Various Gauss fibers

広島大学大学院•理学研究科 数学専攻 深澤 知（Satoru Fukasawa） Department of Mathematics，Graduate School of Science， Hiroshima University

Abstract．We find examples and constructions of nontrivial fiber structures of Gauss maps in positive characteristic． 3 types of con－ structions of projective varieties were announced in this talk：（A）Gauss fibers are the given projective variety，（B）Gauss fibers are hyperplane sections of the given projective variety，and（C）Gauss map is the given rational map $g: \mathbf{A}^{n} \rightarrow \mathbf{A}^{n+1}$ with $d g \equiv 0$ ．Additional matters to the talk are included in this paper，for example，discussion of the differ－ ences of the constructions（A）－（C），and a generalization of Kaji and Rathmann＇s construction of Gauss map，related to（C），which is the given inseparable morphism $\mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ ．

1．Introduction

In this paper，the base field K is an algebraically closed field and varieties are integral algebraic schemes over K ．

Precisely，＂Gauss fibers＂mean（general）fibers of the Gauss maps． Definition of the Gauss map is as follows：

Definition 1．1．Let $X \subset \mathbf{P}^{N}$ be a projective variety．The Gauss map γ on X is the rational map from X to the Grassmannian $\mathbf{G}(\operatorname{dim} X, N)$ such that $\gamma(p)=\mathrm{T}_{p} X$ for any smooth point $p \in X$ ，where $\mathrm{T}_{p} X$ is the projective embedded tangent space．

Example 1．2．If $X \subset \mathbf{P}^{N}$ is the hypersurface given by F ，then

$$
\gamma=\left(\frac{\partial F}{\partial X_{0}}: \cdots: \frac{\partial F}{\partial X_{N}}\right): X \longrightarrow \mathbf{G}(N-1, N) \cong \mathbf{P}^{N^{*}} .
$$

Remark 1．3．The following facts are known．
(1) If char $K=0$ then general fibers of γ are linear spaces ($(1],[5],[14])$. (They are one-points when $\operatorname{dim}=0$.)
(2) If $\operatorname{char} K>0$ then there is a variety whose general fibers of γ are two or more distinct points.

The fact (1), when X is a curve, implies that multiple tangent lines (which have two or more distinct tangential points at X) are only finitely many. If X is a surface with $\operatorname{dim} \gamma(X)=1$ then we can classify X to the two kinds of ruled surfaces, a cone or a tangent surface. (A cone surface is the join of a curve and one point, and a tangent surface is covered by tangent lines of some curve.) These surfaces are called developable surfaces.
A. H. Wallace gave examples of the kind of (2) ([13]). KleimanLaksov also found interesting examples ([10]). It seems to be difficult to construct smooth varieties of this kind, but H. Kaji ([7], [8]), J. Rathmann ([12]) and A. Noma ([11]) constructed such varieties.

The author found the following example.
Example 1.4. $X Z^{6}-\left(Y^{6}+W^{6}\right) W=0 \subset \mathbf{P}^{3}$. If $\operatorname{char} K=2$ (resp. char $K=3$) then general Gauss fibers are plane elliptic curves (resp. plane smooth conics) ([2]).

In the author's best knowledge, this is the first example whose general Gauss fibers are not finite unions of linear spaces. Furthermore, the author found constructions of varieties with non-linear smooth Gauss fibers in positive characteristic.
(A) Construction of a projective variety whose general fibers of the Gauss map are the given projective variety ([3]).
(B) Construction of a projective variety whose general fibers of the Gauss map are hyperplane sections of the given (general) projective variety ([4]).
(C) Construction of a projective variety whose Gauss map is the given rational map $g: \mathbf{A}^{n} \rightarrow \mathbf{A}^{n+1}$ with $d g \equiv 0$.

The main purpose of this paper is an introduction of these constructions and explanation of differences of each constructions.

2. Construction (C)

Let $g=\left(g_{0}, \ldots, g_{n}\right): \mathbf{A}^{n} \rightarrow \mathbf{A}^{n+1}$ be the given rational map such that $\frac{\partial g_{j}}{\partial x_{i}} \equiv 0$ for all i, j, and let X be the closure of image of the rational map $i: \mathbf{A}^{n} \rightarrow \mathbf{P}^{n+1} ;\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(1: x_{1}: \cdots: x_{n}:\right.$ $\left.-g_{0}-x_{1} g_{1}-\cdots-x_{n} g_{n}\right)$. Then, $\mathbf{T}_{i(x)} X$ is spanned by the row vectors of the following matrices;

$$
\left(\begin{array}{ccccc}
1 & x_{1} & \ldots & x_{n} & -g_{0}-x_{1} g_{1}-\cdots-x_{n} g_{n} \\
0 & 1 & \ldots & 0 & -g_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -g_{n}
\end{array}\right) \sim\left(\begin{array}{cc}
& -g_{0} \\
-g_{1} \\
I_{n+1} & \vdots \\
& -g_{n}
\end{array}\right)
$$

where I_{n+1} is the $(n+1) \times(n+1)$ unit matrix. Hence $\gamma: X \longrightarrow \mathbf{P}^{n+1^{*}}$ is given by ($g_{0}: \cdots: g_{n}: 1$) and we have the following commutative diagram:

Remark 2.1. Example 1.4 is given by this construction: $n=2, g_{0}=$ $g_{2}=g_{3}=0$ and $g_{1}=x_{1}^{6}+x_{2}^{6}$ (with suitable coordinates).

If we consider the rational map $g: \mathbf{A}^{n} \rightarrow \mathbf{A}^{n+1}$ as the rational map g^{\prime} from \mathbf{P}^{n} to \mathbf{P}^{n+1}, then the above varieties can be got as the image of a suitable linear projection of the graph $\Gamma_{g^{\prime}} \subset \mathrm{P}^{n^{2}+3 n+1}$ of g^{\prime} which is embedded by Segre embedding.

Now we study the graph Γ_{g} of a rational map $g: \mathbf{P}^{n} \rightarrow \mathbf{P}^{m}$ with $d g \equiv 0$. Let $X \subset \mathrm{P}^{n m+n+m}$ be the image of the graph Γ_{g} by Segre embedding $\mathrm{P}^{n} \times \mathrm{P}^{m} \subset \mathrm{P}^{n m+n+m}$. Then we have the commutative
diagram

where h is an embedding given by $h(t)=\mathrm{P}^{n} \times t$. This implies that the Gauss map γ can be identified with the projection p_{2}, hence generically identified with g. Precisely, X is the closure of the image of the rational $\operatorname{map} \mathrm{P}^{n} \rightarrow \mathrm{P}^{n m+n+m}$:

$$
\left(1: x_{1}: \cdots: x_{n}\right) \mapsto\left(1: x_{1}: \cdots: x_{n}: g_{1}: \cdots: g_{m}: \cdots: x_{i} g_{j}: \cdots\right)
$$

We can check easily that varieties given by (C) can be got as the image of a suitable linear projection of the graph of $\mathbf{P}^{n} \rightarrow \mathrm{P}^{n+1}$.

The latter construction is a generalization of Kaji and Rathmann's for inseparable morphisms $\mathbf{P}^{1} \rightarrow \mathbf{P}^{1}([7],[12])$.
In the latter construction, it is very interesting that the Gauss map can be defined at any point of X, hence it is a morphism, and the tangent variety of X is $\mathbf{P}^{n} \times \mathrm{P}^{m}$ if g is dominant. The second fact implies that any Segre variety of two projective spaces is the tangent variety of some variety, and that the classical fact $X \subset \operatorname{SingTan} X$ in characteristic 0 ([1]) does not hold in positive characteristic.

3. Construction (A)

3.1. Concept of (A) or (B). Let $Y \subset \mathbf{P}^{k}$ be a given projective variety of codimension r. We move P^{k} "inseparably" in $\mathrm{P}^{N}(N \gg k)$. Then, Y moves in conformity to the projective space \mathbf{P}^{k}, and constructs X. We will have the diagram

such that η is inseparable (onto its image) and $\left.\eta\right|_{\mathbf{A}^{r} \times Y}$ is birational.

The idea for our construction (A) or (B) is based on "circular surfaces" ([6]) studied in differential geometry or real singularity theory. Conceptually, our variety with (A) could be called a "developable" circular surface.
3.2. Construction (A) (plane curve's case). Let $p>0$ be the characteristic, and let $\rho_{0}, \rho_{1}, \rho_{2}: \mathbf{A}^{1} \rightarrow \mathbf{P}^{3}$ be morphisms (which form a frame) as follows,

$$
\begin{aligned}
& \rho_{0}=\left(\begin{array}{llll}
1 & 0 & u & u^{p}
\end{array}\right) \\
& \rho_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right) \\
& \rho_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Let $\eta: \mathbf{A}^{1} \times \mathbf{P}^{2} \rightarrow \mathbf{P}^{3}$ be
$(u) \times\left(1: y_{1}: y_{2}\right) \mapsto\left[\rho_{0}+y_{1} \rho_{1}+y_{2} \rho_{2}\right]=\left(1: y_{1}: u+y_{2}: u^{p}\right)$.
We may assume that $y_{1}-a$ is a local parameter at a smooth point (1 : $a: b) \in Y$. (We can always take this coordinates by linear transforms of \mathbf{P}^{2}.) Let X be the closure of $\eta\left(\mathbf{A}^{1} \times Y\right)$, and let $\tau:=\left.\eta\right|_{\mathbf{A}^{1} \times Y}$: $\mathbf{A}^{1} \times Y \rightarrow X$. Then the following proposition holds.

Proposition 3.1. The morphism τ is birational, and $\mathrm{T}_{\tau(u, y)} X=\eta(u \times$ \mathbf{P}^{2}) for a general point (u, y).

Proof. The differentials of τ is given by the matrix

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & d y_{2} / d y_{1} & 0
\end{array}\right)
$$

(upper row is a list of the differentials by u, lower is the differentials by y_{1}). We find the separability of τ by this matrix and, because τ is generically one-to-one, birationality of τ.
$\mathbf{T}_{\tau(u, y)} X$ is spanned by the row vectors of the following matrices:

$$
\left(\begin{array}{cccc}
1 & y_{1} & u+y_{2} & u^{p} \\
0 & 0 & 1 & 0 \\
0 & 1 & d y_{2} / d y_{1} & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 0 & u^{p} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

This coincides with $\eta\left(u \times \mathbf{P}^{2}\right)$.
3.3. Generalized form. Let $k \geq 2$ and $r<k$ be positive integers, and let $Y \subset \mathbf{P}^{k}$ be a closed subvariety of codimension r. We take the morphisms $\rho_{0}, \ldots, \rho_{k}: \mathbf{A}^{r} \rightarrow \mathbf{P}^{k+r}$ as follows,

$$
\begin{aligned}
\rho_{0} & =\left(\begin{array}{llllllllll}
1 & 0 & \ldots & 0 & u_{1} & \ldots & u_{r} & u_{1}^{p} & \ldots & u_{r}^{p}
\end{array}\right) \\
\rho_{1} & =\left(\begin{array}{lllllllllll}
0 & 1 & \ldots & 0 & 0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right) \\
\vdots & \\
& \\
& \\
& \\
\rho_{k} & =\left(\begin{array}{llllllllll}
0 & 0 & \ldots & 0 & 0 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right)
\end{aligned}
$$

Remark 3.2. The form can be more generalized (see [3]). The base space \mathbf{A}^{r} which moves projective planes and the how of the moving $\left\{\rho_{i}\right\}$ are more free and formulated to some extent. Furthermore, we can also construct varieties whose general fibers are two or more Ys for the suitable moving $\left\{\rho_{i}\right\}$.

4. Construction (B)

4.1. Construction (B) (surface case). Let $p>0$ be the characteristic, and let $\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}: \mathbf{A}^{2} \rightarrow \mathbf{P}^{6}$ be morphisms (which form a frame) as follows:

$$
\begin{aligned}
& \rho_{0}=\left(\begin{array}{lllllll}
1 & 0 & 0 & u & u^{p} & v & 0
\end{array}\right) \\
& \rho_{1}=\left(\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & v
\end{array}\right) \\
& \rho_{2}=\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \rho_{3}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Let $\eta: \mathbf{A}^{2} \times \mathbf{P}^{3} \rightarrow \mathbf{P}^{6}$ be

$$
\begin{aligned}
(u, v) \times & \left(1: y_{1}: y_{2}: y_{3}\right) \mapsto\left[\rho_{0}+y_{1} \rho_{1}+y_{2} \rho_{2}+y_{3} \rho_{3}\right] \\
& =\left(1: y_{1}: y_{2}: u+y_{3}: u^{p}: v: v y_{1}\right) .
\end{aligned}
$$

We may assume that $y_{1}-a, y_{2}-b$ are a local parameter at a smooth point $(1: a: b: c) \in Y$. Let X be the closure of $\eta\left(\mathbf{A}^{2} \times Y\right)$, and let $\tau:=\left.\eta\right|_{\mathbf{A}^{2} \times Y}: \mathbf{A}^{2} \times Y \rightarrow X$. Then the following proposition holds.

Proposition 4.1. The morphism τ is birational, and γ is generically identified with the morphism $\mathbf{A}^{2} \times Y \rightarrow \mathbf{A}^{3}:(u, v) \times\left(y_{1}, y_{2}, y_{3}\right) \mapsto$ $\left(u^{p}, v, y_{1}\right)$.

Proof. The differentials of τ is given by the matrix

$$
\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & y_{1} \\
1 & 0 & d y_{3} / d y_{1} & 0 & 0 & v \\
0 & 1 & d y_{3} / d y_{2} & 0 & 0 & 0
\end{array}\right)
$$

(the first row is a list of the differentials by u, the second is by v, the third, fourth are the differentials by y_{1}, y_{2} respectively). We find the separability of τ by this matrix and, because τ is generically one-to-one, birationality of τ.
$\mathrm{T}_{\tau(u, y)} X$ is spanned by the row vectors of the following matrices:

$$
\left(\begin{array}{ccccccc}
1 & y_{1} & y_{2} & u+y_{3} & u^{p} & v & v y_{1} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & y_{1} \\
0 & 1 & 0 & d y_{3} / d y_{1} & 0 & 0 & v \\
0 & 0 & 1 & d y_{3} / d y_{2} & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & u^{p} & 0 & -v y_{1} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & y_{1} \\
0 & 1 & 0 & 0 & 0 & 0 & v \\
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

This implies our 2nd assertion.
Corollary 4.2. The set $\left\{\gamma^{-1}(p)\right\}_{p \in X_{\mathrm{sm}}}$ almost coincides with $\left\{Y_{\lambda}\right\}_{\lambda \in K}$, where Y_{λ} is the hyperplane section $Y \cap\left\{Y_{1}-\lambda Y_{0}=0\right\}$ (except the line $Y_{0}=Y_{1}=0$).

Example 4.3. Let $\operatorname{char} K>2$. Let $Y \subset \mathbf{P}^{3}$ be the surface given by $Y_{2}^{2} Y_{0}-Y_{3}\left(Y_{3}-Y_{0}\right)\left(Y_{3}-Y_{1}\right)$, and let Y_{λ} be the hyperplane section $Y \cap\left\{Y_{1}-\lambda Y_{0}=0\right\}$. Then, the set of all Gauss fibers of X almost coincides with $\left\{Y_{\lambda}\right\}$.
4.2. Generalized form. Let $k \geq 2$ and $r<k$ be positive integers, and let $Y \subset \mathbf{P}^{k}$ be a closed subvariety of codimension r. We take the morphisms $\rho_{0}, \ldots, \rho_{k}: \mathbf{A}^{r+1} \rightarrow \mathrm{P}^{k+r+2}$ as follows,

$$
\begin{aligned}
& \rho_{0}=\left(\begin{array}{cccccccccccc}
1 & 0 & \ldots & 0 & u_{1} & \ldots & u_{r} & u_{1}^{p} & \ldots & u_{r}^{p} & u_{r+1} & 0
\end{array}\right) \\
& \rho_{1}=\left(\begin{array}{lllllllllllll}
0 & 1 & \ldots & 0 & 0 & \ldots & 0 & 0 & \ldots & 0 & 0 & u_{r+1}
\end{array}\right) \\
& \vdots \\
& \\
& \rho_{k}=\left(\begin{array}{llllllllllll}
0 & 0 & \ldots & 0 & 0 & \ldots & 1 & 0 & \ldots & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

5. Elliptic curves as Gauss fibers

In this section, we discuss the differences of our constructions. We recall some properties of our constructions.

Remark 5.1. A variety X given by each constructions has the following properties:
(A) X is birational to the product of two some varieties and one of which varieties Y is the general fiber of the Gauss map.
(B) X is birational to the product of two some varieties and the differential $d \gamma$ of the Gauss map is not identically zero.
(C) X is rational and the differential $d \gamma$ of the Gauss map is identically zero.

Let char $K=p>3$. Then we get projective varieties whose Gauss fibers are elliptic curves if we take Y or g as follows.
(A) Let $Y \subset \mathbf{P}^{2}$ be given by $Y_{0}^{3}+Y_{1}^{3}+Y_{2}^{3}=0$.
(B) Let $Y \subset \mathrm{P}^{3}$ be given by $Y_{2}^{2} Y_{0}-Y_{3}\left(Y_{3}-Y_{0}\right)\left(Y_{3}-Y_{1}\right)=0$ (Example 4.3).
(C) Let $g: \mathbf{A}^{2} \rightarrow \mathbf{A}^{3}$ be $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}^{3 p}+x_{2}^{3 p}, 0,0\right)$.

We call X_{a} (resp. X_{b}, X_{c}) constructed by (A) (resp. (B), (C)) with the above Y (resp. Y, g).
X_{a} can not be constructed by (B) nor (C), because $d \gamma \equiv 0$ and this is not rational.
X_{b} can not be constructed by (A) nor (C), because isomorphic classes of Gauss fibers vary and $d \gamma$ is not identically 0 .
X_{c} can not be constructed by (A) nor (B), because Gauss fibers are elliptic curves and this is rational, and $d \gamma \equiv 0$.

References

[1] G. Fischer and J. Piontkowski, Ruled varieties. Friedr. Vieweg \& Sohn, Braunschweig, 2001.
[2] S. Fukasawa, Developable varieties in positive characteristic, Hiroshima Math. J., 35(2005), 167-182.
[3] S. Fukasawa, Varieties with non-linear Gauss fibers, Math. Ann., 334(2006), 235-239.
[4] S. Fukasawa, Varieties with nonconstant Gauss fibers, to appear in Hiroshima Math. J.
[5] P. Griffiths and J. Harris, Algebraic geometry and local differential geometry, Ann. Sci. École Norm. Sup. (4) 12(1979), 355-452.
[6] S. Izumiya, K. Saji and N. Takeuchi, Circular surfaces, preprint, EPrint Series of Department of Mathematics, Hokkaido University.
[7] H. Kaji, On the tangentially degenerate curves, J. London Math. Soc. (2), 33(1986), 430-440.
[8] H. Kaji, On the Gauss maps of space curves in characteristic p, Compositio Math., 70(1989), 177-197.
[9] S. L. Kleiman, Tangency and duality. CMS Conf. Proc. 6 (Proc. 1984 Vancouver Conf. in Alg. Geom.), 163-226, Amer. Math. Soc., 1986.
[10] S. L. Kleiman, Multiple tangents of smooth plane curves (after Kaji), Algebraic geometry: Sundance 1988, 71-84, Contemp. Math., 116, Amer. Math. Soc., Providence, RI, 1991.
[11] A. Noma, Gauss maps with nontrivial separable degree in positive characteristic, J. Pure Appl. Algebra, 156(2001), 81-93.
[12] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann., 276(1987), 565-579.
[13] A. H. Wallace, Tangency and duality over arbitrary fields, Proc. London Math. Soc. (3), 6(1956), 321-342.
[14] F. L. Zak, Tangents and secants of algebraic varieties. Transl. Math. Monographs, 127. American Mathematical Society, Providence, RI, 1993.

Department of Mathematics, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan

E-mail address: sfuka@hiroshima-u.ac.jp

