Various Gauss fibers

広島大学大学院・理学研究科 数学専攻 深澤 知 (Satoru Fukasawa) Department of Mathematics, Graduate School of Science, Hiroshima University

ABSTRACT. We find examples and constructions of nontrivial fiber structures of Gauss maps in positive characteristic. 3 types of constructions of projective varieties were announced in this talk: (A) Gauss fibers are the given projective variety, (B) Gauss fibers are hyperplane sections of the given projective variety, and (C) Gauss map is the given rational map $g: \mathbf{A}^n \longrightarrow \mathbf{A}^{n+1}$ with $dg \equiv 0$. Additional matters to the talk are included in this paper, for example, discussion of the differences of the constructions (A)-(C), and a generalization of Kaji and Rathmann's construction of Gauss map, related to (C), which is the given inseparable morphism $\mathbf{P}^1 \to \mathbf{P}^1$.

1. INTRODUCTION

In this paper, the base field K is an algebraically closed field and varieties are integral algebraic schemes over K.

Precisely, "Gauss fibers" mean (general) fibers of the Gauss maps. Definition of the Gauss map is as follows:

Definition 1.1. Let $X \subset \mathbf{P}^N$ be a projective variety. The Gauss map γ on X is the rational map from X to the Grassmannian $\mathbf{G}(\dim X, N)$ such that $\gamma(p) = \mathbf{T}_p X$ for any smooth point $p \in X$, where $\mathbf{T}_p X$ is the projective embedded tangent space.

Example 1.2. If $X \subset \mathbf{P}^N$ is the hypersurface given by F, then

$$\gamma = \left(\frac{\partial F}{\partial X_0} : \dots : \frac{\partial F}{\partial X_N}\right) : X \dashrightarrow \mathbf{G}(N-1,N) \cong \mathbf{P}^{N^*}$$

Remark 1.3. The following facts are known.

- (1) If charK = 0 then general fibers of γ are linear spaces ([1],[5],[14]). (They are one-points when dim = 0.)
- (2) If charK > 0 then there is a variety whose general fibers of γ are two or more distinct points.

The fact (1), when X is a curve, implies that multiple tangent lines (which have two or more distinct tangential points at X) are only finitely many. If X is a surface with dim $\gamma(X) = 1$ then we can classify X to the two kinds of ruled surfaces, a cone or a tangent surface. (A cone surface is the join of a curve and one point, and a tangent surface is covered by tangent lines of some curve.) These surfaces are called developable surfaces.

A. H. Wallace gave examples of the kind of (2) ([13]). Kleiman-Laksov also found interesting examples ([10]). It seems to be difficult to construct smooth varieties of this kind, but H. Kaji ([7],[8]), J. Rathmann ([12]) and A. Noma ([11]) constructed such varieties.

The author found the following example.

Example 1.4. $XZ^6 - (Y^6 + W^6)W = 0 \subset \mathbf{P}^3$. If charK = 2 (resp. charK = 3) then general Gauss fibers are plane elliptic curves (resp. plane smooth conics) ([2]).

In the author's best knowledge, this is the first example whose general Gauss fibers are not finite unions of linear spaces. Furthermore, the author found constructions of varieties with non-linear smooth Gauss fibers in positive characteristic.

- (A) Construction of a projective variety whose general fibers of the Gauss map are the given projective variety ([3]).
- (B) Construction of a projective variety whose general fibers of the Gauss map are hyperplane sections of the given (general) projective variety ([4]).
- (C) Construction of a projective variety whose Gauss map is the given rational map $g: \mathbf{A}^n \dashrightarrow \mathbf{A}^{n+1}$ with $dg \equiv 0$.

The main purpose of this paper is an introduction of these constructions and explanation of differences of each constructions.

2. CONSTRUCTION (C)

Let $g = (g_0, \ldots, g_n) : \mathbf{A}^n \dashrightarrow \mathbf{A}^{n+1}$ be the given rational map such that $\frac{\partial g_j}{\partial x_i} \equiv 0$ for all i, j, and let X be the closure of image of the rational map $i : \mathbf{A}^n \dashrightarrow \mathbf{P}^{n+1}; (x_1, \ldots, x_n) \dashrightarrow (1 : x_1 : \cdots : x_n : -g_0 - x_1g_1 - \cdots - x_ng_n)$. Then, $\mathbf{T}_{i(x)}X$ is spanned by the row vectors of the following matrices;

$\left(1 \right)$	x_1	•••	x_n	$-g_0-x_1g_1-\cdots-x_ng_n$	\mathbf{N}^{+}	($-g_0$
0	1	•••	0	$-g_1$		7	$-g_1$
:	:	۰.	:	:		I_{n+1}	:
0	0	• • •	1	$-g_n$	/		$-g_n$

where I_{n+1} is the $(n+1) \times (n+1)$ unit matrix. Hence $\gamma : X \dashrightarrow \mathbf{P}^{n+1*}$ is given by $(g_0 : \cdots : g_n : 1)$ and we have the following commutative diagram:

Remark 2.1. Example 1.4 is given by this construction: n = 2, $g_0 = g_2 = g_3 = 0$ and $g_1 = x_1^6 + x_2^6$ (with suitable coordinates).

If we consider the rational map $g: \mathbf{A}^n \to \mathbf{A}^{n+1}$ as the rational map g' from \mathbf{P}^n to \mathbf{P}^{n+1} , then the above varieties can be got as the image of a suitable linear projection of the graph $\Gamma_{g'} \subset \mathbf{P}^{n^2+3n+1}$ of g' which is embedded by Segre embedding.

Now we study the graph Γ_g of a rational map $g: \mathbf{P}^n \dashrightarrow \mathbf{P}^m$ with $dg \equiv 0$. Let $X \subset \mathbf{P}^{nm+n+m}$ be the image of the graph Γ_g by Segre embedding $\mathbf{P}^n \times \mathbf{P}^m \subset \mathbf{P}^{nm+n+m}$. Then we have the commutative

diagram

where h is an embedding given by $h(t) = \mathbf{P}^n \times t$. This implies that the Gauss map γ can be identified with the projection p_2 , hence generically identified with g. Precisely, X is the closure of the image of the rational map $\mathbf{P}^n \dashrightarrow \mathbf{P}^{nm+n+m}$:

$$(1:x_1:\cdots:x_n)\mapsto (1:x_1:\cdots:x_n:g_1:\cdots:g_m:\cdots:x_ig_j:\cdots).$$

We can check easily that varieties given by (C) can be got as the image of a suitable linear projection of the graph of $\mathbf{P}^n \dashrightarrow \mathbf{P}^{n+1}$.

The latter construction is a generalization of Kaji and Rathmann's for inseparable morphisms $\mathbf{P}^1 \to \mathbf{P}^1$ ([7],[12]).

In the latter construction, it is very interesting that the Gauss map can be defined at any point of X, hence it is a morphism, and the tangent variety of X is $\mathbf{P}^n \times \mathbf{P}^m$ if g is dominant. The second fact implies that any Segre variety of two projective spaces is the tangent variety of some variety, and that the classical fact $X \subset \text{SingTan}X$ in characteristic 0 ([1]) does not hold in positive characteristic.

3. CONSTRUCTION (A)

3.1. Concept of (A) or (B). Let $Y \subset \mathbf{P}^k$ be a given projective variety of codimension r. We move \mathbf{P}^k "inseparably" in \mathbf{P}^N (N >> k). Then, Y moves in conformity to the projective space \mathbf{P}^k , and constructs X. We will have the diagram

such that η is inseparable (onto its image) and $\eta|_{\mathbf{A}^r \times Y}$ is birational.

The idea for our construction (A) or (B) is based on "circular surfaces" ([6]) studied in differential geometry or real singularity theory. Conceptually, our variety with (A) could be called a "developable" circular surface.

3.2. Construction (A) (plane curve's case). Let p > 0 be the characteristic, and let $\rho_0, \rho_1, \rho_2 : \mathbf{A}^1 \to \mathbf{P}^3$ be morphisms (which form a frame) as follows,

$$\rho_0 = (1 \ 0 \ u \ u^p)
\rho_1 = (0 \ 1 \ 0 \ 0)
\rho_2 = (0 \ 0 \ 1 \ 0)$$

Let $\eta: \mathbf{A}^1 \times \mathbf{P}^2 \to \mathbf{P}^3$ be

$$(u) \times (1:y_1:y_2) \mapsto [\rho_0 + y_1\rho_1 + y_2\rho_2] = (1:y_1:u + y_2:u^p).$$

We may assume that $y_1 - a$ is a local parameter at a smooth point (1: $a:b) \in Y$. (We can always take this coordinates by linear transforms of \mathbf{P}^2 .) Let X be the closure of $\eta(\mathbf{A}^1 \times Y)$, and let $\tau := \eta|_{\mathbf{A}^1 \times Y} :$ $\mathbf{A}^1 \times Y \to X$. Then the following proposition holds.

Proposition 3.1. The morphism τ is birational, and $\mathbf{T}_{\tau(u,y)}X = \eta(u \times \mathbf{P}^2)$ for a general point (u, y).

Proof. The differentials of τ is given by the matrix

$$\left(\begin{array}{rrr} 0 & 1 & 0 \\ 1 & dy_2/dy_1 & 0 \end{array}\right)$$

(upper row is a list of the differentials by u, lower is the differentials by y_1). We find the separability of τ by this matrix and, because τ is generically one-to-one, birationality of τ .

 $\mathbf{T}_{\tau(u,y)}X$ is spanned by the row vectors of the following matrices:

$$\left(\begin{array}{rrrr}1 & y_1 & u+y_2 & u^p\\0 & 0 & 1 & 0\\0 & 1 & dy_2/dy_1 & 0\end{array}\right) \sim \left(\begin{array}{rrrr}1 & 0 & 0 & u^p\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\end{array}\right)$$

This coincides with $\eta(u \times \mathbf{P}^2)$.

3.3. Generalized form. Let $k \ge 2$ and r < k be positive integers, and let $Y \subset \mathbf{P}^k$ be a closed subvariety of codimension r. We take the morphisms $\rho_0, \ldots, \rho_k : \mathbf{A}^r \to \mathbf{P}^{k+r}$ as follows,

Remark 3.2. The form can be more generalized (see [3]). The base space \mathbf{A}^r which moves projective planes and the how of the moving $\{\rho_i\}$ are more free and formulated to some extent. Furthermore, we can also construct varieties whose general fibers are two or more Ys for the suitable moving $\{\rho_i\}$.

4. CONSTRUCTION (B)

4.1. Construction (B) (surface case). Let p > 0 be the characteristic, and let $\rho_0, \rho_1, \rho_2, \rho_3 : \mathbf{A}^2 \to \mathbf{P}^6$ be morphisms (which form a frame) as follows:

$ ho_0$	=	(1	0	0	u	u^{p}	v	0)
$ ho_1$		(0	1	0	0	0	0	v)
$ ho_2$	=	(0	0	1	0	0	0	0)
$ ho_3$	==	(0	0	0	1	0	0	0)

Let $\eta: \mathbf{A}^2 \times \mathbf{P}^3 \to \mathbf{P}^6$ be

$$(u, v) imes (1: y_1: y_2: y_3) \mapsto [
ho_0 + y_1
ho_1 + y_2
ho_2 + y_3
ho_3] = (1: y_1: y_2: u + y_3: u^p: v: vy_1).$$

We may assume that $y_1 - a$, $y_2 - b$ are a local parameter at a smooth point $(1 : a : b : c) \in Y$. Let X be the closure of $\eta(\mathbf{A}^2 \times Y)$, and let $\tau := \eta|_{\mathbf{A}^2 \times Y} : \mathbf{A}^2 \times Y \to X$. Then the following proposition holds.

Proposition 4.1. The morphism τ is birational, and γ is generically identified with the morphism $\mathbf{A}^2 \times Y \to \mathbf{A}^3$: $(u, v) \times (y_1, y_2, y_3) \mapsto (u^p, v, y_1)$.

Proof. The differentials of τ is given by the matrix

0	0	1	0	0	0	
0	0	0	0	1	y_1	
1	0	dy_3/dy_1	0	0	v	
0	1	dy_3/dy_2	0	0	0	

(the first row is a list of the differentials by u, the second is by v, the third, fourth are the differentials by y_1, y_2 respectively). We find the separability of τ by this matrix and, because τ is generically one-to-one, birationality of τ .

 $\mathbf{T}_{\tau(u,y)}X$ is spanned by the row vectors of the following matrices:

1	1	y_1	y_2	$u + y_3$	u^p	v	vy_1 \	١	(1)	0	0	0	u^{p}	0	$-vy_1$
	0	0	0	1	0	0	0		0	0	0	1	0	0	0
	0	0	0	0	0	1	y_1	~	0	0	0	0	0	1	y_1
	0	1	0	dy_3/dy_1	0	0	v		0	1	0	0	0	0	v
	0	0	1	dy_3/dy_2	0	0	0 /	/	0	0	1	0	0	0	0/
This implies our 2nd assertion.															

Corollary 4.2. The set $\{\gamma^{-1}(p)\}_{p \in X_{sm}}$ almost coincides with $\{Y_{\lambda}\}_{\lambda \in K}$, where Y_{λ} is the hyperplane section $Y \cap \{Y_1 - \lambda Y_0 = 0\}$ (except the line $Y_0 = Y_1 = 0$).

Example 4.3. Let $\operatorname{char} K > 2$. Let $Y \subset \mathbf{P}^3$ be the surface given by $Y_2^2 Y_0 - Y_3 (Y_3 - Y_0) (Y_3 - Y_1)$, and let Y_λ be the hyperplane section $Y \cap \{Y_1 - \lambda Y_0 = 0\}$. Then, the set of all Gauss fibers of X almost coincides with $\{Y_\lambda\}$.

4.2. Generalized form. Let $k \ge 2$ and r < k be positive integers, and let $Y \subset \mathbf{P}^k$ be a closed subvariety of codimension r. We take the morphisms $\rho_0, \ldots, \rho_k : \mathbf{A}^{r+1} \to \mathbf{P}^{k+r+2}$ as follows,

$\rho_0 =$	(1	0	•••	0	u_1	• • •	u_r	u_1^p	•••	u^p_r	u_{r+1}	0)
$ ho_1 =$	(0	1	• • •	0	0	•••	0	0	•••	0	0	$u_{r+1})$
÷												
$\rho_k =$	(0	0	• • •	0	0	•••	1	0	•••	0	0	0)

In this section, we discuss the differences of our constructions. We recall some properties of our constructions.

Remark 5.1. A variety X given by each constructions has the following properties:

- (A) X is birational to the product of two some varieties and one of which varieties Y is the general fiber of the Gauss map.
- (B) X is birational to the product of two some varieties and the differential $d\gamma$ of the Gauss map is not identically zero.
- (C) X is rational and the differential $d\gamma$ of the Gauss map is identically zero.

Let char K = p > 3. Then we get projective varieties whose Gauss fibers are elliptic curves if we take Y or g as follows.

- (A) Let $Y \subset \mathbf{P}^2$ be given by $Y_0^3 + Y_1^3 + Y_2^3 = 0$.
- (B) Let $Y \subset \mathbf{P}^3$ be given by $Y_2^2 Y_0 Y_3 (Y_3 Y_0) (Y_3 Y_1) = 0$ (Example 4.3).
- (C) Let $g: \mathbf{A}^2 \to \mathbf{A}^3$ be $(x_1, x_2) \mapsto (x_1^{3p} + x_2^{3p}, 0, 0)$.

We call X_a (resp. X_b, X_c) constructed by (A) (resp. (B), (C)) with the above Y (resp. Y, g).

 X_a can not be constructed by (B) nor (C), because $d\gamma \equiv 0$ and this is not rational.

 X_b can not be constructed by (A) nor (C), because isomorphic classes of Gauss fibers vary and $d\gamma$ is not identically 0.

 X_c can not be constructed by (A) nor (B), because Gauss fibers are elliptic curves and this is rational, and $d\gamma \equiv 0$.

References

- [1] G. Fischer and J. Piontkowski, Ruled varieties. Friedr. Vieweg & Sohn, Braunschweig, 2001.
- S. Fukasawa, Developable varieties in positive characteristic, Hiroshima Math. J., 35(2005), 167–182.

- [3] S. Fukasawa, Varieties with non-linear Gauss fibers, Math. Ann., 334(2006), 235-239.
- [4] S. Fukasawa, Varieties with nonconstant Gauss fibers, to appear in Hiroshima Math. J.
- [5] P. Griffiths and J. Harris, Algebraic geometry and local differential geometry, Ann. Sci. École Norm. Sup. (4) 12(1979), 355-452.
- [6] S. Izumiya, K. Saji and N. Takeuchi, Circular surfaces, preprint, EPrint Series of Department of Mathematics, Hokkaido University.
- [7] H. Kaji, On the tangentially degenerate curves, J. London Math. Soc. (2), 33(1986), 430-440.
- [8] H. Kaji, On the Gauss maps of space curves in characteristic p, Compositio Math., 70(1989), 177-197.
- [9] S. L. Kleiman, Tangency and duality. CMS Conf. Proc. 6 (Proc. 1984 Vancouver Conf. in Alg. Geom.), 163-226, Amer. Math. Soc., 1986.
- [10] S. L. Kleiman, Multiple tangents of smooth plane curves (after Kaji), Algebraic geometry: Sundance 1988, 71-84, Contemp. Math., 116, Amer. Math. Soc., Providence, RI, 1991.
- [11] A. Noma, Gauss maps with nontrivial separable degree in positive characteristic, J. Pure Appl. Algebra, 156(2001), 81–93.
- [12] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann., 276(1987), 565-579.
- [13] A. H. Wallace, Tangency and duality over arbitrary fields, Proc. London Math. Soc. (3), 6(1956), 321-342.
- [14] F. L. Zak, Tangents and secants of algebraic varieties. Transl. Math. Monographs, 127. American Mathematical Society, Providence, RI, 1993.

DEPARTMENT OF MATHEMATICS, HIROSHIMA UNIVERSITY, KAGAMIYAMA 1-3-1, HIGASHI-HIROSHIMA, 739-8526, JAPAN

E-mail address: sfuka@hiroshima-u.ac.jp