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1 Introduction

Many graph problems are $\mathrm{N}\mathrm{P}$-complete for general graphs. It is natural to consider that
if the graph problem is tractable for a graph class $\mathcal{F}$ , it is also tractable for a class of
graphs which are close to graphs in F. $\mathcal{F}+k\mathrm{e}$ and $\mathcal{F}- k\mathrm{e}$ graphs are classes of graphs close
to $\mathcal{F}$ . They are the classes of graphs obtained by adding or deleting $k$ edges from graphs
in $F$ . We can consider the complexity of several problems on such graph classes frorn
parametric point of view. In general, problems become difficult as $k$ increases. A problem
with parameter $k$ is called to be fixed parameter tractable if it can be solved in $f(k)|x|^{c}$

time, where $f$ is an arbitrary function and $|x|$ is the size of input.
Vertex coloring problem is a very important graph problem, which is $\mathrm{N}\mathrm{P}$-complete for

general graphs. Vertex coloring for parameterized graph classes are considered in [1]. It is
shown in [1] that, when vertex coloring of $\mathcal{F}$ graphs is solved in polynomial time, vertex
coloring of $F+k\mathrm{e}$ graphs is fixed parameter tractable if JP is closed under identification of
nonadjacent vertices, and that vertex coloring of S-ke graphs is fixed parameter tractable
if $F$ is closed under edge contraction.

In this paper, we consider vertex coloring of comparability-ke graphs. A comparability
graph is an undirected graph which becomes a transitive graph if we give appropriate
direction to each edge. As a comparability graph is a perfect graph, vertex cploring of
comparability graphs can be solved in polynomial time [3]. In addition, comparability
graphs are closed neither under identification of nonadjacent vertices nor under edge con-
traction. On $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}+k\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{s},$

$.\backslash r\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{x}$ coloring is solved in polynomial time for
$k=1$ and $\mathrm{N}\mathrm{P}$-complete for $k\geq 2[4]$ .

In this paper, we first show that vertex coloring of comparability-le graphs is solved
in polynomial time. Next, we show that vertex coloring of comparabihty-ke graphs can be
polynomially reduced to a vertex coloring problem of comparability graphs with restric-
tions that given pairs of nodes should have the same color.

2 Preliminaries

Let $G=(V, E)$ be an undirected graph. Then vertex coloring problem is defined as follows.
VERTEX COLORING
Input : A graph $G=(V, E)$ and a positive integer $t\leq|V|$ .
Question: Is $G$ t-colorable? That is, is there a function $f$ : $Varrow\{1,2, \ldots, t\}$ that satisfies
$f(u)\neq f(v)$ for all $(u, v)\in E$ .
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The chromatic number of $G$ , denoted as $\chi(G)$ , is the smallest $t$ for which $G$ is t-
colorable. The clique number of a graph $G$ , denoted as $\omega(G)$ , is the degree of the maximum
complete subgraph of $G$ .

For a graph class $F$, let $F+k\mathrm{e}$ be the class of graphs which can be obtained by adding
at most $k$ edges to an $F$ graph. Similarly, let :F-ke be the class of graphs which can be
obtained by removing at most $k$ edges from an $F$ graph. The modulator of an $F+k\mathrm{e}$ graph
$G=(V, E)$ is a set of edges $E_{k}(\subset E)\mathrm{s}.\mathrm{t}$ . $(V, E-E_{k})\in F$ and $|E_{k}|\leq k$ . The modulator
of an F-ke graph $G$ is a set of edges $E_{k^{\mathrm{S}.\mathrm{t}}}$ . $(V, E\cup E_{k})\in F$ and $|E_{k}|\leq k$ . In this paper,
we assume that the modulator is given. For a fixed $k$ , the modulator of $F+k\mathrm{e}$ or $\mathcal{F}- k\mathrm{e}$

graphs can be found in polynomial time provided that it can be checked in polynomial
time whether a graph is in class $\mathcal{F}$ or not.

A comparability graph is an undirected graph $\mathrm{s}.\mathrm{t}$ . a transitive graph can be obtained
by giving appropriate orientation to each edge. A directed graph is called transitive if
$(u, v)\in E$ and $(v, w)\in E$ , then $(u, w)\in E$ holds. It can be recognized whether a graph
is a comparability graph or not and its transitive orientation can be found in $O(\gamma|E|)$

time, where 7 is the maximum degree of a vertex [2]. If a comparability graph is given,
its transitive orientation is obtained in linear time [5]. A comparability graph is a perfect
graph, whose clique number equals the chromatic number. The clique number and the
chromatic number of a comparability graph can be computed in polynomial time.

A transitive graph can be represented by a Hasse diagram. If $(u, v)\in E$ and $(v,w)\in E$ ,
$(u, w)$ is omitted in a Hasse diagram. When there exists a path from $u$ to $v$ in a Hasse
diagram, we call that $u$ is an ancestor of $v$ and $v$ is a descendant of $u$ , denoted as $u\prec v$ .
In this paper, for simplicity, we write a Hasse diagram as an undirected graph. All the
edges are assumed to be downward edges.

For a transitive graph $G$ , a function $f$ : $Varrow\{1,2, \ldots, \omega(G)\}$ is called a leveling
function if $f(u)<f(v)$ is satisfied for all $(u, v)\in E$ . We define levmin and levmax as
follows.

levmin$(v)=\{$
1 if $v$ is a source
$\max_{(u,v)\in E}levmin(u)+1$ otherwise

levmax$(v)=\{$
$\omega(G\rangle$ if $v$ is a sink
$\max_{(v,u)\in E}levmax(u)-1$ otherwise

Then levmin and levmax are leveling functions. We call that levmin(v) is the level of
vertex $v$ , and that $v$ is in level levmin(v). As a maximal path in the Hasse diagram
corresponds to a maximal clique in a transitive graph, $\omega(G)=\max_{v\in V}levmin(v)$ . If we
color vertex $v$ by $f(v)$ for some leveling function $f$ , it is an optimal vertex coloring of $G$ .
In this paper, we call such coloring a levelwise coloring of $G$ by $f$ .

3 Coloring Comparability-ke Graphs

3.1 Coloring Comparability-le Graphs

In this section, we consider vertex coloring of comparability-le graphs. Let $G=(V, E)$ be
a comparability-le graph and $E_{1}=\{(a, b)\}$ be the modulator of $G$ . Let $G_{\mathrm{c}}=(V, E\cup E_{1})$ .
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First, we consider the relation between $\chi(G),$ $\omega(G)$ and $\omega(G_{c})$ . If $\omega(G)=\omega(G_{c})$ , then
$\chi(G)=\omega(G_{c})$ holds. If $\omega(G)=\omega(G_{c})-1$ , then $\omega(G_{\mathrm{c}})-1\leq\chi(G)\leq\omega(G_{c})$ holds. In the
latter case, there may exist an $(\omega(G_{c})-1)$ -coloring of $G$ . In the $(\omega(G_{c})-1)$-coloring, $a$

and $b$ have the same color.
We first show that it is not difficult to check if $\omega(G)=\omega(G_{c})$ or not.

Lemma 1 The equality $\omega(G)=\omega(G_{c})-1$ holds iff there exists no vertex $v(v\neq a, b)$ such
that levmin(v) is equal to levmin$(a)$ or levmin$(b)$ and levmin$(v)+levmax(v)-1=\omega(G_{\mathrm{c}})$ .

Proof First, we should note that, for a vertex $v$ , the size of the maximum clique including
$v$ is levmin$(v)+levmax(v)-1$ .
$(arrow)$ $\omega(G)=\omega(G_{c})-1$ implies that all the maximum cliques of $G’$ includes the modulator
$(a, b)$ .

Assume that there exists a vertex $v(v\neq a)$ such that levmin(v) $=levmin(a)$ and
levmin$(v)+levmax(v)-1=\omega(G$ ‘

$)$ . As levmin$(v)+levmax(v)-1=\omega(G_{c}),$ $v$ is included
in a maximum clique of $G_{c}$ . However, as levmin$(v)=levmin(a),$ $v$ and $a$ are not in the
same clique. Therefore, $G_{c}$ has a maximum clique which does not include $(a, b)$ . It means
that $\omega(G)=\omega(G_{c})$ .
$(arrow)$ If there exists no vertex $v(v\neq a, b)$ such that levmin(v) is equal to levmin$(a)$

or levmin$(b)$ and levmin$(v)+levmax(v)-1=\omega(G_{c})$ , all the vertices which is in some
maximum clique of $G_{c}$ must be connected with $a$ and $b$ . Thus, the modulator $(a, b)$ is
included in all the maximum cliques of $G_{c}$ . $\square$

The condition of this lemma is checked easily using levmin and levmax of each node.
Thus, it can be checked in polynomial time if the condition is satisfied. In the following,
we consider the graphs satisfying the condition of Lemma 1.

Even though $\omega(G)=\omega(G_{\mathrm{c}})-1$ holds, it is not always possible to color $G$ with $\omega(G_{\mathrm{c}})-1$

colors. We consider how to compute if $G$ is $(\omega(G_{c})-1)- \mathrm{c}o$lorable. To consider the coloring
of $G$ , we first obtain a transitive orientation of $G_{c}$ . Let $G_{t}$ be the obtained transitive
graph. $G_{t}$ is represented as a Hasse diagram $H=(V, E_{H})$ . In the following, we assume
w.l.o.g. that $a\prec b$ in $H$ . In a Hasse diagram, all the vertices in a path must have different
colors. However, in this case, as we consider the coloring of $G$ , we admit that $a$ and $b$ have
the same color in $H$ .

We consider to modify the graph without changing its chromatic number. Let $w,$ $x,y,$ $z$

be the vertices satisfying the following conditions: $(w, x),$ $(y,x),$ $(w, z)\in E_{H}$ and $w$ and
$x$ are in the same $(\omega(G_{c})-1)$-clique of $G_{c}$ (see Fig.1). Let $H’=(V, E_{H}\cup\{(y, z)\})$ and
let $G’$ be the comparability-le graph represented by $H’$ when the modulator is added.

Lemma 2 $\chi(G’)=\chi(G)$ .

Proof As $G’$ is obtained by adding edges to $G$ , a coloring of $G’$ is also a coloring of $G$ .
That is, $\chi(G’)\geq\chi(G)$ holds. We show that if $G$ is $(\omega(G_{c})-1)$-colorable, then $G^{j}$ is also
$(\omega(G_{c})-1)$-colorable.

Consider a $(\omega(G_{c})-1)$ coloring of $G$ . Let $U(v)$ be the set of colors used in $v$ and its
ancestors, and $L(v)$ be the set of colors used in $v$ and its descendants. As $(w, x)\in E_{H}$ ,
it holds that $U(w)\cap L(x)=\emptyset$ . Similarly, $U(y)\cap L(x)=\emptyset$ and $U(w)\cap L(z)=\emptyset$ also
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Figure 1: Add an edge to generate $H’$ .

hold. In addition, as $w$ and $x$ are in the same $(\omega(G_{\mathrm{c}})-1)$-clique of $G_{\mathrm{c}}$ , $U(w)\cup L(x)=$

$\{1, \ldots, \omega(G_{c})-1\}$ . Therefore, we can see that $U(y)\subseteq U(w)$ and $L(z)\subseteq L(x)$ hold. It
follows that $U(y)\cap L(z)=\emptyset$ . It means that even when $(y, z)$ is added to $H$ , no path of
the Hasse diagram contains the same color (except two endpoints of the modulator). $\square$

Add edges satisfying the above condition as far as possible. Let the resulting Hasse
diagram be $H_{+}$ and the corresponding comparability-le graph be $G_{+}$ . Lemma2 shows
that $\chi(G_{+})=\chi(G)$ . Let $V_{a}=$ {$v|a\prec v$ in $H_{+}$ } and $V_{b}=$ {$v|v\prec b$ in $H_{+}$ }.

Lemma 3 There exists an $(\omega(G_{c})-1)$ -colonng of $G_{+}$ iff there exists no $(\omega(G_{\mathrm{c}})-1)$ -clique
that does not include an endpoint of the modulator and whose all vertices are in $V_{a}\cup V_{b}$ .

Proof The vertices in $V_{a}$ or $V_{b}$ cannot be colored with the same color as $a$ and $b$ because
the vertices in $V_{a}(V_{b})$ and $a(b)$ are on the same path in $H_{+}$ . If there exists an $(\omega(G_{\mathrm{c}})-1)-$

clique that does not include an endpoint of the modulator and whose an vertices are in
$V_{a}\cup V_{b}$ , there exists no $(\omega(G_{c})-1)$-coloring of $G_{+}$ because only $\omega(G_{c})-2$ colors can be
used to color the clique.

Otherwise, we can color all the vertices using colors $\{1, 2, \ldots,\omega(G_{\mathrm{c}})-1\}$ in the following
manner. Color $a$ and $b$ with 1. In each $(\omega(G_{c})-1)$-clique, color the vertex of the smallest
level not in $V_{a}\cup V_{b}$ with 1. From the assumption, each $(\omega(G_{\mathrm{c}})-1)$ -clique includes at least
one vertex colored with 1. In addition, we can show that no clique includes more than
one vertices colored with 1.

Assume that a vertex $d$ is colored with 1. Then, there exists a vertex $e$ satisfying
$(e,d)\in H_{+},$ $e\in V_{b}$ and $d,$ $e$ are in the same $(\omega(G_{c})-1)$ -clique, and a vertex $f$ satisfying
$(e, f)\in H_{+}$ and $f\in V_{b}$ . From the construction of $H_{+}$ , for each vertex $g\mathrm{s}.\mathrm{t}$ . $(g, d)\in H_{+}$ ,
an edge $(g, f)$ must exist in $H_{+}$ . It means that any predecessor of $d$ is included in $V_{b}$ .
Therefore, no two vertices in a $(\omega(G_{c})-1)$-clique can be colored with 1.

Color the other vertices with the following rule: if $v$ is a source, color $v$ with 2, and
otherwise color $v$ with the minimum number which is not used in the predecessors of $v$ in
$H_{+}$ . We can observe that the coloring rule approves that no two vertices in a clique has
the same color. In addition, we can show by induction on the level that the color of node
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$v$ with levmin$(v)=i$ is at most $i$ . Therefore, the color of a sink is at most $\omega(G_{c})-1$ . $\square$

[Algorithm COLOR-IE]
Input: comparability-le graph $G=(V, E)$ , modulator $E_{1}=\{(a, b)\}$

Output: chromatic number of $G$

1. Compute a transitive orientation of $G_{c}=$ ( $V,$ EU$E_{1}$ ) (represented by a Hasse diagram
$H=(V, E_{H}))$ and compute $\chi(G_{c})$ .

2. Repeat the following until no more edge is added.
Find the vertices $w,x,$ $y,$ $z$ satisfying the following conditions: $w$ and $x$ are in the
same $(\omega(G_{c})-1)$ -clique of $G_{c},$ $(w,x)\in E_{H},$ $(y,x)\in E_{H}$ and $(w,z)\in E_{H}$ . If there
exist such vertices, add an edge $(y, z)$ to $E_{H}$ .
Let $G_{+}$ be the obtained graph.

3. Compute $V_{a}=$ {$v|a\prec v$ in $H_{+}$ } and $V_{b}=$ {$v|v\prec b$ in $H_{+}$ }.

4. Compute a subgraph of $H_{+}$ induced by $V_{a}\cup V_{b}-\{a, b\}$ .

5. If the induced subgraph includes a path of length $\chi(G_{c})-1$ , then output $\chi(G_{c})$ .
Otherwise, output $\chi(G_{c})-1$ .

Theorem 4 Vertex coloring problem of comparability-le graphs can be solved in polyno-
mial time.

3.2 Reduction to a Restricted Coloring of Comparability Graphs

In this vection, we show that vertex coloring of comparability-ke graphs can be reduced
to a kind of vertex coloring problem of comparability graphs. We define pair coloring
problem as follows.
PAIR COLORING
Input : A graph $G=(V, E)$ , a set of pairs of vertices $P\subseteq V^{2}$ and a positive integer $k$ .
Output : If there exists a vertex coloring of $G$ with $k$ colors which colors $u$ and $v$ with the
same color for all $(u,v)\in P$ .

If there is no restriction on $G$ , pair $\mathrm{c}\mathrm{o}\dot{\mathrm{l}}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}$ is equivalent to vertex coloring of the graph
obtained from $G$ by identifying all the pairs of vertices in $P$ . However, many graph classes
including comparability graphs are not closed under identification of nonadjacent vertices.

Theorem 5 Vertex coloring of comparability-ke graphs can be reduced to pair coloring of
comparability graphs.

Proof For an instance $(G=(V, E),$ $k\rangle$ of vertex coloring of comparability-ke graphs, we
construct an instance of pair coloring of comparability graphs $\langle G’=(V’, E’), P, k’\rangle$ as
follows.

Let $M$ be the modulator of $G$ and $G_{t}=(V, E_{t})$ be a transitive graph obtained from
(V, $E\cup M$). Instead of $G’$ , we define a transitive graph $G_{t}’=(V‘, E_{t}’)$ obtained from $G’$ .
Let $B=$ {$w|(u,w)\in E_{t}$ and $(w,v)\in E_{t}$ for some $(u,$ $v)\in M$}. For each vertex $w\in B$ ,
we add a vertex $w’$ . That is, $V’=V\cup\{w’|w\in B\}$ . Let $E_{t}’=\{(r,w)|(r, w)\in E_{t},w\in$
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modulator: $\mathrm{l}\mathrm{b},$
$\mathrm{e}$ )

(a) Hasse diagram of Gt. (b) Hasse diagram of $\mathrm{c}_{\mathrm{t}}’$ .

Figure 2: An example of reduction.

$B\}\cup\{(w’, s)|(w, s)\in E_{t},w\in B\}\cup$ { $(r,$ $s)|(r,$ $s)\in$ Et–M, $r\not\in B,$ $s\not\in B$ }. Let the pairs
of vertices be $P=\{\langle w, w’\rangle|w\in B\}$ and $k’=k$ .

Now check that $G_{t}’$ is really a transitive graph. Let $B’=\{w’|w\in B\}$ . Note that
there is no outgoing edges from vertices in $B$ and no incoming edges from vertices in $B’$ .
Consider two edges $(a, b),$ $(b, c)\in E_{t}’$ . When $a,$ $b,$ $c\in V’-(B\cup B’)$ , both $(a, b)$ and $(b, c)$

are edges of $E_{t}$ . As $G_{t}$ is a transitive graph, there exists an edge $(a,c)\in E_{t}$ , and thus
$(a,c)\in E_{t}’$ . When $c\in B$ , there also exists an edge $(a,c)\in E_{t}$ , and thus $(a, c)\in E_{t}’$ . It
is similar for the case when $a\in B’$ . Fig.2 is an example of the $G_{t}$ and $G_{t}’$ represented as
Hasse diagrams.

If we identify $w$ and $w’$ for all $w\in B$ on $G$‘, the obtained graph is the same as $G$ .
Therefore, it is obvious that $G’$ has a pair coloring with $k$ colors iff $G$ is $k$-colorable. $\square$

On the pair coloring problem, the number of pairs can be regarded as a parameter.
However, as the number of pairs does not depend on the size of the modulator, this
reduction is not a parameterized reduction.
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