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Abstract– We proposc multi-bit versions of several single-bit cryptosystems based on lattioe
problems, the error-ffee version of the Ajtai-Dwork cryptosystem by Goldoeich, Goldwasser, and
Halevi $[\mathrm{C}\mathrm{R}\mathrm{Y}\mathrm{P}\Gamma \mathrm{O} ’ 97]$ , the Regev cryptosystems [STOC $2\alpha 13$ and STOC 205], and the Ajtai $\mathrm{c}\iota \mathrm{y}\mathrm{p}-$

tosystem $[\mathrm{S}\mathrm{T}\propto 2W5]$ . Based on a common $\mathrm{s}\mathrm{t}\mathrm{I}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ amongst them, we devclop a generic oechnique
for constructin$\mathrm{g}$ their multi-bit versions without increase in the size of ciphertexts. By analyzing the
trade-off between the decryption enor and the hardness of underlying lattice problems. it is shown
that our multi-bit versions encrypt $O(\log n)$-bit plaintexts into ciphertexts of the same length as the
original ones with the reasonable sacrifices of the hxdness of the underlying lattice problems. Our
technique also provides a ncw algebraic property pseudo-homomorphism of the lattice-based crypto-
systems.
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1 Introduction
Background. The lattice-based $\mathrm{c}\iota \mathrm{y}\mathrm{p}\mathrm{t}\mathrm{o}\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{s}$ have
boen well-studied since Ajtai’s seminal result [1] on a
connection between the worst-case and the average-
case hardness of a certain class of lattice problems.
Ajtai and Dwork constructed lattice-based public-key
cryptosystems using this connecuon [3]. Following
their results. a number of lattice-based cryptosystems
have been proposed in the last decade [6, 5, 16, 2, 17].

We can roughly classiQ the lattice-based cryptosys-
tems into two classes by whether they have the secu-
rity proofs based on hard lattice problems or $\mathrm{n}o\mathrm{t}$ . The
cryptosystems in the first class do not have security
proofs to hard lattice problems, but have efficiency on
the size of keys and of ciphertcxts and the speed of
encryption and decryption procedures. For example,
the GGH cryptosystem [7] and NTRU [9] aoe $\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\iota$

multi-bit cryptosystems using $\mathrm{l}\mathrm{a}\mathfrak{n}\mathrm{i}\mathrm{C}\mathrm{e}$-relatcd problems.
However. it is unknown whether their security is guar-
anteed by well-known hard lattice problems such as
$\mathrm{u}\mathrm{S}\mathrm{V}\mathrm{P}$. SVP and SIVP. Actually, several cryptanalysis
were oeported for cryptosystems in this class [13].

On the other hand, the cryptosystems in the second
class have security proofs based on well-known hard
lattice problems [3, 16, 17]. The security of these cryp-
tosystems can be guarantaed by the worst-case com-
plexity of certain lanice problems, that is, if it is hard
to solve the lattice problcms in the worst case, then the
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adversaries cannot efficiently disringuish bctween ci-
phertexts even on average. This attractive $\mathrm{p}\mathrm{r}\mathrm{o}\mu \mathrm{r}\mathrm{t}\mathrm{y}$ is
also studicd from a theooetical point of view [1. 12].
Howcver, they generally have longer keys and cipher-
texts than the cryptosystems in the first class. The
Ajtai-Dwork cryptosystem is aloeady analyzed with
practical security $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\iota \mathrm{s}$ in [14] due to thc $[\mathfrak{B}^{\mathrm{C}}$

size of the public key.
Several $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{a}\iota \mathrm{c}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s}$ recently have considered effi-

cient lattice-based cryptosystems with the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\propto \mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$

between their security and computationally hard prob-
lems.

For example, Regev constructed an efficient $\mathrm{l}\mathrm{a}\mathfrak{n}\mathrm{i}\mathrm{c}\epsilon-$

based $\mathrm{C}\mathrm{I}\gamma \mathrm{p}\mathrm{t}\mathrm{o}\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}$ with short keys [17]. The se-
curity is based on the worst-case hardness of cer-
tain approximation problems of SVP and $\mathrm{S}N\mathrm{P}$ for
quantum polynomial-time algorithms, that is. the se-
curity is based on the assumption that any quantum
polynomial-time algorithm cannot solve certain lattice
problems. Ajtai also constructed an efficient lattice-
based cryptosystem with short keys by using a com-
pact representation for a special case of $\mathrm{u}\mathrm{S}\mathrm{V}\mathrm{P}[2]$ . The
security is based on the average-case hardness of a
certain Diophantine approximation problem. It is un-
known whcther the security can be r\’euced its worst-
case hardness or not.
Our ContrlbuUon. We continue to study efficient
lattice-based cryptosystems with security proofs $\mathrm{b}\mathrm{a}8\mathrm{G}\mathrm{d}$

on well-known hard lattice problems or other secure
cryptosystems. In $\mathrm{p}\mathrm{a}\iota \mathrm{u}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$ , we focus on the size of
plaintexts encrypted by the cryptosystems in the $\mathrm{s}\infty-$

ond class. To the best of the authors’ knowledge. all
those in the second class aoe single-bit cryptosystems.
We therefooe obtain more efficient lattice-based $\mathrm{c}\iota \mathrm{y}\mathrm{p}-$

tosystems with security proofs if we succe\’e to con-
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struct their multi-bit versions without increase in the for our new cryptosystems so far.
size of ciphertexts. Maln Idea for Multi-Bit Constructions and Their

In this paper, we consider multi-bit versions of Security. We can actually find the following com-
the improved Ajtai-Dwork cryptosystem proposed by mon structure amongst the single-bit cryptosystems
Goldreich, Goldwasser, and Halevi [6], the Regev $\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$ , R03, R05, and A05: Their ciphertexts of $0$ are
cryptosystems proposed in 2003 [16] and in 2005 [17], basically distributed according to a periodic Gaussian
and the Ajtai cryptosystem [2]. Based on a common distribution and those of 1 are also distributed accord-
structure amongst them, we develop a generic tech- ing to another periodic Gaussian distribution whose
nique for constructing their multi-bit versions without peaks are shifted to the middle of the period. We
increase in the size of ciphertexts. thus embed two periodic Gaussian distributions into

To apply our technique to constructions of the multi- the ciphertext space such that their peaks appear alter-
bit versions, we need to consider trade-offs between natively and regularly.
decryption errors and hardness of underlying lattice Our technique is based on a generalization of this
problems. By analyzing the trade-offs for each of the structure. More precisely, we regularly embed multi-
cryptosystems in detail, it is shown that our multi- $ple$ periodic Gaussian distributions into the ciphertext
bit versions encrypt $O(\log n)$-bit plaintexts into cipher- space rather than only two ones. Embedding $p$ peri-
texts of the same length as the original ones with rea- odic Gaussian distributions as shown in this figure, the
sonable sacrifices of the hardness of the underlying lat- ciphertexts for a plaintext $i\in\{0, \ldots,p-1\}$ are distrib-
tice problems. uted according the i-th periodic Gaussian distribution.

The ciphertexts of our multi-bit version are distrib- This cyclic structure enables us not only to improve
uted in the same ciphertext space, theoretically repre- the efficiency of the cryptosystems but also to guaran-
sented with real numbers, as the original cryptosystem. tee their security.
To represent the real numbers in their ciphertexts, we If we embed too many periodic Gaussian disnibu-
have to round their fractional parts with certain pre- tions, the decryption errors increase due to overlaps
cision. The size of ciphertexts then increases if we amongst the distributions. We can then decrease the
process the numbers with high precision. We stress decryption errors by reducing their variance. However,
that our technique does not need higher precision than it is known that smaller variance generally provides
the original cryptosystems, i.e., we take the same pre- less security in cryptosystems based on such Gaussian
cision in our multi-bit versions as that of the original distributions, as commented in [6]. We therefore have
ones. to analyze the trade-offs in our multi-bit versions be-

See Table 1 for the cryptosystems studi$e\mathrm{d}$ in this pa- tween the decryption errors and their security, which
per. We call the cryptosystems proposed in [6, 16, 17, depend on their own structures of the cryptosystems.
2] $\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$ , R03, R05, and A05, respectively. We also Once we analyze their trade-offs, we can apply a
call the.corresponding multi-bit versions $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$, common strategy based on the cyclic structure to the
$\mathrm{m}\mathrm{R}03,$ $\mathrm{m}\mathrm{R}05$, and $\mathrm{m}\mathrm{A}05$ . security proofs. The security of the original crypto-

Our generic technique also provides a new alge- systems basically depends on the indistinguishability
braic property pseudo-homomorphism such that the between a certain periodic Gaussian distribution $\Phi$ and
sum of ciphertexts of two plaintexts $x_{1}$ and $x_{2}$ is a uniform distribution $U$ since it is shown in their se-
equal to a variant of a ciphertext of $x_{1}+x_{2}$ that can curity proofs that we can construct an efficient algo-
be decrypted by the private key of the multi-bit ver- rithm for a certain hard lattice problem by employing
sion. We present the pseudo-homomorphic property an efficient distinguisher between $\Phi$ and $U$ . The goal
of $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}},$ $\mathrm{m}\mathrm{R}03,$ $\mathrm{m}\mathrm{R}05$ , and (a slightly modified is thus to construct the distinguisher from an adversary
version of) $\mathrm{m}\mathrm{A}05$ . against the multi-bit version.

We surely obtain a multi-bit cryptosystem simply by We first assume that there exist two periodic Gauss-
concatenating the ciphertexts of a single-bit cryptosys- ian distributions $\Phi_{i}$ and $\Phi_{j}$ corresponding to two kinds
tem if we concede the increase in the size of cipher- of ciphertexts in our multi-bit version and an efficient
texts. However, this simple modification does not pro- adversary for distinguishing between $\Phi_{i}$ and $\Phi_{j}$ with
vides such an algebraic property. Therefore, we can its public key. By the hybrid argument, the adversary
claim that our technique contributes the new algebraic can distinguish either between $\Phi_{i}$ and $U$ or between
property of the lattice-based cryptosystems. $\Phi_{j}$ and $U$ . We now suppose that it can distinguish

Many number-theoretic and algebraic cryptosys- between $\Phi_{\iota’}$ and $U$ . Note that we can slide $\Phi_{i}$ to $\Phi_{0}$

tems are known to have a homomorphic property of corresponding to ciphertexts of $0$ even if we do not
cryptosystems, which is useful for cryptographic ap- know the private key by the cyclic property of the ci-
plications such as voting protocol. On the contrary, as phcrtexts. Thus, we obtain an efficient distinguisher
far as we know, there are no other (e.g., combinatorial) between $\Phi_{0}$ and U. $\Phi_{0}$ is in fact a variance-reduced
cryptosystems with such an algebraic property except version of the periodic Gaussian distribution $\Phi$ used in
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Table 1: summary. ($r>0$ is any constant and $O(f(n))$ means $O(f(n)\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}(\log n)).$ )

the original cryptosystem. We can still reduce the in-
distinguishability between such a version $\Phi_{0}$ and $U$ to
a lattice problem with a slight loss of its hardness. We
can therefore guarantee the security of our multi-bit
versions similarly to the original ones.
Pseudo-Homomorphism in $\mathrm{M}\mathrm{t}\mathrm{t}\mathrm{i}\cdot \mathrm{B}\mathrm{i}\mathrm{t}$ Versions.
The regular embedding of the periodic Gaussian distri-
butions also gives our multi-bit cryptosystems the al-
gebraic property pseudo-homomorphism. Recall that
a Gaussian distribution has the following reproduc-
ing property: For two random variables $X_{1}$ and $X_{2}$

according to $N(m_{1}, s_{1}^{2})$ and $N(m_{2}, s_{2}^{2})$, where $N(m, s^{2})$

is a Gaussian distribution with mean $m$ and standard
deviation $s$ , the distribution of $X_{1}+X_{2}$ is equal to
$N(m_{1}+m_{2}, s_{1}^{2}+\mathrm{s}_{2}^{2})$. This property implies that the sum
oftwo ciphertexts (i.e., the sum of two periodic Gauss-
ian distributions) becomes a variant of a ciphertext
(i.e., a periodic Gaussian distribution with larger vari-
ance). This sum can be moreover decrypted into the
sum of two plaintexts with the private key of the multi-
bit version, and has the indistinguishability based on
the security of the multi-bit version.
Deflnitions. The security parametern is given by di-
mension of a lattice in the lattice probl$e\mathrm{m}\mathrm{s}$ on which
security of the cryptosystems are based. Let $\lceil x\rfloor$ be
the closest integer to $x\epsilon \mathbb{R}$ (if there are two such inte-
gers, we choose the smaller.) and frc $(\chi)=|\chi-\lceil x\rfloor|$ for
$x\in \mathbb{R}$, i.e., frc (x) is the distance from $x$ to the closest
integer. We define $x$ mod $y$ as $x-\lfloor x/\mathrm{y}\rfloor y$ for $x,y\in$ R.

The length of a vector $\mathrm{x}=(x_{1}, \ldots,x_{n})^{T}\in \mathbb{R}^{n}$ , de-
noted by $||\mathrm{x}||$ , is $\sqrt{\sum_{i=1}^{n}l_{i}}$. The inner product of two
vectors $\mathrm{x}=(x_{1}, \ldots,x_{n})^{T}\in \mathbb{R}^{n}$ and $\mathrm{y}=(y_{1}, \ldots,y_{n})^{T}\in$

$\mathbb{R}^{n}$ , denoted by $\langle \mathrm{x},\mathrm{y}\rangle$ , is $\sum_{i=1}^{n}x_{i}y_{i}$ .
A function $f(n)$ is called negligible for sufficiently

large $n$ if $\lim_{narrow\infty}n^{c}f(n)=0$ for any constant $c>0$ .
We similarly call $f(n)$ a non-negligible function if

there exists a constant $c>0$ such that $f(n)>n^{-c}$ for
sufficiently large $n$ . Also, a probability is called expo-
nentially close to 1 when it is at least $1-2^{-\Omega(n)}$ . We
represent a real number by rounding its fractional part.
If the fractional part of $x\in \mathbb{R}$ is represented with $m$

bits, the rounded number $\overline{x}$ has the precision of $1/2^{l}$ ,
i.e., we have $|x-\overline{x}|\leq 1/2^{l}$ .

We say that an algorithm distinguishes between two
distributions if the gap between the acceptance proba-
bilities for their samples is non-negligible.

A Gaussian distribution $N(m, s^{2})$ with mean $m$ and
standard derivation $s$ is a distribution on $\mathbb{R}$ defined by
the density function $v([)= \tau_{2\pi s}^{1}\exp(-\frac{\langle l-m)^{2}}{2},)$. We ac-
tually make use of many vanants of the Gaussian dis-
tribution. So, we will define such variants when re-
quired.

A lattice in $\mathrm{R}^{n}$ is the set $L(\mathrm{b}_{1}, \ldots,\mathrm{b}_{n})$ $=$

$\{\sum_{i=1}^{n}\alpha_{i}\mathrm{b}_{i}$ : $\alpha_{i}\epsilon \mathrm{Z}\}$ of all integral combinations of $n$

linearly independent vectors $\mathrm{b}_{1},$ $\ldots,\mathrm{b}_{n}$ . The sequence
of vectors $\mathrm{b}_{1},$ $\ldots,\mathrm{b}_{n}$ is called a basis of alattice $L$. For
clarity of notations, we represent a basis by the matrix
$\mathrm{B}=(\mathrm{b}_{1}, \ldots,\mathrm{b}_{n})\in \mathbb{R}^{n\mathrm{x}n}$. For any basis $\mathrm{B}$ , we define
the fundamental parallelepiped $P( \mathrm{B})=\{\sum_{i=1}^{n}a_{l}\mathrm{b}_{l}$ :
$0\leq a_{i}<1\}$ , The vector $\mathrm{x}\in \mathbb{R}^{\hslash}$ reduced modulo
the parallelepiped $\mathcal{P}(\mathrm{B})$ , denoted by $\mathrm{x}$ mod $\mathcal{P}(\mathrm{B})$ , is
the unique vector $\mathrm{y}\in P(\mathrm{B})$ such that y-x 6 $L(\mathrm{B})$ .

The dual lattice $L^{\cdot}$ of a lattice $L$ is the set $L^{\cdot}=$

{ $\mathrm{X}\in \mathbb{R}^{n}$ : $\langle \mathrm{x},\mathrm{y}\rangle\in \mathrm{Z}$ for ally $\in L$}. If $L$ is generated by
basis $\mathrm{B}$ , then $(\mathrm{B}^{\prime r})^{-1}$ is a basis for the dual lattice,
where $\mathrm{B}^{T}$ is the transpose of B. For more details. see
the textbook by Goldwasser and Micciancio [11].
Organization. The rest of this paper is organized as
follows. We propose our multi-bit versions from Sec-
tions 2 to 5. Because of the lack of space, we omit the
description of $\mathrm{m}\mathrm{R}05$ and $\mathrm{m}\mathrm{A}05$ . In Section 2 and ??,
we first review intuitions, protocols and performance
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of the original single-bit cryptosystems. We omit the
proofs for their decryption errors, security, pseudo-
homomorphisms.

2 A $\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\cdot \mathrm{B}\mathrm{i}\mathrm{t}$ Version ofthe $\mathrm{A}\mathrm{j}\mathrm{t}\mathrm{a}\mathrm{i}\cdot \mathrm{D}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}$

Cryptosystem
In this section, we consider the improved variant

given by Goldreich, Goldwasser, and Halevi [6] in-
stead of the original Ajtai-Dwork cryptosystem [3].
The Improved $\mathrm{A}\mathrm{j}\alpha \mathrm{i}\cdot \mathrm{D}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}$ Cryptosystem. Let
$N=n^{n}=2^{n10_{l^{\hslash}}}$ and $m=n^{3}$ . We define an n-
dimensional hypercube $C$ and an $n$-dimensional ball
$B_{r}$ as $C=\{\mathrm{x}\in \mathbb{R}^{n} : 0\leq x_{i}<N, i=1, \ldots,n\}$ and
$B_{r}=\{\mathrm{X}\in \mathbb{R}^{n} : ||x||\leq n^{-r}/4\}$ for any constant $r\geq 7$ ,
respectively. For $\mathrm{u}\in \mathbb{R}^{n}$ and an integer $i$ we define an
hyperplane $H_{i}$ as $H_{\mathrm{i}}=\{\mathrm{x}\in \mathbb{R}^{n} : \langle \mathrm{x},\mathrm{u}\rangle=i\}$ .

Roughly speaking, the improved Ajtai-Dwork cryp-
tosystem encrypts $0$ into a vector close to hidden
$(n-1)$-dimensional hyperplanes $H_{0},H_{1},H_{2},$ $\cdots$ for a
normal vector $\mathrm{u}$ of $H_{0}$ and 1 into their intennediate hy-
perplanes $H_{0}+\mathrm{u}/(2||\mathrm{u}||^{2}),H_{1}+\mathrm{u}/(2||\mathrm{u}||^{2})\ldots.$ . Then,
the private key is the normal vector $\mathrm{u}$. These distri-
butions of ciphertexts can be obtained from its public
key, which consists of samples of vectors on the hid-
den hyperplanes and information $i_{1}$ for shifting a vec-
tor on the hyperplanes to one on the intermediate ones.
If we know the normal vector, we can reduce the n-
dimensional space to on the 1-dimensional space along
the normal vector. Then, we can easily find whether a
ciphertext distributed around the hidden hyperplanes
or the intermediate ones.

We now describe the protocol of $\mathrm{A}\mathrm{D}_{\mathrm{C}\mathrm{Q}\mathrm{H}}$ as follows.
Our description slightly generalizes the original one by
introducing a parameter $r$, which control the variance
of the distributions of a perturbation since we need to
estimate a trade-off between the security and the size
of plaintexts in our multi-bit version.
Key Generation: We choose $\mathrm{u}$ uniformly at ran-
dom Rom the $n$-dimensional unit ball. Repeating the
following procedure $m$ times, we sample $m$ vectors
$\mathrm{v}_{1},$

$\ldots,$
$\mathrm{v}_{m}:(1)$ We choose $\mathrm{a}_{i}$ ffom { $\mathrm{x}\in C$ : $\langle \mathrm{x},\mathrm{u}\rangle\in$

$\mathrm{Z}\}$ uniformly at random, (2) choose $\mathrm{b}_{1},$ $\ldots,\mathrm{b}_{n}$ from
$B_{r}$ uniformly at random, (3) and output $\mathrm{v}_{i}=\mathrm{a}_{i}+$

$\sum_{j=1}^{t}’ \mathrm{b}_{j}$ as a sample. We then take the minimum in-
dex $i_{0}$ satisfying that the width of $P(\mathrm{v}_{i_{0}+1}, \ldots,\mathrm{v}_{i_{0}+n})$

is at least $n^{-2}N$. where width of a parallelpiped
$P(\mathrm{x}_{1}, \ldots,\mathrm{x}_{n})$ is defined as length of an edge of the
minimum hypercube contained in $P(\mathrm{x}_{1}, \ldots \mathrm{x}_{n})$ , i.e..
$\min_{\mathrm{i}=1\ldots.,n}\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{t}(\mathrm{x}_{1},\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}(\mathrm{x}_{1}, \ldots.\mathrm{x}_{i-1},\mathrm{x}_{i+1}, \ldots,\mathrm{x}_{n}))$for a
distance function Dist$(\cdot.\cdot)$ between a vector and an
$(n-1)$-dimensional hyperplane.

Now let $\mathrm{w}_{j}=\mathrm{v}_{l_{0}+j}$ for every $j\in\{1\ldots..n\}$ . Also,
let $V=(\mathrm{v}_{1}, \ldots,\mathrm{v}_{m})$ and $W=(\mathrm{w}_{1}\ldots..\mathrm{w}_{n})$ . We
also choose an index $i_{1}$ unifonnly at random Rom
{ $i$ : $\langle \mathrm{a}_{i}.\mathrm{u}\rangle$ is odd}. Note that there are such indices

$i_{0}$ and $i_{1}$ with probability $1-o(1)$ . If they do not ex-
ist, we perform this procedure again. Then, the private
key is $\mathrm{u}$ and the public key is (V $W,$ $i_{1}$ ).
Encryption: Let $S$ be a subset of $\{0,1\}^{m}$ chosen uni-
formly at random. We encrypt a plaintext a $\epsilon\{0,1\}$ to
$\mathrm{x}=\frac{\sigma}{2}\mathrm{v}_{i_{1}}+\sum_{i\epsilon S}\mathrm{v}_{i}$ mod $P(W)$ .
Decryption: Let $\mathrm{x}\in P(W)$ be a received ciphertext.
We decrypt $\mathrm{x}$ to $0$ if frc $(\langle \mathrm{x},\mathrm{u}\rangle)\leq 1/4$ and to 1 other-
wise.

Carefully reading the results in $[3, 6]$ and using the
results in [4], we obtain the following theorem on the
cryptosystem $\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$ ,

Theorem 2.1 ([6]). The cryptosystem $\mathrm{A}\mathrm{D}_{\mathrm{O}\mathrm{O}\mathrm{H}}$ en-
crypts $a$ 1-bitplaintext into a $O(n^{2}\log n)$-bit ciphenext
with no decryption errors. The security of $\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$ is
based on the worst case of $O(n^{r+4})- uSVP$ for $r\geq 7$.
The size of the public &y is $O(n^{\mathrm{S}}\log n)$ and the size of
the private key is $O(n^{2})$.
$\mathrm{O}\mathrm{u}\mathrm{r}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{B}- \mathrm{b}\ddagger \mathrm{t}\mathrm{C}\mathrm{r}\mathrm{y}\mathrm{p}\omega \mathrm{s}\mathrm{y}s\mathrm{t}\epsilon \mathrm{m}$ . We now describe the
multi-bit version $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$ of $\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{C}\mathrm{H}}$ . Let $p$ be a
prime such that $p\leq 2n^{r-7}$ . In $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$, we can en-
crypt a plaintext of $\log p$ bits into a ciphertext of the
same size as one of $\mathrm{A}\mathrm{D}_{\mathrm{O}\mathrm{I}\mathrm{H}}$ . The strategy of our con-
struction basically follows the argument in Section 1.
Key Generation: The key generation procedure is
the almost same as $\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{C}\mathrm{H}}$ . We choose an index $i_{1}’$

uniformly at random from { $i$ : $x_{i}*0$ mod $p$ } instead
of $i_{1}$ in the original key generation procedure. Note
that there is such a $k$ with probability $1-(1/p)^{m}=$
$1-o(1)$. Then, the private key is $(\mathrm{u},k)$ and the public
key is (V $W,$ $i_{1}’$ ).
Encryption: Let $S$ be a uniformly random subset of
$\{0,1\}^{m}$ . We encrypt a $\in\{0, \ldots,p-1\}$ to $\mathrm{x}=\frac{\sigma}{p}\mathrm{v}_{\iota_{1}}’+$

$\sum_{i\epsilon S}.\mathrm{v}_{\iota’}$ mod $P(W)$ .
Decryption: We decrypt a received ciphertext $\mathrm{x}\in$

$P(W)$ to $\lceil p\langle \mathrm{x},\mathrm{u}\rangle \mathrm{J}k^{-1}$ mod $p$, where $k^{-1}$ is the inverse
of $k$ in $\mathrm{Z}_{p}$ .
Note that we can correctly decrypt the ciphertexts
since the number $p$ of plaintexts is prime.

We obtain the following theorem on the size of
$\mathrm{p}1\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{s}\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$.

and the security of our multi-bit version

Theorem 2.2 (multi-bit version). Let $r\geq 7$ be $a$ inte-
ger and let $p$ be a prime such that $2\leq p(n)\leq 2n^{r-7}$.
The cryptosystem $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{C}\mathrm{G}\mathrm{H}}$ encrypts a $\lfloor\log p(n)+1\rfloor-$

bit plaintext into an $O(n^{2}\log n)$-bit cipheltext without
decryption errors. The security of $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$ is based
on the worst case of$O(n^{r+4})- uSVP$. The size ofthe pub-
lic key is the same as the original one. The size of the
private $\emptyset$ is $O(\log p)$ plus the original one.

Finally, we present a pseudo-homomorphic prop-
erty of our cryptosystem $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$. Let $E_{\mathrm{m}}$ be the en-
cryption function of $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$.
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Theorem 2.3 (pseudo-homomorphism). Let $r\geq 7$ be
any constant. Also, let $p$ be a prime and let $\kappa$ be
an integer such that $\kappa p\leq n^{r-7}$ . For any $\kappa$ plain-
texts $\sigma_{1},$

$\ldots,$
$\sigma_{\kappa}$ $(0\leq\sigma_{i}\leq p - 1)$ , we can decrypt

the $\mathrm{s}$um of $\kappa$ ciphertexts $\sum_{i=1}^{\kappa}E_{\mathrm{m}}(\sigma_{i})$ mod $P(W)$ into
$\sum_{i--1}^{\kappa}\sigma_{i}$ mod $p$ without decryption error. Moreover.
if there exist two sequences ofplaintexts $(\sigma_{1}, \ldots,\sigma_{\kappa})$

and $(\sigma_{1}’, \ldots,\sigma_{\kappa}’)$, and a polynomial-time algorithm
that distinguishes between $\sum_{i\approx 1}^{\kappa}E_{\mathrm{m}}(\sigma_{i})$ mod $P(W)$

and $\sum_{i=1}^{\kappa}E_{\mathrm{m}}(t_{i})$ mod $\mathcal{P}(W)$ with its public key, then
there exists a polynomial-time algorithm that solves
$O(n^{r+4})- \mathrm{u}\mathrm{S}\mathrm{V}\mathrm{P}$ in the worst case with non-negligible
probability.

3 A Multi-Bit Version of the Regev’03
Cryptosystem

The Regev’03 Cryptosystcm. In this section, we
consider the Regev cryptosystem R03 proposed
in [16]. Roughly speaking, the ciphertexts of $0$ and
1 approximately corresponds to two periodic Gauss-
ian distributions in R03. We now denote the distri-
butions of the ciphertexts of $0$ and 1 as $\Phi_{0}$ and $\Phi_{1}$ ,
respectively. Note that every peaks in $\Phi_{1}$ are regularly
located in the middle of two peaks in $\Phi_{0}$ . A parame-
ter $h$ is approximately equal to the number of peaks in
$\Phi_{0}$ , and a private key $d$, obtained from $h$, corresponds
to length of the period. A public key is of the form
$(a_{1}, \ldots,a_{m}, i_{0})$ , where $a_{1},$ $\ldots,a_{m}$ are samples from $\Phi_{0}$

to make a ciphertext of $0$ by summing up randomly
chosen elements from the samples and a certain index
$i_{0}\in\{1, \ldots,m\}$ is used to shift a ciphertext of $0$ to that
of 1 by adding $a_{i_{0}}/2$ to a ciphertext of $0$ . One can eas-
ily see that we can distinguish between $\Phi_{0}$ and $\Phi_{1}$ with
$d$. It however seems hard to distinguish them only with
polynomially many samples of $\Phi_{0}$ and $i_{0}$ . Actually, it
is shown in [16] that breaking R03 is at least as hard
as the worst cas$e$ of a certain $\mathrm{u}\mathrm{S}\mathrm{V}\mathrm{P}$.

In what follows, we precisely describe the original
R03. We begin with the definition of a folded Gauss-
ian distribution $\Psi_{\alpha}$ whose density function is $\Psi_{\alpha}(i)=$

$\sum_{i\epsilon \mathrm{Z}}\frac{1}{\alpha}\exp(-\pi_{R}^{(l-kfl})$. This distribution is obtained by
“folding” a Gaussian distribution $N(\mathrm{O},\alpha^{2}/(2\pi))$ on $\mathbb{R}$

into the interval $[-1/2,1/2)$ . Note that this folded
Gaussian distribution is equivalent with the fractional
part of $N(\mathrm{O},a^{2}/(2\pi))$ . Based on this distribution, R03
makes use of a periodic distribution $\Phi_{\hslash,a}$ defined by the
following density function: $\Phi_{h.\alpha}(l)=\Psi_{\alpha}$($lh$ mod 1).
We can sample values according to this distribution
by using samples Rom $\Phi_{\alpha}$ , as shown in [16]: (1) We
sample $x\in\{0\ldots., \lceil h]\}$ uniformly at random and then
(2) sample $y$ according to $\Psi_{\alpha}$ . (3) If $0\leq(x+y)/h<1$ ,
we then take the value as a sample. Otherwise, we
repeat (1) and (2).

Let $N=2^{\#},$ $m=c_{0}n^{2}$ for a sufficiently large con-
stant $c_{0}$ , and $\gamma(n)=\omega(n\sqrt{\log n})$ , specifying the size

of the ciphertext space, the size of th$e$ public keys,
and the variance of the folded Gaussian distribution,
respectively. In this section. we require precision of
$1/2^{8n^{2}}=1/N$ for rounding real numbers.
Key Generataion: Let $H=\{h\in[\sqrt{N}.2\sqrt{N}$) :
frc $(h)<1/(16m)\}$ . We choose $h\in H$ uniformly
at random and set $d=N/h$. The private key is the
number $d$. Choosing $\alpha\in[2/\gamma(n),$ $(2\sqrt{2})/\gamma(n))$ , we
sample $m$ values $z_{1},$ $\ldots,\mathrm{z}_{m}$ from the distribution $\Phi_{h,\alpha}$ ,
where $z_{i}=(x_{i}+y_{i})/h(i=1, \ldots,m)$ according to the
above sampling procedure. Let $a_{l}=\lceil Nz_{l}\rceil$ for every
$i\in\{1, \ldots,m\}$ . Note that we have an index $i_{0}$ such that
$x_{i_{0}}$ is odd with a probability exponentially close to 1.
Then, the public key is $(a_{1}, \ldots,a_{m},i_{0})$ .
Encryption: We choose a uniformly random subset
$S$ of $\{1, \ldots,m\}$ . The ciphertext is $\sum_{l\epsilon S}a_{i}$ mod $N$ if the
plaintext is $0$, and $( \sum_{tB}a_{i}+[a_{i_{0}}/2\rfloor)$ mod $N$ if it is 1.
Decryptlon: We decrypt a received ciphertext $w\epsilon$

$\{0, \ldots,N-1\}$ to $0$ if frc $(w/d)<1/4$ and to 1 otherwise.
Summarizing the results in [16] on the size ofplain-

texts, ciphertexts, and keys, the decryption errors, and
the security of R03, Regev proved the following theo-
rem.

Theorem 3.1 ([16]). The cryptosystem R03 encrypts
$a$ 1-bit plaintext into an $8n^{3}$ -bit ciphenext with &-
cryption $e\pi or$ probability at most $2^{-\Omega(f(n)/m)}+2^{-\alpha n\rangle}$ .
The security of R03 is based on the worst case of
$O(\gamma(n)\sqrt{n})- \mathrm{u}\mathrm{S}\mathrm{V}\mathrm{P}$. The size of the public key is $O(n^{4})$

and the size of the private key is $O(n^{2})$.
Our Multi-bit Cryptosystem. We next propose a
multi-bit version $\mathrm{m}\mathrm{R}03$ of the cryptosystem R03. Let
$p$ be a prime such that 2 $\leq p\leq n^{r}$ and $\delta(n)=$

$\omega(n^{1+r}\sqrt{\log n})$ for any constant $r>0$, where the pa-
rameter $r$ controls the trade-off between the decryp-
tion errors (or the size of plaintext space) and the hard-
ness of underlying lattice problems. Our cryptosystem
$\mathrm{m}\mathrm{R}03$ can encrypt one of $p$ plaintexts in $\{0, \ldots.p-1\}$

into a ciphertext of the same size as one of R03.
As mentioned above, R03 relates the ciphertexts to

two periodic Gaussian distributions $\Phi_{0}$ and $\Phi_{1}$ such
that each of them has one peak in a period of length
$d$. Our construction follows the argument in Section 1.
The idea of our cryptosystem is embedding of $p$ peri-
odic Gaussian distributions $\Phi_{0},$ $\ldots,\Phi_{p-1}$ correspond-
ing to the plaintexts $\{0, \ldots.p-1\}$ into the same period
of length $d$. We also adjust the parameter $a$, which
affects the variance of the Gaussian distributions, to
bound the decryption errors. Note that frc $(h)$ also af-
fects the decryption errors. Therefore, adjusting the
set $H$ simultaneously with $a$, we have to reduce the
decryption errors by frc $(h)$ .

Based on the above idea, we describe our cryptosys-
tem $\mathrm{m}\mathrm{R}03$ as follows.

47



Key Generation: Let $H_{r}=\{h\in[\sqrt{N}, 2\sqrt{N})$ :
frc $(h)$ $<$ $1/(8n^{r}m)\}$ . We choose $h$ $\in$ $H_{r}$ uni-
formly at random and set $d=N/h$. Choosing $a\in$

[$2/\delta(n),$ $(2\sqrt{2})/\delta(n))$, we sample $m$ values $z_{1},$ $\ldots,z_{m}$

from the distribution $\Phi_{h,\alpha}$ , where $\mathrm{z}_{\iota’}=(x_{i}+y_{l})/h(i=$

$1,$ $\ldots,m)$ according to the above sampling procedure.
Let $a_{i}=$ $\lceil Nz_{i}1$ for every $i\in\{1, \ldots,m\}$ . Addi-
tionally, we choose an index $i_{0}’$ uniformly at random
from { $i$ : $x_{i}\not\in 0$ mod $p$}. Then, we compute $k\equiv$

$x_{i_{\acute{\mathfrak{d}}}}$ mod $p$ . The private key is $(d,k)$ and the public key
is $(a_{1}, \ldots,a_{m}, i_{0}’)$ .
Encryption: Let $\sigma\in\{0\ldots.,p-1\}$ be a plaintext.
We choose a uniformly random subset $S$ of $\{1, \ldots,m\}$ .
The ciphertext is $( \sum_{i\epsilon S}a_{i}+\lceil\sigma a_{i_{0}’}/p\rfloor)$ mod $N$.
Decryption: For a received ciphertext
$w\in\{0, \ldots,N-1\}$ , we compute $\tau=w/d$ mod 1. We
decrypt the ciphertext $w$ to $\lceil p\tau\rfloor k^{-1}$ mod $p$, where $k^{-1}$

is the inverse of $k$ in $\mathrm{Z}_{p}$ .
We omit the proof of the decryption errors since it

can be done by a quite similar analysis to [6]. We also
omit the security proof since the reduction is similar
as the one of $\mathrm{m}\mathrm{A}\mathrm{D}_{\mathrm{G}\mathrm{G}\mathrm{H}}$. The performance of our cryp-
tosystem $\mathrm{m}\mathrm{R}03$ is summarized as follows.

Theorem 3.2 (multi-bit version). For any constant
$r>0$. let $\delta(n)=\omega(n^{1+r}\sqrt{\log n})$ and let $p(n)$ be a
prime such that $2\leq p(n)\leq n^{r}$. The cryptosystem
$\mathrm{m}\mathrm{R}03$ encrypts a $\lfloor\log p(n)\rfloor$ -bit plaintext into an $8n^{3_{-}}$

bit ciphertext with decryption errorpmbability at most
$2^{-\Omega(\delta^{2}(n)/(n^{tr}m))}+2^{-\Omega(n)}$. The security of $\mathrm{m}\mathrm{R}03$ is based
on the worst case of $O(\delta(n)\sqrt{n})- \mathrm{u}\mathrm{S}\mathrm{V}\mathrm{P}$ . The size of a
public key is the same as that of the original one. The
size ofa private key is $\lceil\log p(n)\rceil$ plus that of the orig-
inal one.

Finally, we present a pseudo-homomorphic prop-
erty of our cryptosystem $\mathrm{m}\mathrm{R}03$ . Let $E_{\mathrm{m}}$ be the en-
cryption function of $\mathrm{m}\mathrm{R}03$ .
Theorem 3.3 (pseudo-homomorphism). Let $\delta(n)=$

$\omega(n^{1+r}\sqrt{\log n})$ . Also let $p(n)$ be a prime and $\kappa$ an in-
teger such that $\kappa p\leq n^{r}$ for any constant $r>0$. For
any $\kappa$ plaintexts $\sigma_{1},$

$\ldots,$
$\sigma_{\kappa}(0\leq\sigma_{i}\leq p-1)$, we can

decrypt the sum of $\kappa$ ciphertexts $\sum_{i=1}^{l}E_{\mathrm{m}}(\sigma_{i})$ mod $N$

into $\sum_{i--1}^{\kappa}\sigma_{i}$ mod $p$ with decryption error probability
at most $2^{-\Omega((\delta(n))^{2}/n^{2r}m)}$ . Moreover if there exist two
sequences ofplaintexts $(\sigma_{1}, \ldots, \sigma_{\kappa})$ and $(t_{1}, \ldots,\sigma_{K}’)$,
and a polynomial-time algorithm that distinguishes
between $\sum_{i=1}^{\kappa}E_{\mathrm{m}}(\sigma_{i})$ mod $N$ and $\sum_{i\cdot 1}^{\kappa}E_{\mathrm{m}}(\sigma_{i}’)$ mod $N$

with its public key, then there exists a polynomial-time
algorithm that solves $O(\delta(n)\sqrt{n})\cdot \mathrm{u}\mathrm{S}\mathrm{V}\mathrm{P}$ in the worst
case with non-negligible probability.

4 A Multi-Bit Version of the Regev’05
Cryptosystem

The cryptosystem R05 proposed in 2005 [17] is also
constructed by using a variant of Gaussian distribu-

tions. Let $m=5(n+1)(2\log n+1)=\Theta(n\log n)$ and
$q(n)\in[n^{2},2n^{2}]$ be a prime. Let $r\in(\mathrm{O}, 1)$ be any con-
stant, which controls the trade-off between the size of
plaintext space and the hardness of underlying lattice
problems, and $p$ be an integer such that $p\leq n^{r}=o(n)$ ,
which is the size of the plaintext space in $\mathrm{m}\mathrm{R}05$ . $\mathrm{m}\mathrm{R}05$

can encrypt a plaintext in $\{0, \ldots,p-1\}$ into a cipher-
text of the same size as R05. We introduce a parameter
$\beta=\beta(n)=o(1/(n^{0.5+r}\log n))$ to control the distribu-
tion. The $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\beta(n)$ must satisfy $\beta(n)q(n)>2\sqrt{n}$.

As mentioned in Section 1, we omit the description
ofR05 and $\mathrm{m}\mathrm{R}05$ . We only stated the performance and
pseudo-homomorphic property of $\mathrm{m}\mathrm{R}05$ . The perfor-
mance of our cryptosystem $\mathrm{m}\mathrm{R}05$ is summarized as
follows.

Theorem 4.1 (multi-bit version). Let $p=p(n)$ be
an integer such that $p(n)\leq n^{r}$ for any constant
$0<r<1$ . The cryptosystem $\mathrm{m}\mathrm{R}05$ encrypts a
$\lfloor\log p(n)\rfloor$ -bit plaintext into an $(n+1)\lceil 1o\mathrm{g}q]$ -bit ci-
phertext with $dec\eta ption$ error probability at most
$2^{-\Omega(\iota/(\phi(n)n^{2r}))}+2^{-\Omega(n)}$ . The security $of\mathrm{m}\mathrm{R}05$ is based
on the worst case of $\mathrm{S}\mathrm{V}\mathrm{P}_{()_{(n/\beta(n)\rangle}}$ and $\mathrm{S}N\mathrm{P}_{\mathit{0}(n/\beta(n))}$ for
quantum polynomial-time algorithms. The size of the
public key and private key is the same as that of the
original one.

We present a pseudo-homomorphic property of our
cryptosystem $\mathrm{m}\mathrm{R}05$ . Let $E_{\mathrm{m}}$ be the encryption func-
tion of $\mathrm{m}\mathrm{R}05$.
Theorem 4.2 (pseudo-homomorphism). Let $p(n)$ and
$\kappa$ be integers such that $\kappa p\leq n^{r}$ for any constant
$0<r<1$ . For any $\kappa$ plaintexts $\sigma_{1},$ $\ldots.\sigma_{\kappa}(0\leq$

$\sigma;\leq p-1)$ , we can decrypt the sum of $\kappa$ ciphenexts
$\sum_{i=1}^{\kappa}E_{\mathrm{m}}(\sigma_{i})$ into $\sum_{i=1}^{\kappa}\sigma_{i}$ mod $p$ with decryption error
probability at most $2^{-\Omega(1/(\psi^{2}(n)n^{2r}))}$, where the addition
is defined over $\mathrm{Z}_{q}^{n}\mathrm{x}\mathrm{Z}_{q}$. Moreover, if there exist two
sequences ofplaintexts $(\sigma_{1}, \ldots,\sigma_{l})$ and $(\sigma_{1}’, \ldots, t_{\kappa})$,
and a polynomial-time algorithni that distinguishes
between $\sum_{i=1}^{\kappa}E_{\mathrm{m}}(\sigma_{i})$ and $\sum_{i--1}^{\kappa}E_{\mathrm{m}}(\sigma_{i}’)$ with its public
key, then there exists a polynomial-time quantum algo-
rithm that solves $\mathrm{S}\mathrm{V}\mathrm{P}_{\overline{O}(n/\beta(n))}$ and SIVP$\delta(n/\beta(n)\rangle$ in the
worst case with non-negligible probability.

5 A Multi-Bit Version of the Ajtai Cryp$\cdot$

tosystem
Let $F=(\mathrm{f}_{1}, \ldots,\mathrm{f}_{n})$ be a basis of a certain lat-

tice which is given in [2]. We also denote by $U_{\mathcal{P}(F)}$

the uniform distribution on $\mathcal{P}(F)$ . We suppose that
$\eta(n)=\omega(\sqrt{\log n})$ is a parameter to control a trade-
off between decryption errors and size of plaintexts.
Let $r>0$ be any constant, which controls the trade-
off between the size of plaintext space and the hard-
ness of underlying lattice problems. Let a prime $p$ be
the size of plaintext space such that $p<n^{r/6}/(8\eta(n))$ .
As mentioned in Section 1, we omit the description
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of A05 and $\mathrm{m}\mathrm{A}05$ . We only stated the performance
of $\mathrm{m}\mathrm{A}05$ and the pseudo-homomorphic property of
$\mathrm{m}\mathrm{A}05’$ . The performance of our cryptosystem $\mathrm{m}\mathrm{A}05$

is summarized as follows.

Theorem 5.1 (multi-bit version). The cryptosystem
$\mathrm{m}\mathrm{A}05$ encrypts a $\lfloor\log p(n)\rfloor$ -bit plaintext into an
$O(n\log n)$-bit ciphertext with decryption error proba-
bility at most $2^{-\Omega(\eta^{2}(n))}$, where $p<n^{r/6}/(8\eta(n))$ . The
size ofthe public key is the same as that ofthe original
one. The size of the private key is $\lceil\log p\rceil$ plus that of
the original one.

We next discuss the pseudo-homomorphic property
of $\mathrm{m}\mathrm{A}05$ . We consider a modifled version $\mathrm{m}\mathrm{A}05’$ of
our multi-bit $\mathrm{m}\mathrm{A}05$ is the same cryptosystem as $\mathrm{m}\mathrm{A}05$

except that the precision is $2^{-n10_{l^{\hslash}}}$ for its ciphertexts
instead of $1/n$ . This modified version $\mathrm{m}\mathrm{A}05’$ actually
has the pseudo-homomorphism. We denote by $E_{\mathrm{m}}$ the
encryption function of $\mathrm{m}\mathrm{A}05’$ .
Theorem 5.2 (pseudo-homomorphism). Let $p$ be
a prime and $\kappa$ be an integer such that $\kappa p$ $<$

$n^{r/6}/(8\eta(n))$ for any constant $r>0$. We can decrypt
the sum of $\kappa$ ciphertexts $\sum_{i=1}^{l}E_{\mathrm{m}}(\sigma_{i})$ mod $P(F)$ into
$\sum_{i=1}^{\kappa}\sigma_{l}$ mod $p$ with decryption error probability at
most $2^{-\Omega(\eta^{2}(n))}$ . Moreover if there exist two sequences
of plaintexts $(\sigma_{1}\ldots.,\sigma_{\kappa})$ and $(\sigma_{1}’, \ldots,\sigma_{\kappa}’)$, and a
polynomial-time algorithm that distinguishes between
$\sum_{i-1}^{l}E_{\mathrm{m}}(\sigma_{i})\mathrm{m}\mathrm{o}\mathrm{d} P(F)$ and $\Sigma_{i=1}^{\kappa}E_{\mathrm{m}}(\sigma_{l}’)\mathrm{m}\mathrm{o}\mathrm{d} P(F)$

with its public $kv$. then there exists a polynomial-time
algorithm that distinguishes between $E_{\mathrm{m}}(0)$ of $\mathrm{m}\mathrm{A}05’$

and $U_{P(F)}$ with the same public key.
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