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ABSTRACT. We find examples and constructions of nontrivial fiber
structures of Gauss maps in positive characteristic. 3 types of con-
structions of projective varieties were announced in this talk: (A) Gauss
fibers are the given projective variety, (B) Gauss fibers are hyperplane
sections of the given projective variety, and (C) Gauss map is the given
rational map $g:\mathrm{A}^{n}--*\mathrm{A}^{n+1}$ with $dg\equiv 0$ . Additional matters to the
talk are included in this paper, for example, discussion of the differ-
ences of the constructions $(\mathrm{A})-(\mathrm{C})$ , and a generalization of Kaji and
Rathmann’s construction of Gauss map, related to (C), which is the
given inseparable morphism $\mathrm{P}^{1}arrow \mathrm{P}^{1}$ .

1. INTRODUCTION

In this paper, the base field $K$ is an algebraically closed field and
varieties are integral algebraic schemes over $K$ .

Precisely, “Gauss fibers” mean (general) fibers of the Gauss maps.
Definition of the Gauss map is as follows:

Definition 1.1. Let $X\subset \mathrm{P}^{N}$ be a projective variety. The Gauss map
$\gamma$ on $X$ is the rational map from $X$ to the Grassmannian $\mathrm{G}(\dim X, N)$

such that $\gamma(p)=\mathrm{T}_{p}X$ for any smooth point $p\in X_{f}$ where $\mathrm{T}_{p}X$ is the
projective embedded tangent space.

Example 1.2. If $X\subset \mathrm{P}^{N}$ is the hypersurface given by $F_{f}$ then

$\gamma=(\frac{\partial F}{\partial X_{0}}$ :. .. : $\frac{\partial F}{\partial X_{N}}$) : $X–*\mathrm{G}(N-1, N)\cong \mathrm{P}^{N^{*}}$

Remark 1.3. The following facts are known.
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(1) IfcharK $=0$ then general fibers $of\gamma$ are linear spaces $([1],[5],[14])$ .

(They are one-points when $\dim=0.$)
(2) If charK $>0$ then there is a variety whose general fibers of $\gamma$

are two or more distinct points.

The fact (1), when $X$ is a curve, implies that multiple tangent lines
(which have two or more distinct tangential points at $X$ ) are only
finitely many. If $X$ is a surface with $\dim\gamma(X)=1$ then we can classify
$X$ to the two kinds of ruled surfaces, a cone or a tangent surface. (A

cone surface is the join of a curve and one point, and a tangent surface
is covered by tangent lines of some curve.) These surfaces are called
developable surfaces.

A. H. Wallace gave examples of the kind of (2) ([13]). Kleiman-
Laksov also found interesting examples ([10]). It seems to be difficult
to construct smooth varieties of this kind, but H. Kaji $([7],[8])$ , J. Rath-
mann ([12]) and A. Noma ([11]) constructed such varieties.

The author found the following example.

Example 1.4. $XZ^{6}-(\mathrm{Y}^{6}+W^{6})W=0\subset \mathrm{P}^{3}$ . If charK $=2$ (resp.

char$K=3$) then general Gauss fibers are plane elliptic curves (resp.

plane smooth conics) $\mathfrak{n}2$]).

In the author’s best knowledge, this is the first example whose gen-
eral Gauss fibers are not finite unions of linear spaces. FUrthermore, the
author found constructions of varieties with non-linear smooth Gauss
fibers in positive characteristic.

(A) Construction of a projective variety whose general fibers of the
Gauss map are the given projective variety ([3]).

(B) Construction of a projective variety whose general fibers of the
Gauss map are hyperplane sections of the given (general) pro-
jective variety ([4]).

(C) Construction of a projective variety whose Gauss map is the
given rational map $g:\mathrm{A}^{n}--*\mathrm{A}^{n+1}$ with $dg\equiv 0$ .
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The main purpose of this paper is an introduction of these construc-
tions and explanation of differences of each constructions.

2. CONSTRUCTION (C)

Let $g=(g_{0}, \ldots, g_{n})$ : $\mathrm{A}^{n}--\star \mathrm{A}^{n+1}$ be the given rational map such
that $\overline{\partial}x_{1}\partial_{\dot{arrow}’ g}\equiv 0$ for all $i,j$ , and let $X$ be the closure of image of the
rational map $i$ : $\mathrm{A}^{n}--*\mathrm{P}^{n+1}$ ; $(x_{1}, \ldots, x_{n})--*(1$ : $x_{1}$ :.. . : $x_{n}$ :
$-g_{0}-x_{1}g_{1}$ $–..-x_{n}g_{n})$ . Then, $\mathrm{T}_{i(x)}X$ is spanned by the row vectors
of the following matrices;

$\sim(I_{n+1}$ $\overline{=}_{g_{n}}^{g_{1}}:.g0)$

where $I_{n+1}$ is the $(n+1)\cross(n+1)$ unit matrix. Hence $\gamma$ : $X–*\mathrm{P}^{n+1^{*}}$

is given by $(g_{0}$ :. . . : $g_{n}$ : 1 $)$ and we have the following commutative
diagram:

$\mathrm{A}^{n}$ $–*g$ $\mathrm{A}^{n+1}$

$\downarrow$ 1
$X$ $–*\gamma$ $\mathrm{P}^{n+1^{*}}$

Remark 2.1. Example 1.4 is given by this construction: $n=2,$ $go=$

$g_{2}=g_{3}=0$ and $g_{1}=x_{1}^{6}+x_{2}^{6}$ (with suitable coordinates).

If we consider the rational map $g:\mathrm{A}^{n}--\star \mathrm{A}^{n+1}$ as the rational map
$g’$ from $\mathrm{P}^{n}$ to $\mathrm{P}^{n+1}$ , then the above varieties can be got as the image
of a suitable linear projection of the graph $\Gamma_{g’}\subset \mathrm{P}^{n^{2}+3n+1}$ of $g’$ which
is embedded by Segre embedding.

Now we study the graph $\Gamma_{g}$ of a rational map $g$ : $\mathrm{P}^{n}--*\mathrm{P}^{m}$ with
$dg\equiv 0$ . Let $X\subset \mathrm{P}^{nm+n+m}$ be the image of the graph $\Gamma_{\mathit{9}}$ by Segre
embedding $\mathrm{P}^{n}\cross \mathrm{P}^{m}\subset \mathrm{P}^{nm+n+m}$ . Then we have the commutative
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diagram

$\Gamma n$ $\cong$ $X$

$1$

$\mathrm{I}\gamma$

$\mathrm{Y}$

$\llcorner h+$ $\mathrm{G}(n, nm+n+m)$

where $h$ is an embedding given by $h(t)=\mathrm{P}^{n}\cross t$ . This implies that the

Gauss map $\gamma$ can be identified with the projection $p_{2}$ , hence generically
identified with $g$ . Precisely, $X$ is the closure of the image of the rational
map $\mathrm{P}^{n}--*\mathrm{P}^{nm+n+m}$ :

$($ 1 : $x_{1}$ :. .. : $x_{n})|\Rightarrow(1$ : $x_{1}$ :. . . : $x_{n}$ : $g_{1}$ :. .. : $g_{m}$ : $\cdots$ : $x_{i}g_{j}$ :... $)$ .

We can check easily that varieties given by (C) can be got as the image

of a suitable linear projection of the graph of $\mathrm{P}^{n}--*\mathrm{P}^{n+1}$ .
The latter construction is a generalization of Kaji and Rathmann’s

for inseparable morphisms $\mathrm{P}^{1}arrow \mathrm{P}^{1}([7],[12])$ .
In the latter construction, it is very interesting that the Gauss map

can be defined at any point of $X$ , hence it is a morphism, and the

tangent variety of $X$ is $\mathrm{P}^{n}\cross \mathrm{P}^{m}$ if $g$ is dominant. The second fact
implies that any Segre variety of two projective spaces is the tangent

variety of some variety, and that the classical fact $X\subset$ SingTanX in

characteristic $0([1])$ does not hold in positive characteristic.

3. CONSTRUCTION (A)

3.1. Concept of (A) or (B). Let $\mathrm{Y}\subset \mathrm{P}^{k}$ be a given projective

variety of codimension $r$ . We move $\mathrm{P}^{k}$ “inseparably” in $\mathrm{P}^{N}(N>>k)$ .
Then, $\mathrm{Y}$ moves in conformity to the projective space $\mathrm{P}^{k}$ , and constructs
X. We will have the diagram

$\mathrm{A}^{r}\cross \mathrm{P}^{k}$ $arrow^{\eta}$ $\mathrm{P}^{N}$

$\cup$ $\cup$

$\mathrm{A}^{r}\cross \mathrm{Y}$

$\eta|_{\mathrm{A}^{f}\mathrm{x}Y}arrow$

$X$

such that $\eta$ is inseparable (onto its image) and $\eta|_{\mathrm{A}^{f}\cross \mathrm{Y}}$ is birational.
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The idea for our construction (A) or (B) is based on “circular sur-
faces” ([6]) studied in differential geometry or real singularity theory.

Conceptually, our variety with (A) could be called a “developable”

circular surface.

3.2. Construction (A) (plane curve’s case). Let $p>0$ be the
characteristic, and let $\rho_{0},$ $\rho_{1},$ $\rho_{2}$ : $\mathrm{A}^{1}arrow \mathrm{P}^{3}$ be morphisms (which form

a frame) as follows,

$\rho_{0}$ $=$ $(1 0 u u^{p})$

$\rho_{1}$ $=$ $(0 1 0 0)$
$\rho_{2}$ $=$ $(00 1 0)$

Let $\eta$ : $\mathrm{A}^{1}\cross \mathrm{P}^{2}arrow \mathrm{P}^{3}$ be

$(u)\cross(1 : y_{1} : y_{2})\vdasharrow[\rho_{0}+y_{1}\rho_{1}+y_{2}\rho_{2}]=(1 : y_{1} : u+y_{2} : u^{p})$ .

We may assume that $y_{1}-a$ is a local parameter at a smooth point (1 :
$a:b)\in Y.$ (We can always take this coordinates by linear transforms
of $\mathrm{P}^{2}.$ ) Let $X$ be the closure of $\eta(\mathrm{A}^{1}\cross Y)$ , and let $\tau:=\eta|_{\mathrm{A}^{1}\mathrm{x}Y}$ :
$\mathrm{A}^{1}\cross Yarrow X$ . Then the following proposition holds.

Proposition 3.1. The morphism $\tau$ is birational, and $\mathrm{T}_{\tau(u,y)}X=\eta(u\cross$

$\mathrm{P}^{2})$ for a general point $(u, y)$ .

Proof. The differentials of $\tau$ is given by the matrix

(upper row is a list of the differentials by $u$ , lower is the differentials
by $y_{1}$ ). We find the separability of $\tau$ by this matrix and, because $\tau$ is
generically one-to-one, birationality of $\tau$ .

$\mathrm{T}_{\tau(u,y)}X$ is spanned by the row vectors of the following matrices:

$\sim$
This coincides with $\eta(u\cross \mathrm{P}^{2})$ . $\square$
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3.3. Generalized form. Let $k\geq 2$ and $r<k$ be positive integers,
and let $\mathrm{Y}\subset \mathrm{P}^{k}$ be a closed subvariety of codimension $r$ . We take the
morphisms $\rho_{0},$ $\ldots$ , $\rho_{k}$ : $\mathrm{A}^{r}arrow \mathrm{P}^{k+r}$ as follows,

$\rho_{0}=$
$($ 1 $0$ . . . $0u_{1}$ . . . $u_{r}$

$u_{1}^{p}$ . . . $u_{r}^{p})$

$\rho_{1}=$ $(0$ 1 . .. $0$ $0$ . . . $0$ $0$ . . . $0)$

:.
$\rho_{k}=$ $(00$ . .. $0$ $0$ . . . 1 $0$ . . . $0)$

Remark 3.2. The form can be more generalized (see [3]). The base
space $\mathrm{A}^{f}$ which move8 projective planes and the how of the moving
$\{\rho_{i}\}$ are more free and formulated to some extent. Furthermore, $we$

can also construct varieties whose general fibers are two or more $Ys$

for the suitable moving $\{\rho_{i}\}$ .

4. CONSTRUCTION (B)

4.1. Construction (B) (surface case). Let $p>0$ be the charac-
teristic, and let $\rho_{0},$ $\rho_{1},$ $\rho_{2},$ $\rho_{3}$ : $\mathrm{A}^{2}arrow \mathrm{P}^{6}$ be morphisms (which form a
frame) as follows:

$\rho_{0}$ $=$ $(1 0 0 uu^{p} v 0)$

$\rho_{1}$ $=$ $(0 1 0 0 0 0 v)$
$\rho_{2}$ $=$ $(0 0 1 0 0 0 0)$
$\rho_{3}$ $=$ $(0 0 0 1 0 0 0)$

Let $\eta$ : $\mathrm{A}^{2}\cross \mathrm{P}^{3}arrow \mathrm{P}^{6}$ be

$(u, v)\cross(1 : y_{1} : y_{2} : y_{3})\vdash+[\rho_{0}+y_{1}\rho_{1}+y_{2}\rho_{2}+y_{3}\rho_{3}]$

$=(1:y_{1} : y_{2} : u+y_{3} : u^{p} : v:vy_{1})$ .

We may assume that $y_{1}-a,$ $y_{2}-b$ are a local parameter at a smooth
point $($ 1 : $a$ : $b$ : $c)\in$ Y. Let $X$ be the closure $\mathrm{o}\mathrm{f}\eta(\mathrm{A}^{2}\cross Y)$ , and let
$\tau:=\eta|_{\mathrm{A}^{2_{\mathrm{X}\mathrm{Y}}:}}\mathrm{A}^{2}\cross Yarrow X$. Then the following proposition holds.

Proposition 4.1. The morphism $\tau$ is birational, and $\gamma$ is generically

identified with the morphism $\mathrm{A}^{2}\cross \mathrm{Y}arrow \mathrm{A}^{3}$ : $(u, v)\cross(y_{1}, y_{2}, y_{3})-t$

$(u^{p}, v, y_{1})$ .
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Proof. The differentials of $\tau$ is given by the matrix

(the first row is a list of the differentials by $u$ , the second is by $v$ , the
third, fourth are the differentials by $y_{1},$ $y_{2}$ respectively). We find the
separability of $\tau$ by this matrix and, because $\tau$ is generically one-to-one,
birationality of $\tau$ .

$\mathrm{T}_{\tau(u,y)}X$ is spanned by the row vectors of the following matrices:

( $000y_{1}0001$ $y_{1}2000dys/dy_{2}dy_{3}/dy_{1}u+y_{3}01$
$u_{0}^{p}000000v1$ $vy_{1}y_{0}v\mathrm{o}_{1})\sim(_{0}^{1}000000010000100001u_{0}^{p}00000001$ $-vy_{1}y_{1}v00)$

This implies our 2nd assertion. $\square$

Corollary 4.2. The set $\{\gamma^{-1}(p)\}_{p\in X_{\mathrm{s}\mathrm{m}}}$ almost coincides with $\{\mathrm{Y}_{\lambda}\}_{\lambda\in K}$ ,
where $\mathrm{Y}_{\lambda}$ is the hyperplane section $Y\cap\{\mathrm{Y}_{1}-\lambda \mathrm{Y}_{0}=0\}$ (except the line
$\mathrm{Y}_{0}=Y_{1}=0)$ .

Example 4.3. Let char$K>2$ . Let $Y\subset \mathrm{P}^{3}$ be the surface given
by $\mathrm{Y}_{2}^{2}\mathrm{Y}_{0}-Y_{3}(\mathrm{Y}_{3}-\mathrm{Y}_{0})(Y_{3}-\mathrm{Y}_{1})$, and let $Y_{\lambda}$ be the hyperplane section
$Y\cap\{Y_{1} -\lambda Y_{0}=0\}$ . Then, the set of all Gauss fibers of $X$ almost
coincides with $\{Y_{\lambda}\}$ .

4.2. Generalized form. Let $k\geq 2$ and $r<k$ be positive integers,
and let $\mathrm{Y}\subset \mathrm{P}^{k}$ be a closed subvariety of codimension $r$ . We take the
morphisms $\rho_{0},$

$\ldots,$ $\rho_{k}$ : $\mathrm{A}^{\mathrm{r}+1}arrow \mathrm{P}^{k+r+2}$ as follows,

$\rho 0=$
$($ 1 $0$ .. . $0u_{1}$ .. . $u_{r}$

$u_{1}^{p}$ .. . $u_{r}^{\mathrm{p}}$ $u_{r+1}$ $0)$

$\rho_{1}=$ $(0$ 1 . . . $0$ $0$ .. . $0$ $0$ . . . $0$ $0$ $u_{r+1})$

:.
$\rho_{k}=$ $(00$ . .. $0$ $0$ .. . 1 $0$ . . . $0$ $0$ $0)$
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5. ELLIPTIC CURVES AS GAUSS FIBERS

In this section, we discuss the differences of our constructions. We
recall some properties of our constructions.

Remark 5.1. A variety $X$ given by each constructions has the follow-
ing properties:

(A) $X$ is birational to the product of two some varieties and one of
which varieties $\mathrm{Y}$ is the general fiber of the Gauss map.

(B) $X$ is birational to the product of two some varieties and the
differential $d\gamma$ of the Gauss map is not identically zero.

(C) $X$ is rational and the differential $d\gamma$ of the Gauss map is iden-
tically zero.

Let charK $=p>3$ . Then we get projective varieties whose Gauss
fibers are elliptic curves if we take $Y$ or $g$ as follows.

(A) Let $Y\subset \mathrm{P}^{2}$ be given by $Y_{0}^{3}+Y_{1}^{3}+\mathrm{Y}_{2}^{3}=0$ .
(B) Let $Y\subset \mathrm{P}^{3}$ be given by $Y_{2}^{2}\mathrm{Y}_{0}-Y_{3}(Y_{3}-\mathrm{Y}_{0})(Y_{3}-Y_{1})=0$

(Example 4.3).
(C) Let $g:\mathrm{A}^{2}arrow \mathrm{A}^{3}$ be $(x_{1},x_{2})rightarrow(x_{1}^{3p}+x_{2}^{3p}, 0,0)$ .

We call $X_{a}$ (resp. $X_{b},$ $X_{c}$) constructed by (A) (resp. (B), $(\mathrm{C})$ ) with the
above $Y$ (resp. $\mathrm{Y},$ $g$).

$X_{a}$ can not be constructed by (B) nor (C), because $d\gamma\equiv 0$ and this
is not rational.

$X_{b}$ can not be constructed by (A) nor (C), because isomorphic classes
of Gauss fibers vary and $d\gamma$ is not identically $0$ .

$X_{c}$ can not be constructed by (A) nor (B), because Gauss fibers are
elliptic curves and this is rational, and $d\gamma\equiv 0$ .
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