ is obtained by finitely many
applications of substitutions and Modus Ponens as
in the way of usual logic programming. We define
the language $L(\Gamma,p)=\{w\in\Sigma^{+}|\Gamma\vdash p(w)\}$,
where $p$ is a unary predicate symbol.

Deflnition 2 We denote by $rm$ the set of EFSs
$\Gamma$ which satisfy the following conditions:

1. All patterns in the heads of all clauses in $\Gamma$

are regular.

2. $\Gamma$ consists of one or two clauses of the form
$p(\pi)arrow$ , or exactly two clauses of the forms
$p(\pi’)arrow$ and $p(\tau)arrow p(x_{1}),$ $\cdots,p(x_{n})$ , where $p$

is a unary predicate symbol, $x_{1},$ $\cdots,$ $x_{n}(n\geq$

1) are all of the variables appearing in $\tau$ , and
$\pi’$ contains at least one variable.

By the definition, the class of regular patterns
and unions of two regular patterns are included in
$r\epsilon\approx$ . We define the size of $\Gamma$ , denoted by $|\Gamma|$ , as
follows: (1). $|\Gamma|=|\pi|$ if $\Gamma=\{p(\pi)arrow\},$ (2). $|\Gamma|=$

$|\pi_{1}|+|\pi_{2}|$ if $\Gamma=\{p(\pi_{1})arrow, p(\pi_{2})arrow\},$ (3). $|\Gamma|=$

$|\pi|+|\tau|$ if $\Gamma=\{p(\pi)arrow, p(\tau)arrow p(x_{1}), \ldots,p(x_{n})\}$ .
A language $L$ is an $EFS$ language if $L=L(\Gamma,p)$

for some EFS $\Gamma$ and some unary predicate symbol

$p$ in $\Gamma$ . In particular, a language $L$ is a regular
pattern language if $L=L(\Gamma,p)$ for some EFS $\Gamma=$

$\{p(\pi)arrow\}$ , where $\pi$ is a regular pattern.
Let $\mathcal{R}$ be the set of all regular langauges. Let

$r\Omega \mathrm{i}FS$ be the set of all EFS languages by EFSs in
$r\mathcal{E}FS$ .
Example 1 Let $\Gamma=\{p(axa)arrow, p(byb)arrow p(y)\}$ .
By the definition of $r\mathcal{E}FS,$ $\Gamma$ is in $r\mathcal{E}FS$ . But, $L(\Gamma)$

is not a regular language.

Lemma 1 $rae\mathcal{P}S\not\subset$ R.

Example 2 Let $a$ be a constant symb$o1$ and $L=$

$\{a, aa, aaa\}$ . Then, it is clear that $L$ is a regular
language. But, there exists no EFS $\Gamma$ in $rSr\mathfrak{F}$ with
$L(\Gamma)=L$ .
Lemma 2 $\mathcal{R}\not\subset ra\mathcal{P}S$ .

The above lemmas show that $R$ and $r$ crs are
incomparable.

Deflnition 3 Let $\Gamma$ be an EFS in $r\mathcal{E}FS$ and $p$

a unary predicate symbol appearing in F. $\Gamma$ is
reduced if $L(\Gamma’,p)\subseteq L(\Gamma,p)$ for any $\Gamma’\subsetneq\Gamma$ .

In this paper, since we deal with the class $r\epsilon FS$ ,
we fix a unary predicate symbol, say $p$, and denote
$L(\Gamma,p)$ by $L(\Gamma)$ simply. We denote by $\Gamma=(\pi, \tau)$

(resP., $\Gamma=\{\pi\},$ $\Gamma=\{\pi,$ $\tau\}$ ) an EFS $\Gamma=\{p(\pi)arrow$

, $p(\tau)arrow p(x_{1}),$ $\cdots,p(x_{n})\}$ (resp., $\Gamma=\{p(\pi)arrow\}$ ,
$\Gamma=\{p(\pi)arrow, p(\tau)arrow-\})$ . Moreover, by $L((\pi,\tau))$

(resp., $L(\{\pi\}),$ $L(\{\pi,$ $\tau\})$ ) we denote $L(\{\mathrm{p}(\pi)arrow$

, $p(\tau)arrow p(x_{1}),$ $\cdots$ , $p(x_{n})\})$ (resp., $L(\{p(\pi)$ -} $)$ ,
$L(\{p(\pi)arrow, p(\tau)arrow\}))$ .

For $\Gamma=(\pi, \tau)$ , we define the following particular
pattern $\tau_{\pi}=\tau$ {$xj=\pi|x$ appears in $\tau$ }, where
all variables substituted to the variables in $\tau$ are
taken to be distinct, so $\tau_{\pi}$ is always regular. It is
clear that $|\pi|\leq|\tau_{\pi}|\leq|\pi||\tau|$ . $\tau_{\tau}$. is defined in a
similar way.

Let $\Gamma=(\pi, \tau)$ be an EFS in $r\mathit{8}\mathcal{P}S,$
$x_{1},$ $\cdots,x_{n}$ all

of the variables appearing in $\tau$ . $\Gamma_{[t]}$ is recursively
defined as follows: $\Gamma_{[1|}=\{\tau_{\pi}\}$ and for any positive
integer $t\geq 2,$ $\Gamma_{[t|}=\Gamma_{[t-1]}\cup\{\tau\{x_{1}:=\zeta_{1},$ $\cdots,x_{n}$ $:=$

$\zeta_{n}\}|\zeta_{1}\in\Gamma_{[t-1]}\cup\{\pi\},i=1,$ $\cdots,n\}$ . We define
$\Gamma_{\tau}=\bigcup_{t>1}\Gamma_{[t]}$ . Note that $\pi$ is not included in $\Gamma_{\tau}$ .
Thus, $L\overline{(}\Gamma_{\tau}$ ) Si $L((\pi, \tau))$ .

A primitive EFS $\Gamma$ , a PFS for short, is defined
in [11] as follows:

1. All patterns in heads of all clauses in $\Gamma$ are
regular.

2. $\Gamma$ consists of exactly two clauses of the foms
$p(\pi)$ –and $p(\tau)arrow p(x_{1}),$ $\cdots,$ $p(x_{n})$ , where
$p$ is a unary pr\’eicate symbol, and $x_{1},$ $\cdots,$ $x_{n}$

are all of the variables appearing in $\tau$ .
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An EFS in $r\mathcal{E}FS$ is different from a PFS. In case
of erasing patterns, Uemura et al. showed the fol-
lowing theorem in [11].

Theorem 1 [11] Let $\Gamma=(\pi, \tau)$ be a PFS. The
following statements are equivalent: (i) $\Gamma$ is re-
duced. (ii) $L(\pi)\cap L(\Gamma_{\tau})=\emptyset$ , where $L(\Gamma_{\tau})=$

$\bigcup_{\zeta\in\Gamma_{\tau}}L(\zeta)$ .
The theorem holds for any EFS $\Gamma=(\pi, \tau)$ in

$r\mathcal{E}\mathcal{P}S$ in case of nonerasing patterns.

Corollary 1 Let $\Gamma=(\pi, \tau)$ be an EFS in $r\epsilon \mathcal{F}S$ .
The following statements are equivalent: (i) $\Gamma$ is
reduced. (ii) $L(\pi)\cap L(\Gamma_{\tau})=\emptyset$ , where $L(\Gamma_{\tau})=$

$\bigcup_{\zeta\in\Gamma_{\tau}}L(\zeta)$ .

3 Learning model

In this paper, let $\Gamma_{*}$ be an EFS in $r\mathcal{E}FS$ to be
identified, and we say that the EFS $\Gamma_{*}$ is a target.
Non-reduced EFSs have redundant axioms. Even
if we consider only reduced EFSs, the expressive
power of EFSs is same. So we assume that target
EFSs are reduced.

We introduce the exact learning model via
queries due to Angluin [2]. In this model, learn-
ing algorithms can access to oracles that answer
specific kinds of quer$i$es about the unknown lan-
guage $L(\Gamma_{*})$ . We consider the following oracles.
(1). Superset oracle $S\mathrm{u}p_{\Gamma}.$ : The input is an EFS

$\Gamma$ in $r\epsilon \mathcal{P}S$. If $L(\Gamma)\supseteq L(\Gamma_{*})$ , then the output
is “yes”. Otherwise, it returns a counterexam-
ple $t\in L(\Gamma_{*})-L(\Gamma)$ . The query is called a
superset query. (2). Subset oracle Subr.: The
inPut is an EFS $\Gamma$ in $r\mathcal{E}FS$ . If $L(\Gamma)\subseteq L(\Gamma_{n})$ ,
then the output is “yes“. Otherwise, it returns
a counterexample $t\in L(\Gamma)-L(\Gamma_{*})$ . The query
is called a subset query. (3). Membership ora-
$cle\mathrm{M}\mathrm{e}\mathrm{m}_{\Gamma}.$ : The input is a string $t$ in $\Sigma^{+}$ . The
output is “yes” if $t\in L(\Gamma_{*})$ , and “no” other-
wise. The query is called a membership query.
(4). Equivalence oracle $E\mathrm{q}\mathrm{u}i\mathrm{v}_{\Gamma}.$ : The input is an
EFS $\Gamma$ in $r\mathit{8}\mathcal{P}S$ . The output is “yes” if $L(\Gamma)=$

$L(\Gamma_{*})$ . Otherwise, it returns a counterexample
$t\in(L(\Gamma)-L(\Gamma_{*}))\cup(L(\Gamma_{*})-L(\Gamma))$. The query
is called an equivalence query.

A learning algorithm $A$ collects information
about $L(\Gamma_{*})$ by using queries and output an EFS
$\Gamma$ in $t\epsilon\approx$ . We say that a learning algorithm $A$

$exacu_{y}$ identifies a target F. in polynomial time
using a certain type of queries if $A$ halts in polyno-
mial time with respect to F. $|$ and outputs an EFS
$\Gamma\in r\mathcal{E}FS$ such that $L(\Gamma)=L(\Gamma_{*})$ using queries of
the specified type.

Procedure LENGTHI
Given: An oracle $S\mathrm{u}p_{\Gamma}$ . for the target $\Gamma_{*};$

begin
$\ell:=1$ ;
$//x_{1}\cdots x_{\ell+1}$ is a regular pattern
while $S\mathrm{u}p_{\Gamma},(\{x_{1}\cdots x_{\ell+1}\})=$ “yes“ do

$\ell:=\ell+1$ ;
output $t$ ;

end.

Procedure LEARNPI$(\ell)$

Input: A positive integer $\ell$ with $\ell=|\pi_{*}|$ ;
Given: An oracle $S\mathrm{u}p_{\Gamma}$ . for the target $\Gamma_{*};$

begin
$//x_{1}x_{2}\cdots x_{\ell}$ is a regular pattern
$\pi:=x_{1}x_{2}\cdots x_{\ell)}$

.
for $i:=1$ to $\ell$ do begin

foreach $\alpha\in\Sigma$ do begin
$\pi’:=\pi_{i,\alpha}$ ;
if $Sup_{\Gamma}.(\{\pi’, x_{1}\cdots x_{\ell+1}\})=$ “yes“

then begin
$\pi:=\pi’$ ; break;

end;
end;

end;
output $\pi$ ;

end.

Figure 1: Procedure LENGTHI and LEARNPI

4 Learning of restricted EFSs
using Queries

Let $\Gamma$ . be a target EFS in $rS\mathcal{F}S$ . Then we con-
sider the following cases: (i). $\Gamma_{*}=\{\pi_{*}\}$ . (ii).
F. $=\{\pi_{*},\tau_{*}\}$ and the length of $\pi_{*}$ is the same as
$\tau_{*}$ , that is, $|\pi_{*}|=|\tau_{*}|$ . (iii). F. $=\{\pi.,\tau_{*}\}$ and
the length of $\pi_{*}$ is not the same as $\tau_{*}$ , that is,
$|\pi_{*}|\neq|\tau_{*}|$ . Without loss of generality, we assume
$|\pi_{*}|<|\tau_{*}|$ . $(\mathrm{i}\mathrm{v})$ . $\Gamma_{*}=(\pi_{*}, \tau_{*})$ .

When $\Gamma_{*}$ is in the cases (i), (ii) or (iii), we can
regard $\Gamma_{*}$ as a set of at most two regular patterns.
Since we use Theorem 2 for some lemmas and the-
orems, we assume $|\Sigma|\geq 5$ in this paper.

Theorem 2 [9] Suppose $|\Sigma|\geq 2k+1$ . Let $P$ be
a nonempty finite set of regular patterns, $Q$ a set
of at most $k$ regular patterns. Then the following
three statements are equivalent: (1) $P\subseteq Q,$ $(2)$

$L(P)\subseteq L(Q),$ (3) $S_{1}(P)\subseteq L(Q)$ .
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Procedure LEARNPI-TAUl $(\pi)$

Input: A regular pattern $\pi$ satisfying
Condition A and $L(\Gamma_{*})\subseteq L(\{\pi\})$ ;

Given: An oracle $Sup_{\Gamma_{*}}$ for the target $\Gamma_{*};$

begin
$i_{\pi}:=1$ ;
while ( $(i_{\pi}\leq|\pi|)$ and $(\pi[i_{\pi}]\in\Sigma)$ ) do

$i_{\pi}:=i_{\pi}+1$ ;
while $i_{\pi}\leq|\pi|$ do begin

foreach $\alpha\in\Sigma$ do begin
$i_{\tau}:=i_{\pi}$ ;
while $i_{\tau}\leq|\pi|$ do begin

foreach $\beta\in\Sigma$ do begin
$\pi’:=\pi_{l_{\pi},\alpha}$ ;
$\pi’’:=\pi:_{r},\beta$ ;
if $S\mathrm{u}p_{\Gamma}.(\{\pi’, \pi’’\})=$ “yes“ then

begin
output $\pi’,$ $\pi’’$ ; halt;

end;
end;
$i_{\tau}:=i_{\tau}+1$ ;
while ( $(i_{\tau}\leq|\pi|)$ and $(\pi[i_{\tau}]\in\Sigma)$ ) do

$i_{\tau}:=i_{\tau}+1$ ;
end;

end;
$i_{\pi}:=i_{\pi}+1$ ;
while ( $(i_{\pi}\leq|\pi|)$ and $(\pi[i_{\pi}]\in\Sigma)$ ) do

$i_{\pi}:=i_{\pi}+1,\cdot$

end;
output “no”;

end.

Figure 2: Procedure LEARNPI-TAUl

For a regular pattea $\pi$ , we define the following
three conditions.

Procedure LEARNPI-TA $U2(\pi’, \tau’)$

Input: Regular patterns $\pi’$ and $\tau’$

satisfying Condition B-2 for $\pi$ ,
where $\pi$ satisfies Condition $\mathrm{B}$ ;

Given: An oracle $S\mathrm{u}p_{\Gamma}$ . for the target $\Gamma_{*};$

begin
$\pi’’:=\pi’;i:=1$ ;
while $(i\leq|\pi’’|)$ and $(\pi’’[i]\in\Sigma)$ do

$i:=i+1$ ;
while $i\leq|\pi’’|$ do begin

foreach $\alpha\in\Sigma$ do begin
if $S\mathrm{u}p_{\Gamma}.(\{\pi_{\dot{\iota},\alpha}’’,\tau’\})=$ “yes” then

begin
$\pi’’:=\pi_{1\alpha}’’.,$ ; break;

end;
end;
$i:=i+1$ ;
while $(i\leq|\pi’’|)$ and $(\pi’’[i]\in\Sigma)$ do

$i:=i+1$ ;
end;
$7”.:=\tau’;i:=1$ ;
while $(i\leq|\tau’’|)$ and $(\tau’’[i]\in\Sigma)$ do

$i:=i+1$ ;
while $i\leq|\tau’’|$ do begin

foreach $\alpha\in\Sigma$ do begin
if $S\mathrm{u}p_{\Gamma}.(\{\pi’, \tau_{*,\alpha}’’.\})=^{l}’ yes’’$ then

begin
$\tau’’:=\tau_{\mathrm{t},\alpha}’’$ ; break;

end;
end;
$i:=i+1$ ;
while $(i\leq|\tau’’|)$ and $(\tau’’[i]\in\Sigma)$ do

$i:=i+1$ ;
end;
output $\pi’’,$ $\tau’’$ ;

end.

Condition $A$ :

A-l $\pi$ satisfies $|\pi|$ $=$ $|\pi_{*}|$ and $L(\Gamma_{*})$ $\subseteq$

$L(\{\pi, x_{1}x_{2}\cdots x_{|\pi|+1}\})$ , and
A-2 There is no regular pattern $\pi’$ such

that $|\pi’|=|\pi|,$ $\pi’\prec\pi$ and $L(\Gamma_{*})\subseteq$

$L(\{\pi’,x_{1}x_{2}\cdots x_{|\pi|+1}\})$ for $\pi$ .

Condition $B$ :

B-l $\pi$ satisfies Condition A and $L(\Gamma_{*})\subseteq$

$L(\{\pi\})$ , and
B-2 There are regular patterns $\pi’$ and $\tau’$ such

that $|\pi’|=|\tau’|=|\pi|,$ $\pi’\prec\pi,$ $\tau’\prec\pi$ and
$L(\Gamma_{*})\subseteq L(\{\pi’, \tau’\})$ for $\pi$ .

Condition $C$ :

Figure 3: Procedure LEARNPI-TAU2

C-l $\pi$ satisfies Condition A and $L(\Gamma_{\mathrm{r}})\not\subset$

$L(\{\pi\})$ , and
C-2 There is a regular pattern $\tau$ satisfying

the following conditions for $\pi$ :
C-2-1 There is a shortest string $w\in$

$L(\Gamma_{*})-L(\{\pi\})$ such that $|w|=|\tau|$

and $w\preceq\tau$ .
C-2-2 $L(\{\tau\})\subseteq L(\Gamma_{*})$ .
$\mathrm{C}-2-3$ There is no regular pattern $\tau$

‘

such that $|\tau’|=|\tau|,$ $\tau\prec\tau’$ and
$L(\{\tau’\})\subseteq L(\Gamma_{*})$ .

By using the above conditions, Corollary 1 and
Theorem 2, we can show the following theorem.
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Procedure $LENGTH2(\pi)$

Input: A regular pattern $\pi$ satisfying
Condition A and $L(\Gamma_{*})\not\leqq L(\pi)$ ;

Given: An oracle $S\mathrm{u}p_{\Gamma}$ . for the target $\Gamma_{*}$

begin
$t:=|\pi|+1$ ;
$//x_{1}\cdots x_{\ell+1}$ is a regular pattern.
while $S\mathrm{u}p_{\Gamma},$ $(\{\pi, x_{1}\cdots x_{\ell+1}\})=$ “yes” do

$\ell:=\ell+1$ ;
Let $w$ be a counterexample obtained

by the oracle $S\mathrm{u}p_{\Gamma}.$ ;
output $w$ ;

end.

Procedure LEARN-TAUl $(\pi,w)$

Input: A regular pattern $\pi$ satisfying
Condition A and $L(\Gamma_{*})$ SZ $L(\{\pi\})$ , and
a shortest string $w\in L(\Gamma_{*})-L(\{\pi\})$ ;

Given: An oracle $Me\mathrm{m}_{\Gamma}$. for the target $\Gamma_{*};$

begin
$\tau:=w$ ;
for $i:=1$ to $|w|$ do

foreach $\alpha\in\Sigma$ do
if $w[i]\neq\alpha$ then

if $M\mathrm{e}\mathrm{m}_{\Gamma_{*}}(w_{i,\alpha})=$ “yes” then
if $w_{i,\alpha}\not\in L(\pi)$ then begin

$\tau[i]:=x_{i}$ ; break;
end;

output, $\tau$ ;
end.

Figure 4: Procedure LENGTH2 and
LEARN-TAUI

Theorem 3 The algorithm LEARNLREFS of
Fig. 6 identifies any EFS $\Gamma\in r\mathcal{E}FS$ in $O(|\Gamma_{*}|^{4})$

time using $O(|\Gamma_{*}|^{2})$ membership queries and
$O(|\Gamma.|^{2})$ superset queries, where $|\Sigma|\geq 5$ .

5 Hardness Results on Learn-
ability

In this section, we show the insufficiency of
learning $t\epsilon \mathcal{F}S$ in the query learning model. By
Lemma 3, we can show Theorem 4.

Lemma 3 [2] Suppose the hypothesis space con-
tains a class of distinct sets $L_{1,)}\ldots L_{N}$ , and there
exists a set $L_{\cap}$ which is not a hypothesis, such
that for any pair of distinct indices $i$ and $j,$ $L_{\cap}=$

$L_{i}\cap L_{j}$ . Then any algorithm that exactly identifies

Procedure LEARN-TA $U2(\pi, \tau)$

Input: Regular patterns $\pi$ and $\tau$

such that $\pi$ satisfies Condition $\mathrm{C}$ ,
$\tau$ satisfies Condition C-2 for $\pi$ ,
and $L(\Gamma_{*})$ SZ $L(\{\pi, \tau\})$ ;

begin
$\tau’:=\epsilon;i:=1;j:=1$ ;
while $j\leq|\tau|-|\pi|+1$ do begin

$\pi’:=\tau \mathrm{b}$ : $j+|\pi|-1$ ];
if $\pi\equiv\pi’$ then begin

$\tau’:=\tau’\tau[i : j-1]x_{j}$ ;
$i:=j+|\pi|$ ;
$j:=j+|\pi|$ ;

end else begin
$j$ $:=j+1$ ;

end;
end;
$\tau’:=\tau’\tau \mathrm{b}:]$ ;
output $\tau’$ ;

end.

Figure 5: Procedure LEARN-TAU2

each of the hypotheses $L_{i}$ using equivalence, mem-
bership, and subset queries must at least $N-1$
queries in the worst case.

Theorem 4 Any learning algorithm that exactly
identifies all strings of length $n$ using equivalence,
membership and subset queries must make at least
$5^{n}-1$ queries in the worst case.

6 Conclusions
In this paper, we have investigated exact identifi-
cation of an EFS in $r\epsilon FS$ using queries. We have
shown that any EFS in $r\epsilon FS$ is exactly identifi-
able in $O(|\Gamma_{*}|^{4})$ time using $O(|\Gamma_{*}|^{2})$ membership
queries and $O(|\Gamma_{*}|^{2})$ superset queries, where $|\Sigma|\geq$

$5$ . Moreover, we have shown that there exists no
polynomial time learning algorithm which identi-
fies any EFS in $rSFS$ using membership, equiva-
lence and subset queries. As future works, we will
consider the learnability of $r\mathit{8}\mathcal{F}S$ in the framework
of inductive inference from positive data.
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