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Abstract
Boosting is a general method to construct a highly accurate classifier by combining “weakly” ac-

curate ones. Smooth boosting algorithms are variants of boosting methods which handle only smooth
distributions on the data. They are proved to be noise-tolerant and can be used in the “boosting by
filtering” scheme, which is suitable for learning over huge data. However, current smooth boosting
algorithms have rooms for improvements: A non-smooth boosting algorithm, InfoBoost can perform
more efficiently than typical boosting algorithmns by using an information-theoretic criterion for choosing
hypotheses. In this paper, we propose a new smooth boosting algorithm with an information-theoretic
criterion and we show that it inherits the advantages of two approaches, smooth boosting and InfoBoost.

1 Introduction

In recent years, huge data have become available
due to the development of computers and the Inter-
net. In knowledge discovery and machine learning
tasks, size of such huge data can reach hundreds
of gigabytes or more. So it is important to make
knowledge discovery or machine learning algorithms
scalable. Sanipling is one of effective techniques to
deal with large data. That is, instead of using whole
the data, we can obtain a sumniary of the data by
sampling randomly from it. There are many re-
sults on sampling techniques (see, e.g., [4]) and
applications to data mining tasks such as decision
tree learning [6], support vector machine [2], and
boosting $[4, 5]$ .

Especially, boosting is simple and efficient learn-
ing method among machine learning algorithms.
The basic idea of boosting is combining many
slightly accurate hypotheses(which we call “weak”
hypotheses) into a highly accurate one. Originally,
boosting was invented under the boosting by filter-
ing framework, where the booster can sample ex-
amples randomly from the whole data [16, $\eta$ . The
main advantage of the filtering framework is that
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the learner need to store less examples. In general,
the learner have to store many example enough in
order to evaluate its final hypothesis. On the other
hand, in boosting by framework, the booster does
not have to store all sampled examples, but have
to keep examples only for learning weak hypothe
ses, which is much smaller than those for the final
hypotheses. So the boosting by filtering fiiamework
seems to fit learning tasks over huge data. However,
early boosting algorithms [16, $\eta$ which work in the
filtering framework were not practical because they
were not adaptive, i.e., they need the prior knowl-
edge on the accuracy of weak hypotheses.

Madaboost, a modification of $\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t}[8]$ , is the
first adaptive boosting algorithm which works in the
filtering framework [5]. Combining with adaptive
sampling methods [4], Madaboost is shown to be
more efficient than $\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{e}\mathrm{t}$ over huge data, while
keeping the prediction accuracy. By its nature of
updating scheme, MadaBoost is categorized as one
of (ismooth” boosting algorithms $[18, 9]$ , where the
name, smooth boosting, comes from the fact that
these boosting algorithms only deal with smooth
distributions over data (In contrast, for example,
$\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t}$ might construct exponentially skew dis-
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tributions over data). Smoothness of distributions
enables boosting algorithms to sample data effi-
ciently. Also, smooth boosting algorithms have the-
oretical guarantees for noise tolerance in the vari-
ous noisy learning settings, such as statistical query
model [5], malicious noise model [18] and agnostic
boosting [9].

However it seems that there is still room for im-
provements on smooth boosting. A non-smooth
boosting algorithm, InfoBoost [1] (which is a spe-
cial form of real $\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t}[17])$ , performs more
efficiently than other boosting algorithms in the
boosting by subsampling framework, where only a
bunch of data is given in advance. More precisely,
given hypotheses with error 1/2-7/2 $(0<\gamma<1)$ ,
typical boosting algorithms take $O(1/\gamma^{2})$ iterations
to learn sufficiently accurate hypothesis. On the
other hand, InfoBoost learns in from $O(1/\gamma)$ to
$O(1/\gamma^{2})$ iterations by taking advantage of the situ-
ation when weak hypotheses have low false positive
error $[10, 11]$ . So InfoBoost can be more efficient
at most by $O(1/\gamma)$ times.

The main difference between InfoBoost and other
boosting algorithms such as $\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{e}\mathrm{t}$ or Mad-
$\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t}$ is the criterion for choosing weak hypothe
ses. Typical boosting algorithms are designed to
choose hypotheses whose errors are nnnimum with
respect to given distributions. In contrast, In-
$\mathrm{f}\mathrm{o}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t}$ uses an information-theoretic criterion to
choose weak hypotheses. The criterion was previ-
ously proposed by Kearns and Mansour [12], and
also applied to boosting algorithms using decision
trees [12] and branching programs [14]. But, so far,
no smooth algorithm is known to have such the nice
property of InfoBoost.

In this paper, we modify one of smooth boost-
ing algorithms, $\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}[9]$ , as it is quite similar
to MadaBoost and yet simple to analyze. Our
modification is derived in a similar way that In-
$\mathrm{f}\mathrm{o}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t}$ is given. As a result, we propose a
new smooth boostimg algorithm with yet another
information-theoretic criterion. Our preliminary
experiments show that our modification, which we
call MadaFlat (Modification of $\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}$ ), outper-
forms MadaBoost in the filtering framework.

2 Preliminaries

2.1 Learning Model

We adapt the PAC learning model [19]. Let $\mathcal{X}$

be an instance space and let $\mathcal{Y}=\{-1, +1\}$ be a set
of labels. We assume an unknown target function
$f$ : $\mathcal{X}arrow \mathcal{Y}$. Further we assume that $f$ is contained
in a known class $F$ of functions from $\mathcal{X}$ to $\mathcal{Y}$ . Let $D$

be an unknown distribution over $\mathcal{X}$ . The learner has
an access to the example oracle $\mathrm{E}\mathrm{X}(f, D)$ . When
given a call from the learner, $\mathrm{E}\mathrm{X}(f, D)$ returns an
example $(x, f(x))$ where each $x$ is drawn randomly
according to $D$ . Let $\mathcal{H}$ be a hypothesis space,
or a set of functions from X to $\mathcal{Y}$ . We assume
that $\mathcal{H}\supset \mathcal{F}$ . For any distribution $D$ over X, er-
ror of hypothesis $h\in \mathcal{H}$ is defined as $\mathrm{e}\mathrm{r}\mathrm{r}_{D}(h)\mathrm{d}\mathrm{e}\mathrm{f}=$

$\mathrm{P}\mathrm{r}_{D}\{h(x)\neq f(x)\}$ . Let $S$ be a sample, a set of
examples $((x_{1}, f(x_{1}),$

$\ldots,$
$(x_{m}, f(x_{m})))$ . For any

sample $S$ , training error of hypothesis $h\in \mathcal{H}$ is
defined as $\overline{\mathrm{e}\mathrm{r}\mathrm{r}}_{S}(h)\mathrm{d}\mathrm{e}\mathrm{f}=|\{(x_{i}, f(x_{i})\in S|h(x_{t})\neq$

$f(x_{i})\}|/|S|$ .
Now we define PAC learnability as follows.

Deflnition 1 (Strong learning). A learning al-
gorithm $A$ is a strong leamer for $F$ if and only if,
for any $f\in F$ and any distribution $D$ , given $\vee c$ , $\delta$

$(0<\epsilon, \delta<1)$ , a hypothesis space $\mathcal{H}$ , and access to
the example oracle $\mathrm{E}\mathrm{X}(f, D)$ as inputs, $A$ outputs a
hypothesis $h\in \mathcal{H}$ such that $\mathrm{e}\mathrm{r}\mathrm{r}_{D}(h)=\mathrm{P}\mathrm{r}_{D}\{h(x)\neq$

$f(x)\}\leq\epsilon$ with probability at least 1–6.

On the other hand, an apparently weaker notion
of learning was proposed [16].

Deflnition 2 (Weak learning). A learning algo-
rithm $A$ is a weak leaner for $\mathcal{F}$ if and only if, for any
$f\in F$, given a hypothesis space $\mathcal{H}$ , and access to
the example oracle $\mathrm{E}\mathrm{X}(f.D)$ as inputs, $A$ outputs
a hypothesis $h\in \mathcal{H}$ such that err$D(h)\leq 1/2-\gamma/2$

for a fixed 7 $(0<\gamma<1)$ .

2.2 $\mathrm{B}o$osting Approai

Schapire proved that strong and weak PAC learn-
ability are equivalent to each other for the first
time [16]. Especially the technique to construct

58



a strong learner by using a weak learner is called
“boosting”. Basic idea of boosting is the follow-
ing: First, the booster trains a weak learner with
respect to different distributions $D_{1},$

$\ldots$ , $D_{T}$ over
the domain $\mathcal{X}$ , and gets different “weak“ hypothe-
ses $h_{1},$

$\ldots$ , $h_{T}$ such that err$D_{f}(h_{t})\leq 1/2-\gamma_{t}/2$ for
each $t=1,$ $\ldots,$

$T$. Then the booster combines weak
hypotheses $h_{1},$

$\ldots,$
$h_{T}$ into a final hypotheses $h_{final}$

satisfying err$D(h_{fina\iota})\leq\epsilon$ .

Definition 3. Let $D$ and $D’$ be any distributions
over $\mathcal{X}$ . We say that $D’$ is $\lambda$-smooth with respect
to $D$ if $\sup_{X\in \mathcal{X}}D’(x)/D(x)\leq\lambda$ .

The smoothness parameter A has crucial roles in
robustness of boosting algorithms [5, 18, 9]. Also,
it affects the efficiency of sampling methods. For
example, by rejection sampling, we use $1/\lambda$ calls of
$EX(f, D)$ on average to simulate a call of $\mathrm{E}\mathrm{X}(f, D’)$

for a distribution $D’$ that is A-smooth $\mathrm{w}$ . $\mathrm{r}$ . $\mathrm{t}$ . $D$ .
Subsampling versus Filtering We consider
two frameworks of boosting, boosting by subsam-
pling and boosting by filtering. In the subsam-
pling framework, the booster is given a sample
$S=((x_{1}, f(x_{1}),$

$\ldots,$
$(x_{m}, f(x_{m})))$ in advance. The

booster constructs the final hypothesis whose train-
ing $\overline{\mathrm{e}\mathrm{r}\mathrm{r}}s(h_{f\dot{*}nal})\leq\epsilon$ by training the weak learner
over the given sample $S$ . Then the generaliza-
tion error is estimated by using arguments on VC-
dimensions or margin (E.g., see [15]). For exam-
ple, for typical boosting algorithms, $\mathrm{e}\mathrm{r}\mathrm{r}_{D}(h_{f:na1})\leq$

$\overline{\mathrm{e}\mathrm{r}\mathrm{r}}s(h_{f1na\mathrm{t}})+\tilde{O}(\sqrt{T\log|W|}/m)$ 1 with high prob-
ability, where $T$ is the size of the final hypotheses,
i.e., the number of weak hypotheses combined in
$h_{f_{t\hslash a\iota}}$ .

In the filtering framework, on the other hand,
the booster deal with the whole instance space $\mathcal{X}$

through $\mathrm{E}\mathrm{X}(f, D)$ . By using statistics obtained
from calls of $\mathrm{E}\mathrm{X}(f, D)$ , the booster tries to mini-
mizes err$D(h_{fina\iota})$ directly. There are two advan-
tages of the boosting by filtering over the boosting
by subsampling. First of all, the space complexity
is reduced. Roughly speaking, the booster needs
to store $\tilde{O}(T\log|W|)$ examples in the subsampling
framework, whereas, the booster only need to store
$\tilde{O}(\log|\dagger V|)$ examples in the filtering framework.
Second, the booster does not have to determine the
size of sample $S$ a priori. There advantages are
preferable for learning over huge data.

Smooth Boosting Smooth boosting algorithms
only deal such distributions $D_{1},$

$\ldots,$
$D_{t}$ that are

“smooth” with respect to the original distribution
$D$ . We define the following measure of smoothness.

1In the $\overline{O}(.q(n))$ notation, we neglect poly $(1\mathrm{o}g(n))$ terms.

Our Assumption and Technical Goal In the
rest of the paper, we assume the weak hypothesis
assumption on $W$ as follows: The learner is given a
finite set $W$ of hypotheses such that for any distri-
bution $D’$ over X, there exists a hypothesis $h\in W$

satisfying $\mathrm{e}\mathrm{r}\mathrm{r}_{D’}(h)\leq 1/2-\gamma/2(0<\gamma<1)$ .
Now our technical goal is to construct an efficient

smooth boosting algorithm which works in both the
subsampling and the filtering framework.

3 $\mathrm{B}o$osting by Subsampling

In this section, we propose a modification of
$\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}$ in the subsampling framework. Let

$\ell(x)=\{$

1, $x\geq 0$

$x-10,$ ’ $x\leq-1-1<x.<0$

The description of our modification is given in
Figure 3 Given a sample $S=((x_{1}, f(x_{1}))$ , .. . ,
$(x_{m}, f(x_{m})))$ , and a combined hypothesis $H_{t}=$

$\sum_{j=1}^{t}\alpha_{j}[h_{j}(x)]h_{j}(x)$ at iteration $t$ , pseudo gain of
hypothesis $h$ is given as follows:

$\Delta_{t}(h)$ $=$ $\frac{m_{h,+}}{m}\mu_{h,t},[+1]^{2}\gamma_{h,t}[+1]^{2}$

$+ \frac{m_{h,-}}{m}\mu_{h,t}[-1]^{2}\gamma_{h,t}[-1]^{2}$ .

where

$\mu_{h,t}[\pm 1]=\frac{1}{m_{h,\pm}}.\sum_{:h(x_{:})=\pm 1}\ell(-f(x:)H_{t}(x.))$,

$\gamma_{h.\ell}[\pm 1]=\frac{\sum_{:.h(X.)=\pm 1}f(x.)h(x:)D_{\mathrm{t}}(i)}{\sum_{i\cdot h(l_{l})=\pm 1}D_{f}(i)}$ ,

$D,(x_{i})= \frac{\ell(-f(x_{i})H_{t}(x_{i}))}{\sum_{i=1}^{m}\ell(-f(x_{*})H_{t}(x.))}$,

and $m_{h,\pm}=|\{i : h(x_{i})=\pm 1\}|$ (In the case
when $m_{h,\pm}$ is zero, we assume that $\mu_{h.t}[\pm 1]=$

$\gamma_{h.t}[\pm 1]=0)$ . At each iteration $t$ , our algorithm
MadaFlat chooses hypothesis $h$ that maximizes its
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$\mathrm{M}\mathrm{a}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}_{filt}(\epsilon, \delta, \mathrm{E}\mathrm{X}(f, D))$

begin
l.Let $H_{1}(x)=0;tarrow 1;\delta_{1}arrow\delta/4$ ;
2. while Pt $\geq\frac{4\ }{5}$ do

a) $(h_{t}, S_{t})arrow \mathrm{H}\mathrm{S}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}(1/2,\delta_{t})$ ;
b) $(\hat{\mu}_{t},\hat{\mu}_{t}[+1],\hat{\mu}_{f}[-1], \gamma_{\ell}[’+1],\hat{\gamma}_{\ell}[-1])$

$arrow \mathrm{e}\mathrm{m}\mathrm{p}\mathrm{i}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ estimates over $S_{t}$ ;
c) at $[+1]arrow\mu_{t}’[+1]’\gamma_{\mathrm{t}}[+1];\alpha_{\mathrm{t}}[-1]arrow\hat{\mu}_{t}[-1]\hat{\gamma}_{\mathrm{t}}[-1]$ ;
d) $H_{+1},(x)arrow H_{t}(x)+\alpha_{t}[h_{\mathrm{t}}(x)]h_{t}(x)_{1}$

e) $tarrow t+1;\delta_{t}arrow\delta/(2t(t+1))$ ;
end-while

3. Output the final hypothesis defined by
$h_{jinal(X)}=s\mathrm{i}\mathrm{g}\mathrm{n}(H_{T+1}(x))$ ;

end.

Figure 1: MadaFlat

pseudo gain $\Delta_{t}(h)$ . For simplicity, we denote $\Delta_{t}=$

$\Delta_{t}(h_{t}),$ $\mu_{t}[\pm 1]=\mu_{h_{\mathrm{t}},t}[\pm 1]$ and $\gamma_{t}=\gamma_{h_{\ell},t}$ . Further,
let us define $\mu_{t}=\sum_{i=1}^{m}\ell(-f(x_{i})H_{t}(x_{t}))/m$. For
each $h_{t}$ , let $\gamma\iota=\sum_{i=1}^{m}f(x_{i})h_{t}(x_{i})D_{t}(i)$ . Note that
$\mathrm{e}\mathrm{r}\mathrm{r}_{D},$ $(h_{t})=1/2-\gamma_{\ell}/2$ .

First, we show that the smoothness of distribu-
tions $D_{t}$ .
Proposition 1. During the execution ofMadaFlat,
each distribution $D_{t}(t\geq 1)$ is $1/\epsilon$-smooth with
respect to $D_{1}$ , the uniform distribution over $S$ .

Next, we prove the time complexity of MadaFlat.

Theorem 2. Assume the weak hypothesis assump-
tion on $W$. Then, MadaFlat outputs a final hy-
pothesis $h_{final}$ satisfying $\overline{\mathrm{e}\mathrm{r}\mathrm{r}}_{S}(h_{fina\mathrm{t}})\leq\epsilon$ within
$T=O(1/\epsilon^{2}\gamma^{2})$ iterations.

4 Boosting by Filtering

In this section, we propose $\mathrm{M}\mathrm{a}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}_{f;\iota\iota}$ in the
filtering framework. Let

$D_{\mathrm{t}}(x)= \frac{D(x)\ell(-f(x)H,(x))}{\sum_{X\in x^{D(x)\ell(-f(x)H_{t}(x))}}}$ .

We define $\Delta_{t}(h)=p_{h}\mu_{h,t}[+1]^{2}\gamma_{h,t}[+1]^{2}+(1$ -

$p_{h})\mu_{h,t}[-1]^{2}\gamma_{h,t}[-1]^{2}$ , where $p_{h}=\mathrm{P}\mathrm{r}_{D}\{h(x)$ $=$

$+1\}$ ,

$\mu_{h,t}[\pm 1]=\frac{\sum_{l\cdot h(l)=\pm 1}D(x)\ell(-f(x)H_{t}(x))}{\sum_{Xh(X\rangle=\pm 1}D(x)}$,

$\frac{\mathrm{H}\mathrm{S}\mathrm{e}1\mathrm{e}\mathrm{c}\mathrm{t}(\epsilon,\delta)}{\mathrm{b}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{n}}$

$marrow 0;Sarrow\emptyset;iarrow 1;\Delta_{g}arrow 1;\delta’arrow\delta/(2|W|)$ ;
repeat

$(x, j(x))arrow \mathrm{E}\mathrm{X}(f, D)_{j}$

$Sarrow S\cup(x, f(x));marrow m+1$ ;

if $m= \mathrm{r}.\frac{r_{1}\ln\# b}{\Delta_{g}}]$ then

if $\exists h\in W,\hat{\Delta}(h, S)\geq\Delta_{g}$ then return $h$ and $S$ ;
else Ag $arrow\Delta_{\mathit{9}}/2;iarrow i+1;\deltaarrow\delta/(i(i+1)|W|)$ ;

end-if
end-repeat

end.

Figure 2: $\mathrm{M}\mathrm{a}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}_{f1lt}$

and

$\gamma_{h,t}[\pm 1]=\frac{\sum_{x:h(X\rangle=\pm 1}-f(x)h(x)D(x)\ell(-f(x)H_{t}(x))}{\sum_{X.h(l)=\pm 1}D(x)\ell(-f(x)H_{t}(x))}$ ,

respectively. Also let

$\mu_{t}=\sum_{x\in x}D(x)\ell(-f(x)H_{t}(x))$

and $\gamma_{h,t}=p_{h}\gamma_{h,t}[+1]+(1-p_{h})\gamma_{h,t}[-1]$ . As in the
previous section, we use the similar notation: $\Delta_{t}=$

$\Delta_{t}(h_{t}),$ $p_{l}=p_{h_{\mathrm{t}}}$ , and $\gamma_{t}[\pm 1]=\gamma_{h,t}[\pm 1]$ . We denote
\^a as the empirical estimate of the parameter $a$ given
a sample $S_{t}$ . The description of $\mathrm{M}\mathrm{a}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}_{fut}$ is
given in Figure 2.

First, we prove the following lemma.

Lemma 1. Let $\hat{\Delta}_{t}=\hat{p}_{\ell}\hat{\mu}_{t}[+1]^{2}\hat{\gamma}_{\ell}[+1]^{2}+(1$ -

$\hat{p}_{t})\hat{\mu}_{t}[-1]^{2}\hat{\gamma}_{t}[-1]^{2}$ be the empirical estimate of $\Delta_{t}$

given $S_{t}$ . Then it holds for any $\epsilon(0<\epsilon<1)$ that

$D^{m}\mathrm{P}\mathrm{r}\{\hat{\Delta}_{t}\geq(1+\epsilon)\Delta_{t}\}\leq b_{1}e^{-\frac{2_{\Delta m}}{\mathrm{c}_{1}}}$

.
(1)
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and

$D^{m}\mathrm{P}\mathrm{r}\{\hat{\Delta}_{t}\leq(1-\epsilon \mathrm{i})\Delta_{t}\}\leq b_{1}e$ (2 (2)
$-\underline{c^{2}}\Delta m$

where $b_{1}\leq 8,$ $c_{1}\leq 600$ , and $c_{2}\leq 64$ ,

Then we $s$how the property of HSelect.

Lemma 2. Fix any step $t$ in MadaFlat. Let
$\Delta_{*}=\max_{h\in w}\Delta_{t}(h)$ . Then, the following state-
ments hold. (i) With probability at least 1 $-\mathit{6}_{!}$

$\mathrm{H}\mathrm{S}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}(\epsilon, \delta)$ outputs a hypothesis $h\in W$ such that
$\Delta_{t}(h)>(1-\epsilon)\Delta_{*}$ . (ii)The number of $\mathrm{c}\mathrm{a}\mathrm{U}s$ of
$EX(f,D)$ is

$O( \frac{\log\frac{1}{\delta}+\log|W|+\log\log\frac{1}{\Delta}}{\epsilon^{2}\Delta_{l}}$. $)$ .

Finally we obtain the following theorem.

Theorem 3. With probability at least $1-\delta$,

(i) $\mathrm{M}\mathrm{a}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}_{fi1t}$ output$s$ the final hypothesis
$h_{fina1}$ such that $\mathrm{e}\mathrm{r}\mathrm{r}_{D}(h_{final})\leq\epsilon$ ,

(ii) MadaFlatfilt terminates in $T=O(1/\epsilon^{2}\gamma^{2})$ it-
erations, and

(iii) the number of calls of $\mathrm{E}\mathrm{X}(f, D)$ is

$O( \frac{\log\frac{1}{\delta}+\log\frac{1}{\epsilon\gamma}+\log|W|+\log\log\frac{1}{\epsilon\gamma}}{\vee--2\gamma 4})$ .

5 Experimental Results

In this section, we show some experimental re-
sults on both artificial and real data sets. Our ex-
periments consists of two parts.

In the first part, we compare MadaFlat, Ad-
$\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t},$ InfoBoost, and MadaBoost. in the sub-
sampling framework.

For real data, we use some datasets from UCI ma-
chine learning repository [3]. Also, we prepare arti-
ficial data in order to examine behavior of boosting
algorithms in details. To do so we use r-of-k func-
tion as the target inction. An r-of-k function $f$

over boolean domain $\{-1, +1\}^{N}$ consists of $k$ rele-
vant variables and $f(x)=+1$ if at least $r$ of the $k$

relevant variables $\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{e}\mathrm{s}+1$ , otherwise $f(x)=-1$ .

Table 1: Test errors of boosting algorithms in the
subsampling framework.

Note that l-of-k function and k/2-of-k function cor-
respond to $k$-disjunction and $k$-majority, respec-
tively. In [11], it is shown that Info Boost can learn
r-of-k functions in $O(rk)$ steps whereas $\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t}$

needs $O(k^{2})$ steps when boolean literals are used as
weak hypotheses. For $r=1,3,5$ and $k=10$ , we fix
a r-of-k function over 100 boolean variables as the
target function, and we generate 10, 000 random ex-
amples labeled by each r-of-k function, where the
random examples are drawn so that positive and
negative examples are equally likely. The size of
data we use varies $\mathrm{h}\mathrm{o}\mathrm{m}$ about 3, 000 to 10, 000.

For each dataset, we prepare decision stumps and
the constant hypothesis +1 (i.e. the hypothesis
that always answers +1) as weak hypotheses. In
each dataset, each record have nruneric attributes
or binary attributes. For each numeric attribute, we
construct a decision stump with a threshold, which
$\mathrm{p}\mathrm{r}\text{\’{e}} \mathrm{i}\mathrm{c}\mathrm{t}\mathrm{s}+1$ or-l depending on whether the value
of the attribute is below the threshold or not. The
threshold is chosen so that the training error of the
decision stump is minimized. For each binary at-
tribute, we prepare the decision stump which an-
swers the value of the attribute.

We evaluate the boosting algorithms by cross val-
idation. We split each data randomly 10 times,
where each example is put into a training set with
probability 0.7 and a test set with with probability
0.3. For each training set, we run the boosting algo-
rithms in 100 steps and evaluate their final hypothe-
ses on the test data. The results are summarized in
Table 5.
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As shown in Table 5, performance of MadaFlat-
appears to be comparable to those of others on real
datasets. Also, MadaFlat is significantly better on
artificial datasets, as well as InfoBoost.

In the second part, we compare MadaBoost and
MadaFlatin the filtering framework. Basic settings
of our experiments in the filtering framework are
the same as those in the subsampling framework,
except the following: First of all, in order to ob-
tain large datasets, as is done in [4], we inflate the
datasets by preparing 100 copies of each record in
the data and changing their order randomly. Con-
sequently, the size of the inflated data varies ffom
300, 000 to 1, 000, 000. Second, instead of running
each algorithm in 100 steps, we run them until
they sample 10, 0000 examples. More precisely, we
run MadaFlatwith HSelect $(\epsilon, \delta)$ , where parameter
$\epsilon=0.5$ and $\delta=0.1$ are fixed. Also, we run Mad-
$\mathrm{a}\mathrm{B}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{t}$ with geometric $\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{S}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}$ whose parameters
are $s=2,$ $\epsilon=0.5$ and $\delta=0.1$ .

Third, note that we use heuristics for Lemma 1.
Although Lemma 1 gives a theoretical guarantee
to approximate the pseudo gain accurately enough,
it is too rough to use in practice. By using the
central limit theorem, it is not hard to show that A
is asymptotically distributed from $N(\Delta, \sigma^{2})$ , where
$\sigma\leq 5\Delta/m$ . This analysis implies that it is safe to
replace the condition on $m$ in HSelect with

$m= \lceil\frac{10(\ln\pi_{\delta’}^{1}--\frac{1}{2}\ln\ln_{\sqrt{8\delta’}^{1)}}}{\Delta_{g}}\rceil$ .

In the following experiments, we use this improved
heuristics.

Finally, in addition, we apply MadaBoost and
MadaFlatfor text categorization tasks on a collec-
tion of Reuters news (Reuters-215782). We use
the modified Apte $(” \mathrm{M}\mathrm{o}\mathrm{d}\mathrm{A}\mathrm{p}\mathrm{t}\mathrm{e}")$ split which con-
tains about 10, 000 news documents labeled with
topics. We choose two major topics (“$\mathrm{e}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{s}$

” and
“acquisitions”) and for each of two topics, we let
boosting algorithms classify whether a news doc-
ument belongs to the topic or not. As weak hy-
potheses, we prepare about 30, 000 decision stumps
corresponding to words. This experiment is done in
the same setting of previous ones, except that we do

2http: $//\mathrm{w}\mathrm{w}\mathrm{w}$.daviddlewis. $\mathrm{c}\mathrm{o}\mathrm{m}/\mathrm{r}\mathrm{o}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e}\mathrm{s}/\mathrm{t}\mathrm{e}\epsilon \mathrm{t}\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$

$/\mathrm{r}\mathrm{e}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}21578$ .

Table 2: Test errors of boosting algorithms in the
filtering framework.

not inflate this dataset. The results are summarized
in Table 5.

As indicated in Table 5 and Figure 3,
MadaFlatoften outperforms MadaBoost.

6 Summary and Rture Work

In this paper, we propose a modification of
$\mathrm{A}\mathrm{d}\mathrm{a}\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{t}$ that uses an information-theoretic crite-
rion for choosing hypotheses. Our preliminary ex-
periments show that our modification appears to
outperform MadaBoost in the filtering framework.
As future work, advantages and noise torelance of
MadaFlat are yet to be investigated theoretically.
Also, we plan to conduct experiments over much
larger data.

Acknowledgments

This work is supported in part by the $2\mathrm{l}\mathrm{s}\mathrm{t}$ cen-
tury COE program at Graduate School of Informa-
tion Science and Electrical Engineering in Kyushu
University.

References

[1] J. A. Aslam. Improving algorithnts for boost-
ing. In Proc. 13th Annu. Conference on Com-
put. Leaming Theory, pages 200-207, 2000.

[2] Jose L. Balcazar, Yang Dai, and Osamu
Watanabe. Provably fast training algorithms
for support vector ntachines. In Proceedings of

62



[9] D. Gavinsky. Optimally-smooth adaptive
boosting and application to agnostic learning.
Joumal of Machine Learning Research, 2003.

Figure 3: Test error of boosinting algorithms for
Reuters-21578 data. The test errors are averaged
over topics. The lower line corresponds to the test
error of h4adaF1at.

IEEE International Conference on Data ${\rm Min}-$

ing (ICDM’Ol), pages 43-50, 2001.

[3] C.L. Blake D.J. Newman, S. Hettich and C.J.
Merz. UCI repository of machine learning
databases, 1998.

[4] C. Domingo, R. Gavald\‘a, and O. Watanabe.
Adaptive sampling methods for scaling up
knowledge discovery algorithms. Data Mining
and Knowledge Discovery, $6(2):131-152$ , 2002.

[5] C. Domingo and O. Watanabe. MadaBoost:
A modification of AdaBoost. In Proceedings
of 13th Annual Conference on Computational
Learning Theory, pages 180-189, 2000.

[6] P. Domingos and G. Hulten. Mining high-
speed data streams. In Prvceedings of the Sixth
ACM Intemational Conference on Knowledge
Discovery and Data Mining, pages 71-80,
2000.

[7] Y. Freund. Boosting a weak learning algorithm
by majority. Information and Computation,
$121(2):256-285$, 1995.

[8] Y. Freund and R. E. Schapire:. A decision-
theoretic generalization of on-line learning and
an application to boosting. Joumal of Com-
puter and System Sciences, $55(1):119-139$ ,
1997.

[10] K. Hatano and M. K. Warmuth. Boosting ver-
sus covering. In Advances in Neural Informa-
tion Processing Systems 16, 2003.

[11] K. Hatano and O. Watanabe. Learning r-of-k
functions by boosting. In Prvceedings of the
15th Intemational Conference on Algorithmic
Leaming Theory, pages 114-126, 2004.

[12] M. Kearns and Y. Mansour. On the boost-
ing ability of top-down decision tree learning
algorithms. Joumal of Computer and System
Sciences, 58(1): 109-128, 1999.

[13] Michael J. Kearns, Robert E. Schapire, and
Linda Sellie. Towa.rd efficient agnostic learn-
ing. In COLT, pages 341-352, 1992.

[14] Yishay Mansour and David A. McAUaeter.
Boosting using branching programs. Joumal
of Computer and System Sciences, $64(1):103-$

112, 2002.

[15] R. Meir and G. Rdtsch. An introduction to
boosting and leveraging. In Advanced lectures
on machine leaming, pages 118-183. Springer-
Verlag New York, Inc, 2003.

[16] Robert E. Schapire. The strength of weak
learnability. Machine Leaming, $5(2):197-227$,
1990.

[17] Robert E. Schapire and Yoram Singer. Im-
proved boosting algorithms using confidence-
rated predictions. Machine Leaming,
$37(3):297-336$, 1999.

[18] R. A. Servedio. Smooth boosting and learning
with malicious noise. In 14th Annual Confer-
ence on Computational Leaming Theory, pages
473-489, 2001.

[19] L. G. Valiant. A theory of the learnable. Com-
munications of the ACM, $27(11):1134-1142$ ,
1984.

63


