
LIMIT LINEAR SERIES, AN INTRODUCTION

EDUARDO ESTEVES

ABSTRACT. Our goal is to introduce the technique of limit lin-
ear series by using the $\mathrm{h}\mathrm{i}_{\iota}\backslash ^{\backslash }\mathrm{t}‘ \mathrm{o}\mathrm{r}\mathrm{i}\mathrm{c}$ example of the proof of the Brill-
N\"other theorem. In our approach, we employ a formula for limits
of ramification points of linear systems along a family of curves
degenerating to a nodal curve, also proved here.

1. INTRODUCTION

The technique of limit linear series was introduced by Eisenbud and
Harris in the eighties. It originated from the proof by Griffiths and
Harris [GH] of the Brill-N\"other theorem, and from subsequent work
by Gieseker [Gi] on the Gieseker-Petri theorem. Eisenbud and Harris
were able to obtain remarkable results from their technique. The reader
may consult [EH2] for a description of some of these results aiid flllther
references. In particular, they were able to give a shorter proof of the
Brill-N\"other theorem [EH1].

$\backslash \mathrm{O}\iota \mathrm{l}\mathrm{r}$ aim in these notes is to illustrate the power of the technique of
limit linear series by using it to give a proof of part of the Brill-N\"other

theorem. We claim no originality though. In fact, the same goal was
pursued by Harris and Morrison in [HM]. where they a,ctually prove
the Gieseker-Petri theorem $\mathrm{a}_{\mathrm{A}}\mathrm{s}$ well.

The approach in these notes is just slightly different from theirs, as
we employ here a formula for limits of ramificat,ion points of linear
systems, instead of the compatibility conditions on order sequences of
limit linear series at nodes. To my knowledge, this formula, appeared
first, in [Es], where it was derived for degenerations to nodal curves of
every kind. To be more precise, Eisenbud and Harris produced the
forlnula, only for degenerations to curves of compact type, and only in
the case the ramification points do not, degenerate to nodes. And it is
exactly the fact that the formula gives an effective $0$-cycle at, the nodes
that we use in our approach.

The formula itself is important, so its presentation is also a goal of
these notes. It can be used to approach $\mathrm{a}$ , problem raised by Eisenbud
$\mathrm{a}\mathrm{J}\mathrm{l}\mathrm{d}$ Harris in [EH3]: Wzat are the limits of Weierstrass points $?,nfan|,-$

ilies of curves degenerati.$ng$ to stable $c\mathrm{t}Ames$ not, of compact type“ This
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was done in [EM2] for nodal curves with just two irreducible conlpo-

nents.
More details on the statement of the Brill-N\"other theorem and its

history can be found in Section 2, which can be regarded as a second
introduction. In Section 3 we present what we need from deformations
of nodal curves, as the existence of regular smoothings of nodal curves,
and how they behave under base chaiige. In Section 4 we review the
basic theory of ramification points of linear systems on smoot, $\mathrm{h}$ curves.
In Section 5 we present the formula for comput ing limits of ramification
points of linear systems along a family of curves degenerating to a nodal
curve. Finally, in Section 6 we use the formula for proving the Brill-
N\"other theorem.

These notes origina,$\mathrm{t}\mathrm{e}\mathrm{d}$. from two talks I $\mathrm{g}\mathrm{a}\downarrow \mathrm{v}\mathrm{e}$ at the $\mathrm{S}]^{r}1\mathrm{n}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{n}1$ on
Algebraic Geometry and Topology at the Research Institute for Mathe-
matical Sciences of Kyoto University in January, 2006. The notes follow
the talks, giving many more details than I could give then. However,
at the talks I gave a brief overview of the results in [EM2], a,bout t,he

determination of limits of Weierstrass points on nodal curves wit, $\mathrm{h}$ two
components. As I would have neither time nor space to give nlore thall
an overview here, and as this overview is given in [EM1] and in the
introduction to [EM2], I decided to onlit this $\mathrm{p}\mathrm{a}\iota\cdot \mathrm{t}$ in the notes.

I would like to thank the organizers of the $\mathrm{S}\mathrm{y}\iota \mathrm{n}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{l}$ in Kyoto,
Profs. Mizuho Ishizaka,, Hajime Kaji and Kazuhiro Konno, for a very
exciting meeting. I would also like to $\mathrm{t}\mathrm{h}\mathrm{a}$,nk their hospitality, alld that
of the many Japanese mathematicians I met, which make a t,rip to
Japan, as always, a very pleasa,nt a,nd productive experience. Finally, I
would like to thank the participants of the seminar on nioduli of curves
run at IMPA in 2005. The semina,$\mathrm{r}$ served as basis for the talks in
Kyoto and these notes.

2. THE BRILL-N\"OTHER THEOREM

2.1. The Brill-Nother property. Let $C$ be a nonsingular, connected.
complex projective curve of genus $g$ . A linear system on $C$ is a nonzero
vector space of sections of a, line bundle on $C$ . The degree of the line
bundle is called the degree of the linear system, and the projective
dimension of the vector space is called the rank of the linear system.
For each pair of nonnegative integers $(d\backslash 7)’\cdot$ , let

$\rho(g, d.r):=(r+1)(d-r)-gr$ .

We call $\rho(g, d, r)$ the $Bri_{\text{ノ}}ll-N\ddot{\mathit{0}}th,er$ number associated to $g.,$
$d$ and $r$ . We

say that $C$ satisfies the Brill-N\"other property if for each pair $(d, r)$ with
$\rho(g_{1}d, r)<0$ there is no linear systenx on $C$ of degree $d$ and rank 7.
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Remark 2.2. It is not necessary to check each pair of nonnegative
integers $(d, r)$ to ascertain that $C$ satisfies the Brill-N\"other property,
but only a finite number of them. Indeed, if $L$ is a line bundle of degree
$d$ on $c_{\text{ノ}}$ that is nonspecial, i.e. $h^{1}.(C, L)=0$ or, equivalently,

$f_{l}^{0},(C, L)=d+1-g$ ,

then the rank $r$
. of any linear system of sections of $L$ sat,isfies $r\leq d,-g’$.

and hence $\rho(g.d, 7^{\cdot})\geq g\geq 0$ . Since $h^{1}(C, L)=0$ if $d\geq 2g-1$ , and
since at any rate $h^{0},(C, L)\leq d+1.$, we may restrict to pairs $(d,.7^{\cdot})$ with
$d\leq 2g-2$ and $r\leq d$ . There are a finite number of t,hose.

Remark 2.3. If $c_{\text{ノ}}$ is a hyperelliptic curve of genus $g>2$ , then $C$ does
not satisfy the Brill-N\"other property. Indeed, a hyperelliptic curve is
a degree-2 covering of the projective line, so a,drnits a linear $\mathrm{s}\backslash \prime \mathrm{s}\mathrm{t}_{1}\mathrm{e}\mathrm{l}\mathrm{Y}1\sim$ of
degree 2 and rank 1. But

$\rho(g, 2,1)=(1+1)(2-1)-g=2-g$ ,

and hence $\rho(g, 2,1)<0$ if $g>2$ .

Theorem 2.4. (Brill–N\"other) A general nonsingular, $com\iota ect,erl_{f}co\uparrow?\iota-$

plex projecti,$ve$ curnve of genus $g\geq 2sat^{r^{}}.l_{4},\sigma fies$ the Brill-N\"other property.

The proof will be given in Section 3, using Theoreln 2.11.

Remark 2.5. Every rational or ellipt,ic curve satisfies the Brill-Noet,her

property, as it can easily be checked by considering their special linear
systeins. So we restrict our attention to $g\geq 2$ .

2.6. $General\uparrow,ty$ . What does “
$\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a},1’$

’ mean? The idea, when a state-
ment is lnade for a, “general” object, is that a,ll objects of the $\mathrm{s}\mathrm{a},\mathrm{r}\mathrm{n}\mathrm{e}$ kind.
but for particular $\mathrm{c}\mathrm{a}$,ses, satisfy tha$c\mathrm{t}$ statement. So, by this concept,
the word “genera,1” can only be used when there is a classifying space
for the objects being considered. In the case of the Brill-N\"other t,heo-

rem this spa.ce is the $\mathrm{s}\mathrm{o}- \mathrm{c}\mathrm{a}1\mathrm{l}\mathrm{e}\mathrm{d}$ moduli space of $sm,ooth$ curves of genus
$g$ , usually denoted by $hI_{\mathit{9}}$ . The precise statement of the Brill-N\"other

theorem is thus:
$Th,ere$ is an open dense subset of $\Lambda/I_{g_{i}}$ for each, $g\geq 2_{j}$ such that any

curve represented, by a point on that open subset satisfies t.he Brill-
N\"other property.

2.7. Openness. The Brill-N\"other theorem is also equivalent to the
following statement:

For each, $g\geq 2t,h,ere$ is a $nons.i,n_{\mathit{9}}ular$, connected, $co$mplex projective
curve of genus $gsat,i_{\text{ノ}}sf\uparrow/ingth,e$ Brill-N\"ot,her property.
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The point is that the Brill-N\"other property is (
$‘ \mathrm{o}\mathrm{p}\mathrm{e}\mathrm{n}.$

” So, if tbere is
a nonsingular curve satisfying it, then there is an open neighborbood of
the point representing the curve in $\mathit{1}\mathrm{I}I_{g}$ such that all curves represented
in that open set satisfy the Brill-N\"other property.

To explain this idea in more precise terms, we need to introduce
a few objects. Let $f:Xarrow S$ be a smooth projective map between
complex algebraic schemes with connected fibers of dimension 1. For
each integer $d$ , there is an $S$-scheme $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ paraJneterizing line bundles of
degree $d$ on the fibers of $f$ , the so-called degree-d relative Picard schem$e$

of $f$ ; see [Gr], Thin. 3.1 or [BLR,], Thm. 1, p. 210. Since $f$ is smooth.
$\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ is proper over $S$ ; see, for instance, [BLR], Thm. 3, p. 232 and
Thm. 1, p. 252. For each nonnegative integer 7, $\mathrm{l}\mathrm{e}\mathrm{t}|77_{r}^{rd}’(f)\subseteq \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ be
the closed subscheme parameterizing those line bundles on the fibers of
$f$ having at least $7^{\cdot}+11\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a},\mathrm{r}1_{\iota}\backslash \gamma$ independent sections; see Subsection 3.5.
(That $\mathrm{T}/\mathrm{f}_{r}^{rd}/(f)$ is indeed closed follows from the semicontinuity theorem.)
Since $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ is proper over $S$ , so is $W_{r}^{d}(f)$ .

Now, suppose one of the fibers of $f$ satisfies $\mathrm{t}_{e}\mathrm{h}\mathrm{e}$ Brill-N\"other prop-
erty. Denote by $s$ the point of $S$ over which that curve lies. Let, $g$

denote t,he genus of every fiber of $f$ , and let, $d$ alld $\tau$
. be nonnegative

integers such that $\rho(g, d, r)<0$ . By the Brill-N\"other property. $W_{r}^{d}(f)$

does not $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}|\mathrm{t}_{i}\mathrm{h}\mathrm{e}$ fiber of $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ over $s$ . Since $\mathrm{M}_{r}^{rd}’(f)$ is proper over
$S$ , its image in $S$ is thus a closed subset not containing $s$ . So $\mathrm{t}_{1}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$

is all open neighborhood $U_{s}(d, ?\cdot)\subseteq S$ of 8 such that $l\eta_{r}^{rd}’(f)$ does not
intersect any fiber of $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ over a $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}_{\tau}$ in $U_{s}(d, r\cdot)$ . This $\iota \mathrm{n}\mathrm{e}\mathrm{a},\mathrm{n}\mathrm{s}$ that no
fiber of $f$ over a point in $U_{s}(d, 7^{\cdot})$ admits a linear syst,em of degree $d$,

and rank $r$ .
Intersecting all $\mathrm{t}_{1}\mathrm{h}\mathrm{e}U_{s}(d, 7^{\cdot})\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{l}\iota d\leq 2g-2$ alld $7^{\cdot}\leq d$ (and $\rho(g_{j}d, 7^{\cdot})$

negative) we get an open neighborhood of $s$ such t,hat, all fibers of $f$

over point. $\mathrm{s}$ of that neighborhood satisfy the Brill-N\"other property. We
have just shown that the subset $U\subseteq S$ of points over which the fibers
of $f$ satisfy the Brill-N\"other property is open.

If $\Lambda I_{\mathit{9}}$ were a fine moduli space, then there would be a smooth projec-
tive inap $f$ as above with $S=\mathrm{n},f_{\mathit{9}}$ whose fiber over each $s\in S$ would be
the curve represented by $s$ in $\mathbb{J}\prime I_{g}$ . Then the above reasoning, and the
irreducibility of $\mathbb{J}/I_{g}$ (see [DM]) would yield the Brill-N\"other statement
of Subsection 2.6.

However, $\Lambda,I_{\mathit{9}}$ is just a coarse lxlod\iota lli space. Anyway. tbere is a $\mathrm{l}\mathrm{n}\mathrm{a},\mathrm{p}$

$f\mathrm{a}_{\wedge}\mathrm{s}$ above such that, the induced “moduli map“ $h$ : $Sarrow\Lambda^{l}I_{g}$ . t,aking
$s\in S$ to t,he point representing t,he fiber $f^{-1}(.\mathrm{s})$ is surjective and proper.
even finite; see [HM], Lemma 3.89, p. 142. Then $V:=\Lambda/f_{g}-h(S-U)$

is open, and parameterizes curves satisfying the Brill-N\"other property.
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Remark 2.8. Even though there are in a sense $\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{y}$ more curves that
satisfy the Brill-N\"other property thall those that don’t, it is very dif-
ficult t,o exhibit explicitly curves that satisfy the property. The reason
is that most curves that we can think of, and those that appear in
practice. are very particular, like plane curves, complete intersections,
byperelliptic, trigonal, tetragonal, etc.

2.9. $Histor\tau/\cdot$ What we are calling the Brill-N\"other theorem in these
notes is actually just a part of the full statement of it. A more complete
statement is:

A general nonsingular, connected, complex projective curwe of genus
$g\geq 2$ has a linear system of degree $d$ and rank 7 if and only if
$\rho(g, d, 7^{\cdot})\geq 0_{j}$ and if so, then $\rho(g,,d.r)$ is the dimension of th,$e$ locms of
those linear systems.

To make the addendum in the last statement more precise. let $C$, be
a nonsingular, connected. projective curve of genus $g$ . As in Subsec-
tion 2.7, for each integer $d$ , let $\mathrm{P}\mathrm{i}\mathrm{c}^{d}C$ be the degree-d Picard scheme of
$C’$ , parameterizing line bundles of degree $d$ on $C,$ . And, for each integer
$r$ , let $W_{r}^{d}C\subseteq \mathrm{P}\mathrm{i}\mathrm{c}^{d}C$ be the closed subset parameterizing line bundles
wit, $\mathrm{h}$ at least $7^{\cdot}+1$ linearly independent sections; see Subsection 3.5.
Then the addendum to the above Brill-N\"other $\mathrm{s}\mathrm{t}\mathrm{a}$,tement

$\mathrm{s}\mathrm{a}_{\mathfrak{i}}\gamma \mathrm{s}$ :

If $C$, is general and $\rho(g, d, r)\geq 0,$ $t,h,en$ diln $\mathrm{M}_{r}^{\gamma d}C’=\rho(g.d,, r)$ .
Brill and N\"other made their statement in [BN], p. 290, giving an

incomplete proof. Severi, based on ideas of Castelnuovo [C], suggested
a way of proving the statement, by using a degeneration argument; see
[S], Anhang G. Section 8, p. 380. There are serious problems with his
approach, but a, variation of $\mathrm{i}\mathrm{t}_{1}$ eventually proved the statement. as we
will conunent in more detail below.

The “if“ part of the Brill-N\"other statement was proved indepen-
dently by Kempf [ $\mathrm{K}\mathrm{e}_{\rfloor}^{1}$ and by Kleiman and Laksov $[\mathrm{K}\mathrm{L}1_{\rfloor}^{\rceil}, [\mathrm{K}\mathrm{L}2]$ . It is
not our goal in these not,es to go through that proof. However, let us
just sketch the argument. The a,rgument is based on the fact that $\mathfrak{s},\mathrm{f}_{r}^{d},\prime Cr$

is a determinantal variety, as explained in Subsection 3.5, and hence
its class in the Chow ring of $\mathrm{P}\mathrm{i}\mathrm{c}^{d}c_{\text{ノ}}$ can be given by Porteous formula
if $W_{r}^{\mathrm{d}}C$, is either empty or of the right codimension. The idea is then
to compute tllat, class, and check that it is nonzero, and hence cannot
be $\mathrm{t}_{1}\mathrm{h}\mathrm{e}$ class of the empty $\mathrm{s}\mathrm{e}\mathrm{t}_{l}$ . This argument, and hence the $‘(\mathrm{i}\mathrm{f}$

” part.
of the Brill-N\"other statelnent,, is va,lid for any nonsingular, connected.
projective curve $C$ .

To prove the (
$‘ \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}$ if” part, Severi suggested considering a family

of smooth curves degenerating to a, general rational nodal curve $X_{0}$ ,
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that is, a curve obtained from $\mathrm{P}^{1}$ by choosing $2g$ general points of $\mathrm{P}^{1}$

grouping them in $g$ pa,irs, alld identifying the two points in each pair,
in such a way to produce an ordinary double point.

Severi’s idea was that if linear systelns of a certain rtlk and degree
existed for the smooth curves in the farnily, then linear systems of the
same kind would exist, by passage to the limit, on $X_{0}$ . If so, one could
consider the pullbacks of those linear systems on the $\mathrm{P}^{1}$ normalizing
$X_{0}$ . On $\mathrm{P}^{1}$ we would have linear systems of rank 7 and degree $d$

that, being pullbacks, would be special in the sense that every section
that is zero on a branch over a, node of $X_{0}$ would have to vanish on
the other branch as well. If the branches are in genera,1 position on
$\mathrm{P}^{1}$ , then one could hope that the locus of those linear systems on $\mathrm{P}^{1}$

ha.s the “expected” dimension, and that, is exactly $\rho(g, d, r)$ ; see [HM],
Chapter 5 for more details.

It turns out that the above argument presents two probleins. First,
linear systems may not degenera,te to linear systems. as line bundles
may not degenerate to line bundles. The degree-d Picard scheme of
$X_{0}$ is not complete! This problem was the first to be overcome, by
Kleilnan [K1], by using torsion-free rank-l sheaves.

The second problem is $\mathrm{a}_{\downarrow}$ major one. It is hard to $\mathrm{e}\mathrm{x}’11\mathrm{i}\mathrm{b}\mathrm{i}\mathrm{t}$ a set of
$2g$ points on $\mathrm{P}^{1}$ such that, the locus of linear systems on $\mathrm{P}^{1}$ mentioned
above has dimension $\rho(g, d, 7^{\cdot})$ , if nonempty. This seems to be as hard
$\mathrm{a}_{\mathrm{A}}\mathrm{s}$ exliibiting a nonsingular curve satisfying the Brill-N\"other property!

Despite this problem, Griffit,hs and Harris [GH] were able t,o “com-
plete” Severi’s argument by considering specializations of $C\prime 0$ , making
the $2g$ points on $\mathrm{P}^{1}$ converge. in a certain way, to a single point.

Later, it $\mathrm{w}\mathrm{a}_{\mathrm{A}}\mathrm{s}$ noticed by Eisenbud and Harris [EHI], following work
by Gieseker [Gi], that the proof of the $\mathrm{B}\mathrm{r}\mathrm{i}\mathrm{l}1-\mathrm{N}\ddot{\mathrm{o}}\mathrm{t}_{1}\mathrm{h}\mathrm{e}\mathrm{r}$statement is simpli-
fied by considering a degeneration to a rational cuspidal curve, instead
of a nodal one. And by considering a, semistable model of that curve,
where the cusps are replaced by elliptic curves a,tt,ached to the norlnal-
ization, a flag curve according to Definit.ion 2.10 below. one would not
even need to consider torsion-free rank-l sheaves. The proof we give
in these notes follows this idea.

Deflnition 2.10. A nodal curve is a connected complex projective
curve whose only singularities are nodes, that is, ordinary double points.
A flag curve, in these notes, is a noda,1 curve $F$ satisfying the following
three properties:

(1) It is of $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}_{}$ type or. equivalently, t.he number of nodes of
$F$ is smaller (by one) than the number of components.

(2) Each component of $F$ is $\mathrm{e}\mathrm{i}\mathrm{t}$,her $\mathrm{P}^{1}$ or an elliptic curve.
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(3) Each elliptic component of $F$ contains exactly one node of $X$ .

Theorem 2.11. Let $f:Xarrow S$ be a flat, projective map from a regular
$sch,emeX$ to $S:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{C}[[t]])$ . If the special fiber of $f$ is a flag curve,
then the general fiber $satisfie_{\mathrm{c}}\mathrm{s}$ the Brill-N\"other property.

The proof will be given in Section 6. A clarification of t,he statement
will be given in Subsection 3.6. Also, in Subsection 3.7 we will see how
Theorem 2.11 implies Theorem 2.4.

3. DEFORMATIONS OF NODAL CURVES

3.1. $De_{d}format\dot{r,}ont,heow$. The infinitesimal deformations of a nodal
curve, as $\mathrm{f}\mathrm{a},\mathrm{r}$ as smoothening of the nodes go, is easy to $\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{i}\dagger^{-}.$) $\mathrm{e}$ .

Let $X_{0}$ be a nodal curve. Then there is a versal deformation of $X_{0}$

over a ring of power series over $\mathbb{C}$ ; see [DM], p. 79. In other words,
there are a, map $h:Yarrow B.$, where $B:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{C}[[t_{1,)}\ldots t_{m},]])$ , and an
isomorphism between $X_{0}$ and t,he closed fiber of $h$ , satisfying certain
universal properties.

The versal deformation space of $X_{0}$ is formally smooth over the versal
deforma,tion space of its singularities; see [DM]. Prop. 1.5, p. 81. In
other words, let $N_{1,}\ldots$ . , $N_{\delta}$ denote the nodes of $X_{0}$ . Then $?\geq\delta$ and,.
after $\mathrm{a}\mathrm{o}$ change of variables, we inay asstlllle that for each $¿=1,$ $\ldots.\delta$

there is an isomorphism of $\mathbb{C}[[t_{1\cdot\cdot \mathit{1}}\ldots t_{m}]]$ -algebras:

$\hat{\mathcal{O}}_{Y,N_{i}}arrow\frac{\mathbb{C}[[t_{1},\ldots.t_{\mathit{7}7l},\tau\iota,l_{\rfloor}^{1\rceil}]}{(u\tau)-t_{\iota’})}\sim,$ .

Let $S:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{C}[\lfloor t_{\rfloor}^{\rceil}])$ and let $Sarrow B$ be the map given by sending
$t_{i}$ to $t$, for each $i,$ $=1,$ $\ldots,$

$n|_{\text{ノ}}$ . Form t,he fibered product $X:=Y\cross_{B}$ S.,
and let, $f:Xarrow S$ denote the projection onto the second factor. Then
$f$ is flat, and projective, being a base change of $h,$ . The closed fiber of
$f$ is $\mathrm{n}\mathrm{a}\mathrm{t}_{(}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ isomorphic to t,he closed Pber of $h,$ , which is identified
with $X_{0}$ . In addition, from the description of the map $Sarrow B$ , for each
$7=1,$ $\ldots$ , 6 there is an isomorphism of $\mathbb{C}[[t]_{\rfloor}^{\rceil}$-algebras:

$\hat{\mathcal{O}}_{X.N_{\ell}}\cong\frac{\mathbb{C}[[t,u,\uparrow)]_{\rfloor}^{1}}{(u\mathrm{e}’-t)}$.

In particular, $X$ is regular at each $N_{l}’$ . Since in addition $f$ is smooth on
an open neighborhood of each nonsingular point of $\lambda_{0}’$ . it follows that $X$

is regular $011$ a,n open neighborhood of $X_{0}$ . $\mathrm{B}\mathrm{t}1|_{1}$ aai open neighborhood
of $X_{0}$ is $X!$ So $X$ is regular.

We have just proved that regular smoothings of $X_{0}$ exist. a,nd this is
everything we need in the sequel.
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Definition 3.2. Let $X_{0}$ be a noda,1 curve. A regular smooth,$i,ng$ of $X_{0}$

consists of two data: a flat, projective map $f$
. : $Xarrow S$ from a regular

scheme $X$ to $S:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{C}[[t]])$ and an isomorphism bet,ween the closed
fiber of $f$ and $\lambda_{0}’$ .

3.3. Base changes of regular $sm,oot,hi7|_{\text{ノ}}gs$ . Let $x_{0}$ be a nodal curve, a,nd

$f:Xarrow S$ a regular smoothing of $X_{0}$ . Idcntify $X_{0}$ with t,he closed fiber
of $f$ with the provided isomorphisnl. Let $X_{*}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t},\mathrm{e}$ t,he general fiber
of $f$ .

Since $\lambda_{*}’\subset X$ is open, $\lambda_{*}’$ is regular. Moreover. since $X_{*}$ is a scheme
over the field of Laurent series, $\mathbb{C}((t.))$ , which has $\mathrm{c}\mathrm{h}\mathrm{a}$,racteristic zero,
$\lambda_{*}’$ is smooth. In addition, since $X_{0}$ is connected., $h^{0},(X_{0}, \mathcal{O}_{\lambda_{()}’})=1$ ,

and thus. by semicontinuity, $h_{\text{ノ}^{}0}(X_{*}, O_{X_{*}})=1$ . In particular, $X_{*}$ is geo-
metrically connected, that is, $\lambda_{*}’$ is connected and any $\mathrm{b}\mathrm{a}$,se extension
of $X_{*}$ is connected. Fina,$11_{\iota}\mathrm{y}$ , since $\lambda_{0}’$ has dimension 1, by $\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{t}_{J}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}$ so
does $X_{*}$ .

The fiber $X_{*}$ is defined over $\mathbb{C}((t))$ , which is not algebra,ically closed.
In applications, $\mathrm{i}\mathrm{t}_{0}$ is often necessary to consider nonrational points of
schemes derived from $X_{*}$ , i.e. points defined over a finite field extension
of $\mathbb{C}((t))$ . At the cost of changing $X_{0}$ in a verv controlled way, we $\mathrm{n}\iota \mathrm{a}_{\mathrm{V}}$.
act,ually assume that the necessary field $\mathrm{e}\mathrm{x}\mathrm{t}$,ension is trivial.

More precisely, $1\mathrm{e}\mathrm{t}_{1}k$ be a fiite field $\mathrm{e}\mathrm{x}\mathrm{t},\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$ of $\mathbb{C}((t))$ . Let $R$ be
the integral closure of $\mathbb{C}[[t]]$ in $k$ . Since $\mathbb{C}[\lfloor t]]$ is Noetherian, $R$ is a finite
$\mathbb{C}[[t]]$-module by [M], Lelllma 1, p. 262. So, by [Ei], Cor. 7.6, p. 190. the
ring $R$ is isomorphic $\mathrm{t},\mathit{0}$ a finite product of complete local rings. Since
$R$ is a doma,in, $R$ is itself a colnplete local ring. Let$\downarrow P\subset R$ denot,e its
maximal ideal. Since $R$ is normal of dimension one. $R_{\text{ノ}}$ is regular. Since
$R$ is finit, $\mathrm{e}$ over $\mathbb{C}[[t]]$ . so is $R/P$ over $\mathbb{C}$ , and hence $\mathbb{C}\cong R/P$ . So $R$

is a complete, local. Noetherian $\mathbb{C}$-algebra $\mathrm{o}\mathrm{f}’$ dimension 1 with residue
field isomorphic t,o C. By the Cohen structure theorem, [Ei]. Thm. 7.7.
p. 191. there is an isomorphism of $\mathbb{C}$-algebras $Rarrow\sim \mathbb{C}[[.\mathrm{s}]].$ It, follows
that there is an $\mathrm{i}\mathrm{n}\mathrm{t}_{\mathrm{t}}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}e\geq 1$ such that $tR=P^{e}$ . Since every power
series in $\mathbb{C}[[t]\rfloor’$ with nonzero constant term has an $\epsilon^{)}$-th root; we $1\mathrm{n}\mathrm{a}_{\iota}\mathrm{y}$

choose the isomorphism $Rarrow \mathbb{C}[[\mathrm{c}\mathrm{s}]]\sim$ such tbat $t$ is sent $\mathrm{t}_{1}\mathrm{o}s^{e}$ .
Let, $\epsilon:Sarrow S$ be the ma,$\mathrm{p}$ given by sending $t$ to $t^{e}$ . To differentiate

source from target, we will denote $\mathrm{t}_{1}\mathrm{h}\mathrm{e}$ source of $\epsilon$ by $S_{\epsilon}$ . The upshot, is
t.hat‘ the fibered product, $X_{\epsilon}:=X\cross sS_{\epsilon}$ has, as general fiber over $S_{\epsilon}$ .
the $\mathrm{b}\mathrm{a}_{\backslash },\mathrm{s}\mathrm{e}$ extension $X_{*}\cross k$ . and as special fiber., $\mathrm{t}_{l}\mathrm{h}\mathrm{e}$ same fiber $X_{0}$ . The
new schelne $X_{\epsilon}$ is flat, and projective over $S_{\epsilon}$ , but fails $\mathrm{t}_{g}\mathrm{o}$ be regular if
$e>1$ .

Indeed, let $N$ be a node of $X_{0}$ . Since $X$ is regular, and flat over $S$

with closed fiber of pure dimension 1, t,he dimension of $X$ is 2. Using the
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Cohen structure theorem again, there is an isomorphism of $\mathbb{C}$-atlgebrats
$\hat{\mathcal{O}}_{X,N}arrow \mathbb{C}[\sim[u, \uparrow)]]$ . Since $N$ is a node of $X_{0}$ , the tallgent space of $X_{0}$ at
$N$ is equal to that of $X$ . Thus we may choose the isomorphism such
that $uv\hat{O}_{\lambda’,N}=t\hat{O}_{X,N}$ , and there is even $\mathrm{a}_{1}$ choice such that $t=u\uparrow$ ). So,
as $\mathbb{C}[[t]]$ -algebras,

$\hat{O}_{X,N}\cong\frac{\mathbb{C}[[t,u,\uparrow)]]}{(uv-t)}$ .

After the base change, we have that

$\hat{O}_{\lambda_{\epsilon}’,N}\cong\frac{\mathbb{C}[[t,u,\tau]]}{(u\uparrow,1-t^{e})},$ .

So $X_{\epsilon}$ fa,ils to be regular at $N$ if $e>1$ . A singularity of a surface whose
complete local ring is isomorphic to the above local ring is called an
$A_{e-1}$ -singularity.

Suppose $e>1$ . We may resolve the singularities of $X_{\epsilon}$ by blowing
up, at the cost of adding rational colnponellts to $X_{0}$ . Indeed, $1\mathrm{e}\mathrm{t}_{1}X_{\epsilon}’$ be
the blowup of $X_{\epsilon}$ at, $N$ . To describe $X_{\epsilon}’$ loca,lly over $N$ we may replace
$X_{\epsilon}$ by $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\hat{\mathcal{O}}_{d}\backslash _{\epsilon}’,N)$ . The ideal of $N$ in $\hat{O}_{X_{\epsilon},N}$ is $(t,, u, \tau\{)$ . Thus the
blowup can be covered by $\mathrm{t}_{\mathrm{f}}\mathrm{h}\mathrm{r}\mathrm{e}\mathrm{e}$ affine open subschemes, $U_{1},$ $c\mathrm{r}_{2}$ and
$U_{3}$ , the first two wit, $\mathrm{h}$ rings of functions

$, \frac{\mathbb{C}[[u,\mathrm{t}^{1},t]][\xi_{1},\xi_{2}]}{(u-_{\mathrm{b}1}^{C}t,\mathrm{t}^{1}-\xi_{2}t,\xi_{1}\xi_{2}-t^{e-2})}$ and $\frac{\mathbb{C}[[u,\uparrow 1_{\backslash }t]][\zeta_{1}.\zeta_{2}]}{(t-\zeta_{1}u_{:}\uparrow)-\zeta_{2}u,\zeta_{2}-\zeta_{1}^{e}u^{e-2})}$ .

respectively, and $U_{3}$ with a ring of $\mathrm{f}\iota \mathrm{l}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ very sinlilar to that of $U_{2,}$.
but with $u$ exchanged with t). The patching between $U_{1}$ and $U_{2}$ is given
by $\xi_{1}\zeta_{1}=1$ and $\xi_{1}\zeta_{2}=\xi_{2}$ .

From the above local descriptions we see that, the fiber of $X_{\epsilon}’$ over $N$

consists of the union of two $\mathrm{s}\mathrm{n}\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{t}\mathrm{h}$ rational curves, $L_{1}$ and $L_{2}$ . meeting
at a node, denoted $N^{l}$ . These curves are given by $\xi_{1}=0$ and $\zeta^{\zeta}2=0$

in $U_{1}$ . The node $N’$ is the unique singular point of $\lambda_{\epsilon\prime}’’.\mathrm{b}_{1}\iota \mathrm{t}_{1}$ is a milder
singularity than $N$ is with respect to $X,$ $\mathrm{a}\downarrow \mathrm{s}$ the power $e$ drops to $e-2$ .
Actually, the above description works for $e>3$ only. If $e=2$ , then $X_{\epsilon}’$

is regular, and the Pber over $N$ is a unique smooth rational curve $L$ .
the conic given by $\xi_{1}\xi_{2}=1$ in $U_{1}$ . From the descriptions of $U_{2}$ and $U_{3}$ .
we see that $L_{1}$ and $L_{2}$ (or just $L$ ) intersect transversally the rest of the
closed Pber of $\lambda_{\epsilon}’’$ over $S_{\epsilon}$ . More precisely, the branches of $\lambda_{0}^{r}$ at $N$ are
split in $X_{\epsilon}’$ , with one branch lying on $U_{2}$ and the other on $U_{3}$ . Then $L_{2}$

passes through the branch lying on $U_{2}$ and $L_{1}$ through that on $U_{3}$ . If
$e=2$ , then both branches are in $L$ .

The upshot is that., by blowing up at $N$ , we produce a scheme $X_{\epsilon}’$

whose closed fiber over $S_{\epsilon}$ consists of the union of the partial norma.1-
ization $\lambda_{0^{N}}’$ of $X_{0}$ at, $N$ and a nodal curve $E_{N}$ meeting traaisversally
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$X_{0}^{N}$ at the two branches over $N$ . If $e=2$ , the curve $E_{N}$ is smooth and
rational, and $X_{\epsilon}’$ is regular on a neighborhood of $E_{N}$ . If $e>2,$ $\mathrm{t}1_{1}\mathrm{e}\mathrm{n}$

$E_{N}$ is the union of two smooth, rational curves meeting transversally
$\mathrm{a},\mathrm{t}$ a single point $N’$ , and $X_{\epsilon}’$ is regular on a neighborhood of $E_{N}$ but
at the point $N’$ , which, for $e>3$ , is all $A_{e-3}$ -singularity of $X_{\epsilon}’$ . Also,
the branches of $X_{0}^{N}$ over $N$ are distributed between the components of
$E_{N}$ .

If $X_{\epsilon}’$ is not regular on a neighborhood of $E_{N}$ , that is, if $e>3_{J}$. we
proceed by blowing up $X_{\epsilon}’$ at $N’$ . Since $N’$ is an $A_{e-3}$-singularity, it is
clear that this second blowup has a description similar to that given to
$X_{\epsilon}’$ , with $e$ replaced by $e-2$ .

By repeating the above process, and applying it to each node of $X_{0}$ ,
it should be clear by now that we will end up with a regular surface
$\overline{X}$ , which is flat and projective over $S_{\epsilon}$ , and whose closed fiber is the
union of the (total) norma,lization $X_{0}^{\nu}$ of $X_{0}\mathrm{w}\mathrm{i}\mathrm{t}_{}\mathrm{h}$ a collection of disjoint
chains of $e-1$ rational curves, one for each node of $\lambda_{0}^{r}$ . Ea,ch chain
corresponds to a node of $X_{0}$ , and $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}_{1}\mathrm{s}\lambda_{0}^{r\nu}$ transversa,lly at the two
branches over that node, which becolme point,s on the outer components
of the chain, one for each component.

Rom the above description, t,he general fiber of $\overline{X}$ over $S_{\mathrm{c}}$ is the $\mathrm{b}\mathrm{a}$,se

extension $X_{*}\cross k$ , while the closed fiber is $\mathrm{w}\mathrm{h}\mathrm{a}\mathrm{t}_{}$ we will call here an
avatar of $X_{0}$ , as explained below.

Deflnition 3.4. A chain of $n$ rational $cur^{4}nes$, for $n\geq 2$ . is a nodal
curve with $\tau?$, irreducible components, all of them smoot, $\mathrm{h}$ and rational.
and n-l nodes. In a,cldition, it is required $\mathrm{t}\mathrm{h}\mathrm{a},\mathrm{t}$ the number of compo-
nents containing only one node of the curve is 2. These t,wo components
are called the outer components of the chain. A slIloot,h rational curve
will eventually be called, for homogeneity, a chain of 1 rational curve.

Let, $x_{0}$ be a nodal curve. Let $N_{1_{\text{ノ}}}\backslash \cdots,$ $N_{\delta}$ be nodes of $\lambda_{0_{i}}’$ and $X_{0}’$ the
partial normalization of $X_{0}$ along them. Let $E_{1,}\ldots$ . $,$

$E_{\delta}$ be chains of
rational curves. not necessarily with the same $\mathrm{n}\iota 1\mathrm{l}\mathrm{n}\mathrm{b}\mathrm{e}\mathrm{r}$ of components.
Let $X_{1}$ be the union of $X_{0}’$ with $E_{1},$

$\ldots,$
$E_{\delta}$ in such a way that $E_{i}$ and $E_{j}$

are disjoint if $i\neq j$ , and each $E_{i}$ intersects $X_{0}’$ transversally at exactly
two points: the branches of $X_{0}’$ over $N_{i}$ on the side of $X_{0}^{j}$ , and two
points lying each on a different, outer component of $E_{i}$ . on the side of
$E_{i}$ . We call all possible curves $X_{1}$ obtained from $X_{0}$ in this way $avat,a’|s$

of $X_{0}$ .

3.5. Deterntinantal subsche$??7$, es of th, $e$ Picard $sch,en|,e$ . $\mathrm{L}\mathrm{e}\mathrm{t}_{l}f:Xarrow S$

be a smooth, projective map with geometrically connected fibers of
dimension 1. Let $g$ denote the genus of the fibers of $f$ .
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For each integer $d$ , let $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ denote the degree-d rela,tive Picard scheme
of $f$ , parameterizing invertible sheaves of degree $d$ on the fibers of $f$ .
Assume $f$ admits a section $\sigma:Sarrow X$ , and let $\Sigma:=\sigma(S)$ . Then there
is a Poincar\’e, or universal sheaf $\mathcal{L}$ on $X\cross_{S}\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ , an invertible sheaf
whose restriction to $X\cross s\{t\}$ for each $t\in \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ is the invertible sheaf
represented by $t_{}$ ; see [BLR], Prop. 4, p. 211. The Poincar\’e sheaf
is unique if we impose that it be rigidified by the sect,ion, i.e. that
$\mathcal{L}|_{\Sigma \mathrm{x}_{S}\mathrm{P}\mathrm{i}\mathrm{c}_{j}^{d}}$ be trivial.

Since $f$ is smooth, $\Sigma\subset X$ is an effective Cartier divisor. Denote by
$p_{1}$ : $X\cross_{S}\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}arrow X$ and $p_{2}$ : $X\cross_{S}\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}arrow \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ the projection $\mathrm{l}\mathrm{n}\mathrm{a},\mathrm{p}\mathrm{s}$ .
Set

$\mathcal{M}:=\mathcal{L}\otimes p_{1}^{*}O_{X}(n\Sigma)$

for an integer $7\iota>>0$ . More precisely, we need tha,t

(3.5.1) $h^{1}(X\cross_{S}\{t\}, \mathcal{M}|_{X\mathrm{x}_{S}\{t\}})=0$

for each $t\in \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ . As $\mathcal{M}$ has relative degree $d+’\iota$ over $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ , it is enough.
by the Riemann-Roch theorem, to choose $7\downarrow$ with $n\geq 2g-1-d$ .

Since $f$ is smooth of relative dilnension one, $n\Sigma\subset X$ is finite and
flat over $S$ with relative degree $\mathit{7}l_{\text{ノ}}$ . Set

$\Sigma_{\mathrm{n}}:=\uparrow|,\Sigma \mathrm{x}_{S}\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}\subset X\mathrm{x}_{S}\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$.

Consider the derived long exact sequence of higher direct images under
$p_{2}$ of the natural exact sequence

(3.5.2) $0 arrow \mathcal{L}n\mathcal{M}\sum_{arrow}arrow \mathcal{M}|_{\Sigma_{n}}arrow 0$ .

Since Equation (3.5.1) holds for each $t\in \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ , we have $R^{1},p_{2*}\mathcal{M}=0$ .
So we obtain an exact sequence:

(3.5.3) $0arrow p_{2*}\mathcal{L}arrow p_{2*}\mathcal{M}arrow p_{2*}\mathcal{M}|\Sigma_{n}arrow R^{1}p_{2*}\mathcal{L}arrow 0$

Let
$\varphi:p_{2*}\mathcal{M}arrow p_{2*}\mathcal{M}|\Sigma_{rl}$

denote the middle map in the above sequence.
Since $\mathcal{M}$ and $\mathcal{M}|\Sigma_{n}$ are flat, over $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ . and t.heir restrictions to the

fibers $X\cross s\{t.\}$ for $t,$ $\in \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ have zero higher cohomology, $\varphi$ is a map
of locally free sheaves. The rank of the source is $d+n+1-g$ , by t,he

Riemann-Roch theorem, while the rank of the target is $n$ . For each
integer $u\geq 0$ let

$E_{u}:=$ { $t\in \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}|\varphi(t)$ ha.s rank at, most $u$}.

More precisel.$\mathrm{Y}$, $E_{u}$ is the closed subscheme of $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ given locally by t,he

vanishing of the minors of size $u+1$ of a matrix representing $\varphi$ . Since
different represent,ing matrices are similar, the ideal generated by t,he
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minors is well defined. Because of the way it is defined, we call $E_{u}$ a
$deter\eta\iota inantal$ scheme.

Wha,$\mathrm{t}$ does $E_{u}$ parameterize? To see this, let $h:Tarrow \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ be any
map of $S$-schemes, and put

$h_{1}:=1\cross f\}.:X\cross_{S}Tarrow X\cross_{S}\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ .
Let $q_{2}$ : $X\cross_{S}Tarrow T$ be the projection onto the second factor. Since
$\mathcal{M}|\Sigma_{n}$ is flat over $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ , applying $h_{1}^{*}$ to (3.5.2) we end up with a short
exact sequence of sheaves on $X\cross_{S}T$ . And, as before, the derived long
exact sequence of higher direct images under $q_{2}$ truncates to the exact
sequence:
(3.5.4) $0arrow q_{2*}h_{1}^{*},\mathcal{L}arrow q_{2*}h_{1}^{*}\text{ノ}\mathcal{M}arrow q_{2*}h_{1}^{*},\mathcal{M}|\Sigma_{n}arrow R^{1}q_{2*}h_{1}^{*}\mathcal{L}arrow 0$.
There is a natural map of exact sequences from the pullback of (3.5.3)
under $h$ to (3.5.4):

$h^{*}p_{2*}\mathcal{L}$ $–$ $h^{*}p_{2*}\mathcal{M}arrow h^{*}\varphi h^{*}p_{2*}M|\Sigma_{n}rightarrow h^{*},R^{1}p_{2*}\mathcal{L}$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$q_{2*}h_{1}^{*}\mathcal{L}rightarrow q_{2*}h_{1}^{*}\mathrm{A}\not\inrightarrow q_{2*}h_{1}^{*}\mathcal{M}|\Sigma_{n}arrow R^{1}q_{2*}h_{1}^{*}\mathcal{L}$.
Since $\mathcal{M}$ and $\mathcal{M}|\Sigma_{n}$ are flat over $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ , and their restrictions to the
fibers $X\cross s\{t\}$ for $t\in \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ have zero higher cohomology, $\mathrm{t}_{\partial}\mathrm{h}\mathrm{e}$ two
middle vertical lnaps above are isomorphisms. Thus
(3.5.5) $\mathrm{K}\mathrm{e}\mathrm{r}(h_{\text{ノ}^{}*}\varphi)\cong q_{2*}h_{1}^{*}\mathcal{L}$ and $\mathrm{C}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}(h^{*},\varphi)\cong R^{1},q_{2*}h_{1}^{*}\mathcal{L}$ .
Because of this property, we say $\mathrm{t}\mathrm{h}\mathrm{a},\mathrm{t}\varphi$ represents universally the co-
homology of $\mathcal{L}$ under $p_{2}$ .

Applying (3.5.5) to the case $T=\{t\}$ , for $t\in \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ . we see that
$\mathrm{K}\mathrm{e}\mathrm{r}(\varphi(t))\cong H^{0}(X\mathrm{x}_{S}\{t\}, \mathcal{L}|_{X\mathrm{x}_{S}\{t\}})$.

So
$E_{u}=\{t\in \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}|h^{0}(X\mathrm{X}_{S}\{t\}, \mathcal{L}|X\cross s\{t\})\geq d+n+1-g-u\}$.

Fix $u:=d+n-g-r$ . Then $E_{u}$ parameterizes invertible sheaves with
at least $r+1$ linea,rly independent sections. We set $\ddagger V_{r}^{d}(f):=E_{u}$ .

In principle, it seems that $W_{f}^{d}(f)$ depends on $\mathrm{t}_{1}\mathrm{h}\mathrm{e}$ choice of the section
$\sigma$ and of the integer $7l$ . It does not. In fact,, since $\varphi$ is a presentation
for $R^{1}p_{2*}\mathcal{L},$ fronl the exact sequence (3.5.3). we see that, $E_{u}$ is defined
by the $(g+r\cdot -d-1)$ -th Fitting ideal of $R^{1}p_{2*}\mathcal{L}$ . (See [Ei]. Section 22.2.
p. 496 for the $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}_{l}\mathrm{i}\mathrm{o}\mathrm{n}$ of Fitting ideals of modules, their independence
of the choice of presentations, and their functoriality. which allows for
their $\mathrm{p}\mathrm{a}\mathrm{t}_{1}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g}.$ ) Being $\mathcal{L}$ rigidified by $\sigma_{\text{ノ}}$. it could still seenl that $\mathrm{M}_{r}^{rd}J(f)$

depends on $\mathrm{t}_{1}\mathrm{h}\mathrm{e}$ choice of a. It does $\mathrm{n}\mathrm{o}\mathrm{t}_{1}$ . If $\mathcal{L}’$ is an$\mathit{0}$ther Poincar\’e

95



LIMIT LINEAR SERIES, AN INTRODUCTION

sheaf, rigidified by another section or not, then $\mathcal{L}’\cong \mathcal{L}\otimes p_{2}^{*}N$ for an
invertible sheaf $N$ on $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ . Then $R^{1}p_{2*}\mathcal{L}’\cong R^{1}p_{2*}\mathcal{L}\otimes N$, and hence
$R^{1}p_{2*}\mathcal{L}’$ and $R^{1}p_{2*}\mathcal{L}$ have the same Fitting ideals.

What happens if $f$ does not $\mathrm{a}\mathrm{d}\iota \mathrm{n}\mathrm{i}\mathrm{t}$ a section? Well, the projection
orito the second factor, $b:X\cross_{S}Xarrow X$ , admits a, section, the diagonal
embedding. So we may construct a subscheme $W_{r}^{d}(b)\subset \mathrm{P}\mathrm{i}\mathrm{c}_{b}^{d}$ as before.
Now, the formation of the relative Picard scheme is $\mathrm{f}\mathrm{t}\mathrm{l}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{a},1$, that is,
commutes with base change. In addition, $W_{r}^{d}(b)$ does not depend on
the choice of the section. Thus, since $f$ is flat, $W_{r}^{d}(b)$ descends to a
closed subscheme $W_{r}^{d}(f)\subset \mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$ . Moreover. the forma,tion of $W_{r}^{d}(f)$

commutes with $\mathrm{b}\mathrm{a}_{\iota}\mathrm{s}\mathrm{e}$ change. More precisely, if $S’arrow S$ is any map of
schemes, and $f’$ : $X\cross sS’arrow S’$ is the projection onto the second factor,
then $W_{r}^{d}(f)\cross sS’=W_{r}^{d}(f’)$ as subschemes of $\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}\cross sS’=\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d},$ .

If $S$ is the spectrum of a field, we will use t,he notation $\mathrm{P}\mathrm{i}\mathrm{c}^{d}X:=\mathrm{P}\mathrm{i}\mathrm{c}_{f}^{d}$

and $W_{r}^{d}X:=W_{r}^{d}(f)$ .
The above construction can be found in [ACGH], Chapter IV, Sec-

tion 3, p. 176 for the case of a single curve.

3.6. Clarification of the statement of Theorem 2.11. Let $X_{*}$ be the
general fiber of t,he given map $f$ . As we observed in Subsection 3.3,
the flber $X_{*}$ is smooth and geometrically connected over $\mathbb{C}((t.))$ . Let
$k$ be an a,lgebraic closure of $\mathbb{C}((t,))$ , and let $G’:=\lambda_{*}’\cross k$ be the base
extension of $X_{*}$ over $k$ . Let $g$ be the genus of $G$ .

Being more precise, Theorem 2.11 states that for $\mathrm{e}\mathrm{a}$,ch pair of non-
negative integers $(d, 7^{\cdot})$ such that $\rho(g, d, 7^{\cdot})<0$ there is no invertible
sheaf on $G$ with degree $d$ having at least, $7^{\cdot}+1$ linearly independent sec-
tions, i.e. $W_{r}^{d}G=\emptyset$ . Notice thaot, by what we saw in Subsection 3.5.
we have $\mathrm{M}_{r}^{rd}\prime G=\mathrm{M}_{r}^{rd}/X_{*}\cross k$ . Thus, requiring that $l\mathrm{t}_{r}^{\prime d}/’ G=\emptyset$ is the same
as requiring that $W_{r}^{d}X_{*}=\emptyset$ .

3.7. Proof of Theorem 2.4. Let $F$ be a flag curve of arithmetic genus
$g$ , i.e. with $g$ elliptic colnponents. Since $F$ is noda,1, as we observed in
Subsection 3.1, there is a. regular smoothing of $F$ , i.e. there are a flat,
projective map $f:Xarrow S$ from a, regular schelne $X$ to $S:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{C}[[t]])$

and an isomorphism between t,he closed fiber and $F$ . Let $X_{0}$ denote
$\mathrm{t}_{\iota}\mathrm{h}\mathrm{e}$ closed fiber and $X_{*}$ the generic fiber of $f$ .

Since $X_{*}$ is projective, hence given by a finite number of equations in
projective space, there is a subfield $k\subseteq \mathbb{C}((t))\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}_{}\mathrm{e}\mathrm{l}\mathrm{y}$ generat,ed over $\mathbb{Q}$

such $\mathrm{t}_{\mathrm{t}}\mathrm{h}\mathrm{a}\mathrm{t}X_{*}$ is actually defined over $k$ , i.e. there is a projective curve $G$

over $k$ such that $X_{*}=G\cross_{k}\mathbb{C}((t))$ . Since $\mathbb{C}$ has infinite transcendence
degree over Q), we lnay embed $k_{\text{ノ}}$ in $\mathbb{C}$ , and thus consider an extension
of $G$ over $\mathbb{C}$ to a complex curve $C’$ , i.e. $C=G\cross_{k}$ C. Since $X_{*}$ is
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geometrically connected and smooth, so are $G$ and $C$ , and all of them
have the sanie genus $g$ . So $C$ is a nonsingula,$\mathrm{r}$ , connected, complex
projective curve of genus $g$ . We claim that $C$ satisfies t,he Brill-N\"other
property, thus proving the Brill-N\"other statement in Subsection 2.7,
from which Theorem 2.4 follows.

Indeed, let $(d, r)$ be a pair of nonnegative integers such that $\rho(g, d_{7},\cdot)$

is negative. We need to show that $W_{r}^{d}C=\emptyset$ . However, $W_{r}^{d}X_{*}=\emptyset$ by
Theorem 2.11; see Subsection 3.6. Since

$W_{r}^{d}C’=W_{r}^{d}G\cross_{k}\mathbb{C}$ alld $W_{r}^{d}X_{*}=W_{r}^{d}G\cross_{k}\mathbb{C}((t))$ ,

it follows that $W_{r}^{d}C=\emptyset$ . The proof of Theorenl 2.4 is complete.

4. RAMIFICATION POINTS

4.1. $Ramificat,ion$ points of linear systems. Let $C$ be a nonsingular,
connected, complex projective curve of genus 9. Let $L$ be a line bundle
on $C$, and $V\subseteq\Gamma(C, L)$ a nonzero vector subspace. Let $d:=\deg L$ alld
$r:=\mathrm{d}\mathrm{i}_{\mathrm{l}}\mathrm{n}V-1$ .

Let $P\in C$ . We say that an integer $\epsilon$ is an order of the linear system
(V, $L$ ) at $P$ if there is a nonzero section of $L$ in $V$ vallishing at. $P$ with
order $\epsilon$ . If two sections of $L$ have the sa,$\mathrm{l}\mathrm{n}\mathrm{e}$ order, a certain linear
combination of tbem will be zero or have higher order. Thus there are
exactly $7^{\cdot}+1$ orders of (V,$\cdot$

$L$ ) at P. $\mathrm{P}\iota \mathrm{l}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{t}_{1}\mathrm{h}\mathrm{e}\mathrm{n}1$ in increasing order
we get a sequence,

$\epsilon_{0}(P),$
$\ldots,$

$\epsilon_{r}(P)$ ,

called the order sequence of (V,$\cdot$

$L$ ) at $P$ . Notice that $i,$ $\leq\epsilon_{i}(P)\leq d$ for
each $i$ . Put

wt$|(P):= \sum_{\iota=0}^{r}(\epsilon_{i}(P)-i)$ .

Then
$0\leq$ wt $(P)\leq(7^{\cdot}+1)(d-r)$ .

We $\mathrm{c}\mathrm{a},11\mathrm{w}\mathrm{t}(P)$ the ramificat,ion $wei,ghf$ of (V, $L$ ) at $P$ . If $\mathrm{w}\mathrm{t}(P)>0$ we
say that $P$ is a ramification point of (V, $L$ ). Also. we call the cycle

$[W(V, L)]:= \sum_{P\in C}\mathrm{w}\mathrm{t},(P)[P]$

the ramification cycle of (V, $L$ ).

4.2. The Pl\"ucker $form,ula$ . Keep the setup of Subsection 4.1. Since $C$

is smooth, $\Omega_{C}^{1}$ is a line bundle. Let $U\subseteq C$ be an open subscheme such
that $\Omega_{U}^{1}$ aaid $L|_{U}$ are trivia,1. Let $\mu\in\Gamma(U, \Omega_{C}^{\mathrm{J}})$ alld $\sigma\in\Gamma(U, L)$ be
sections generating $\Omega_{U}^{1}$ alld $L|_{U}$ .
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Fix a basis $\beta=$ $(s_{0}, \ldots \dagger s_{r})$ of $V$ . Then there a,re regular functions
$f_{0},$

$\ldots,$
$f_{r}$ on $U$ such that $s_{i}|_{U}=f_{i}\sigma$ for each $i$ . Let a be the C-linear

derivation of $\Gamma(U, O_{C})$ such that $dh=\partial(h)\mu$ for each $h\in\Gamma(U, O_{C})$ .
Form the Wronskian determinant:

$u’(\beta, \sigma, \mu)$ $:=$ .

If $\sigma’$ and $\mu’$ are other $\mathrm{b}\mathrm{a}_{\mathrm{A}}\mathrm{s}\mathrm{e}\mathrm{s}$ of $L|_{U}$ and $\Omega_{U}^{1}$ then $\sigma’=a\sigma$ and $\mu’=b\mu$

for certain everywhere nonzero regular filnctions $a$ and $b$ on $U$ . Then

$w(\beta, \sigma’, \mu’)=$

$af_{0}$ $af_{r}$

$b\partial(af_{0})$ $b\partial(af_{r})$

: .. :..
$(b\partial)^{r}(af_{0})$ $(b\partial)^{r}(af_{r})$

$=abr+1(\beta_{l}.\sigma, \mu)$ ,

where the first equality follows from the definition, and t,he second
from the multilinearity of the determinant and the product rule of
derivations.

Thus the $w(\beta, \sigma, \mu)$ patch up to a section of

$L^{\otimes r+1}\otimes(\Omega_{C}^{1})^{\otimes(\begin{array}{l}?\cdot+12\end{array})}$ .

Denote the zero scheme of this section by $\nu \mathrm{t}^{r}/(V, L)$ . We call $W(V, L)$

the ramification divisor of (V, $L$ ).
The multilinearity of the determinant, aiid the fact that $\partial$ is C-linear,

imply that $W(V, L)$ does not depend on the choice of basis 6 of $V$ .
Given any effective divisor $D$ of $C$ and any $P\in C$ we let

$\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}_{P,C}(D)$

denote the multiplicity of $D$ at $P$ , and consider the associated cycle:

$[D]:= \sum_{P\in C}1\mathrm{n}\mathrm{l}\mathrm{l}\mathrm{l}\mathrm{t}_{P,C}(D)[P]$
.

The cycle associated to $\mathrm{M}^{\gamma}(V.L)$
, is the ramification cycle $[\mathfrak{y}\mathrm{f}’,’(V, L)]$ .

This statement, justifies the notation used in Subsection 4.1. Since
$L$ has degree $d$, and $\Omega_{C}^{1}$ has degree $‘ 2g-2$ , it follows that,

$\deg[W(V, L)]=(r+1)(d+r(g-1))$ ,

a formula known as the Pl\"ucker formula.
To prove the $\mathrm{s}\mathrm{t},\mathrm{a},\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}_{1}$, let $P\in c_{1}$ . Let $t$. be a loca.1 $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}$ of $C$ at

$P$ . Then $t$ is a regular function on an open neighborhood $U\subset C$ of $P$ .
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Shrinking $U$ around $P$ if necessary, we may assume that $dt$ generates
$\Omega_{U}^{1}$ . Also, we may assume there is $\sigma\in\Gamma(U, L)$ generating $L|_{U}$ .

There are $.9_{0},$
$\ldots,$

$\mathit{8}_{r}\in V$ vanishing at $P$ with orders $\epsilon_{0}(P),$
$\ldots,$

$\epsilon_{r}(P)$ .
Shrinking $U$ around $P$ if necessary, we may assume that there are
everywhere nonzero regular functions $u_{0},$ $\ldots,$

$u_{r}$ on $U$ such that
$s_{i}|_{U}=u_{i}t^{\epsilon_{\{}(P)}\sigma$

for each $i$ . Since the orders of vanishing are distinct,, $\beta:=(s_{0s}\ldots. , s_{r})$

is a basis of $V$ .
The Wronskian determinant $w(\beta, \sigma, dt)$ has the form:

$\uparrow \mathit{1}\mathit{1}(\beta, \sigma, dt)=$ .

Using the multilinearity of the determinant, the product rule of deriva-
tions, and the fact that $\frac{d}{dt}(t^{j})=jt^{j-\cdot 1}$ for each integer $j\geq 1$ , we get

$w(\beta, \sigma, dt)=t^{\mathrm{w}\mathrm{t}\langle P)_{\mathrm{t})}}r$ ,

where $v$ is a regular function on $U$ whose value a,t $P$ satisfies

$v(P)= \prod_{\iota=0}^{r}\prod_{i=0}^{r}u_{i}(P)$ .

In particular, $\iota\dagger(P)\neq 0$ , and thus $\mathrm{e}v(\beta, \sigma, dt)$ vanishes at $P$ with order
$\mathrm{w}\mathrm{t}_{1}(P)$ . This order of vanishing is, by definition, the $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}_{1}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}$ of
$W(V, L)$ at $P$ . Since this is valid for every $P\in C$ , we get that t,he
cycle associated to $W(V, L)$ is indeed $[W(V, L)]$ .

5. LIMIT LINEAR SERIES

5.1. Setup. Let $S:=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{C}[[t]])$ . Let $X_{0}$ be a nodal curve. and
$f:Xarrow S$ a regular smoothing of $X_{0}$ . Let, $X_{*}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{f}\downarrow \mathrm{e}$ the general fiber
of $f$ , and ident,ify the closed fiber with $X_{0}$ . Let $C_{1},$

$\ldots$ , $C_{n}$ denote the
irreducible components of $X_{0}$ . Though not really necessary, for $\mathrm{s}\mathrm{i}\iota \mathrm{n}-$

plicity we will assume in these notes that $C_{1},$
$\ldots$ , $C_{n}$ are nonsingular.

5.2. Twists. Keep Setup 5.1. Since $X$ is regular. every invertible
sheaf on $X_{*}$ can be extended to an invertible sheaf on the whole $X$ .
But the extension is not unique. Indeed, since $X$ is regular and two-
dimensional, $C_{1}’,$

$\ldots,$
$C_{n}$, are Cartier divisors of $X$ . So, for $\mathrm{e}\mathrm{a}$,ch invert-

ible sheaf $\mathcal{L}$ on $X$ , and each ’ $\iota$-tuple of integers $\alpha=(\alpha_{1}, \ldots, \alpha_{n})$ , we
may define

C’ $:=\mathcal{L}\otimes \mathcal{O}_{\mathrm{Y}’-}$ $( \mathrm{a}_{1}C_{1}\text{ノ}+\cdots+\bigcap_{n}’C_{n})$ .
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Then $\mathcal{L}^{\alpha}$ is invertible and sat,isfies $\mathcal{L}^{\alpha}|_{\lambda’*}=\mathcal{L}|_{X_{*}}$ . We say that $\mathcal{L}^{\alpha}$ is
the $\alpha$-twist of $\mathcal{L}$ , or simply a twist of L.

Let $\mathcal{L}$ be an invertible sheaf on $X$ . Notice that, since $f$ is flat, the
endomorphism of $\mathcal{L}$ given by multiplication by $t$ is injective. Thus
$t\Gamma(X, \mathcal{L})$ is the kernel of the restriction map $\Gamma(X, \mathcal{L})arrow\Gamma(X_{0}, \mathcal{L}|_{X_{0}})$ .
We say that $C$ has focus on $C_{i}$ if the restriction map

$\Gamma(X, \mathcal{L})arrow\Gamma(C_{i}, \mathcal{L}|c_{i})$

$\mathrm{h}\mathrm{a}_{\mathrm{A}}\mathrm{s}$ kernel $t\Gamma(X, \mathcal{L})$ as well. Equivalently, $\mathcal{L}\mathrm{h}\mathrm{a}_{\mathrm{A}}\mathrm{s}$ focus on $C_{i}$ if every
global section of $\mathcal{L}$ that vanishes on $C_{i}$ vanishes on the whole $X_{0}$ .

Proposition 5.3. Keep Setup 5.1. Let $\mathcal{L}$ be an invertible sheaf on $X$ .
Then for each $C_{i}$ there is a twist, of $\mathcal{L}$ that $h,as$ focus on $C_{i}$ .

Proof. It is enough to exhibit a twist of $\mathcal{L}$ whose restrictions to $C_{j}$ for
$j\neq?$, have negative degree.

Without loss of generality. we may assuine that $i,$ $=1$ , and that the
components $C_{j}$ are ordered in the following way. First, $C_{2}’,$

$\ldots,$
$C_{i_{1}}$ in-

tersect $C_{1}\text{ノ}$ . Then $C_{i_{1}},$ $\ldots,$
${}_{+1}C_{i_{2}}$ intersect $c_{2^{\cup\cdots\cup C\prime}i_{1}}$ but not $C_{1}\text{ノ}$ . Next,

$C_{i_{2}+1},$
$\ldots,$ $C_{i\mathrm{q},:}$ intersect $o_{i_{1+1^{\cup\cdots\cup C\prime}i_{2}}}$ but not $C_{2}\cup\cdots\cup C_{i_{1}}$ . Go on

like this, until $\mathrm{a}_{e}11$ components are exhausted. At the end, $C_{i_{m}},$
$\ldots,$

${}_{+1}C_{n}$

$\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}^{\iota}C_{\iota_{m-1}’+1}\cup\cdots\cup C_{\iota_{m}}$ but not $C_{ln\iota-2+1},\cup\cdots\cup C_{i_{n’-1}}$ . That a,ll

components are exhausted follows from the fact that $X_{0}$ is connected.
Now, choose $m+1$ integers $l_{m},$

$\ldots,$
$\ell_{0}$ in this order satisfying the

following conditions. First, choose $l_{m}$ such $\mathrm{t}\mathrm{h}\mathrm{a},\mathrm{t}_{1}$

$\mathcal{L}_{m}:=\mathcal{L}\otimes O_{X}(-l_{m}(C_{i_{m-1}+1}+\cdots+C_{i_{n\iota}}’))$

has negative degree on each $Ci_{n\downarrow}+1,$
$\ldots,$

$C’\eta$ . This is possible because
each of these curves intersects $C_{\iota_{n1-1}+1}\cup\cdots\cup C_{i_{n1}},$ . Second. choose $l_{m-1}$.

such that
$\mathcal{L}_{m-1}:=\mathcal{L}_{m}\otimes O_{\lambda’}(-l_{m-1}(C_{i_{n\iota-2}+1}+\cdots+C_{i_{n\mathrm{t}-1}}))$

has negative degree on each $\mathrm{C}_{i_{m-1}+1\prime\cdot\cdot\prime}\ldots C_{i_{n\mathrm{t}}}$ . As before, this is possible
because each of these curves intersect $C_{i_{m-2}+1}\cup\cdots\cup C_{i_{n\iota-1}}’$ . Also,
$\mathcal{L}_{m-1}$ has the same degree as $\mathcal{L}_{m}$ on each $C_{i_{m}}\text{ノ}’,$

$\ldots,$${}_{+1}C_{n}$ , as none of
these curves intersect $C_{i_{m-2}+1}\cup\cdots\cup C_{i_{n1-1}}$ . Go on like this, choosing
integers $l_{\tau\iota-2},,$

$\ldots,$
$l_{1}$ and obtaining sheaves $\mathcal{L}_{m-2},$

$\ldots,$
$\mathcal{L}_{1}$ . The sheaf $\mathcal{L}_{1}$

has negative degree on $C_{i_{1}},$
$\ldots,$${}_{+1}C_{n}$ .

Finally, choose an integer $\ell_{0}$ such $\mathrm{t}\mathrm{h}\mathrm{a},\mathrm{t}\mathcal{L}_{0}:=C_{1}\otimes \mathcal{O}_{X}(-l_{0}C_{1})$ has
negative degree on each $C_{2},$

$\ldots,$
$C_{i_{1}}’$ . Then $C_{0}$ has negative degree on

each $C_{2},$
$\ldots$ , $C_{n}’$ , and hence is a desired twist of C. $\square$

Proposition 5.4. Keep Se$t,up\mathit{5}.\mathit{1}$ . Let $\mathcal{L}$ be an invertible sheaf on $X$ .
Then $\mathcal{L}^{\alpha}\cong C^{\beta}$ if and only if $\alpha-\beta\in \mathbb{Z}(1, \ldots, 1)$ .

100



EDUARDO ESTEVES

Proof. We may assume that $\mathcal{L}=O_{X}$ an $\mathrm{d}\beta=0$ .
First, since $X_{0}$ is redtlced, $\mathrm{d}\mathrm{i}\mathrm{v}_{X}(t)=C_{1}+\cdots+C_{n}$ . Thus

$O_{X}\cong O_{X}(C_{1}+\cdots+C_{n})$ .

Iterating, we get that $\mathcal{O}_{X}^{a}\cong O_{X}$ if $\alpha\in \mathbb{Z}(1, \ldots, 1)$ .
Now, suppose $O_{X}^{\alpha}\cong \mathcal{O}_{X}$ for a certa,in $n$-tuple $\alpha$ . Using the already

proved part, we may a.ssume that $\alpha$ is the unique representative of
$\alpha+\mathbb{Z}$ (1, $\ldots$ , 1) such that $\alpha_{j}\geq 0$ for each $j$ , with equality for at least
one $j$ . We will show that $\alpha=0$ .

Without loss of generality, we may assume that $\alpha_{1}=0$ . We may
also assume that $C_{1}’,$

$\ldots,$
$C_{n}$ are ordered as in the proof of Proposi-

tion 5.3. Now, since $\mathcal{O}_{X}^{\alpha}\cong O_{X}$ , in particular $O_{X}^{\alpha}|c_{1}$ has degree $0$ .
Since $C_{2},$

$\ldots,$
$C_{i_{1}}$ intersect $C_{1}\prime\prime$. and $\alpha_{1}=0$ , we get $\alpha_{2}=\cdots=\alpha_{i_{1}}=0$ .

Also, $\mathcal{O}_{X}^{\alpha}$ has degree $0$ on each $C_{2}’,$
$\ldots,$

$C_{i_{1}},$ . Since $C_{i_{1}+1}’,$
$\ldots$ \dagger

$C_{i_{2}}$ in-
tersect, $C_{2}\cup\cdots\cup C_{i_{1}}$ , a,nd $\alpha_{2}=\cdots=\alpha_{i_{1}}=0$ , we must also have
$\alpha_{t_{1}+1}=\cdots=\alpha_{i_{2}}=0$ . Go on like this, $\mathrm{t}\mathrm{l}\mathrm{d}$ , since $X_{0}$ is connected, we
will get at the end that $\alpha=0$ . $\square$

5.5. Connecting numbers. Keep Setup 5.1. Let $\mathcal{L}$ be an invertible sheaf
on $X$ , and $\mathcal{L}^{\alpha}\mathrm{a}\iota \mathrm{l}\mathrm{d}\mathcal{L}^{\beta}$ twists of $\mathcal{L}$ . For each pair of distinct components
$C_{i}$ and $C_{j}$ let

$p_{i,j(\mathcal{L}^{\alpha},\mathcal{L}^{\beta})}.:=\alpha_{j}-\alpha_{i}+\beta_{i}-\beta_{j}$ .

We call $l_{i,j}(\mathcal{L}^{\alpha}, \mathcal{L}^{\beta})$ the connecti$ng$ number between $\mathcal{L}^{\alpha}$ and $\mathcal{L}^{\beta}$ with
respect to $C_{i}\text{ノ}$ and $C_{j}$ . It follows from Proposition 5.4 that the connect-
ing number depends only on $\mathcal{L}^{\alpha}$ and $\mathcal{L}^{\beta}$ . and not on the choices of $\alpha$

and $\beta$ . In addition, from t,he definition,
$l_{i,j}(\mathcal{L}^{\alpha}, C^{\beta})=^{p_{j,i}}(\mathcal{L}^{\beta}, \mathcal{L}^{\alpha})$ .

5.6. The relative ramification divisor. Keep Setup 5.1. Since $X$ is
a regular surface, $\Omega_{A}^{1}\backslash$

’ is locally free of rank 2. Consider the natural
$\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}_{}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of the sheaf of relative differentials:
(5.6.1) $f^{*}\Omega_{S}^{1}arrow\Omega_{\lambda’}^{1}arrow\Omega_{\lambda’/s}^{1}arrow 0$ .

$dt\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{f}\Omega_{S}^{1}.\mathrm{t},\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{a},\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{t}1_{1\Gamma \mathrm{O}11}\mathrm{h}:\Omega_{\lambda/s\iota^{r}}^{1}\mathrm{T}\mathrm{a}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{x}^{r}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{r}\mathrm{o}_{J}\mathrm{d}_{11}\mathrm{c}_{\mathrm{S}\mathrm{m}\mathrm{a}\mathrm{p}\mathrm{g}\mathrm{a}1\mathrm{n}\mathrm{a}\mathrm{p}\eta,arrow\Omega_{d}^{2}}\mathrm{t}\mathrm{w}\mathrm{i}\mathrm{t},\mathrm{h}f^{*}dt\mathrm{g}_{\mathrm{k}}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{s}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{a}1\mathrm{m}\mathrm{a}\mathrm{p}\Omega_{\lambda}^{1},arrow\Omega_{X}^{2}.\mathrm{A}\mathrm{s}$

.
Let $D:\mathcal{O}_{X}arrow\Omega_{J\mathrm{Y}}^{2}$ denote the induced $\mathcal{O}_{S}$-derivation.

The map $\eta$ is bijective on the smooth locus of $f,$ $\mathrm{i}$ . $\mathrm{e}$ . off the nodes of
$X_{0}$ . Indeed, the natural pullback map $f^{*}\Omega_{S}^{1}arrow\Omega_{1’}^{1}$ is injective, because
it, is so on the generic fiber. So t,he $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}_{}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(’5.6.1)$ is a short exact,
sequence. The map $\eta$ is biject,ive where $\Omega_{z\mathrm{X}/s}^{1}$, is locally free (and hence
where (5.6.1) is locally split,), that is, off t,he nodes of $X_{0}$ .
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Let $C$ be an invertible sheaf on $X$ . Since $f$ is flat, the associated
points of $C$ lie on $X_{*}$ , and hence the $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t},\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{t}_{}\mathrm{i}\mathrm{o}\mathrm{n}\Gamma(X, \mathcal{L})arrow\Gamma(X_{*}, \mathcal{L}|_{\lambda_{*}^{r}})$

is injective. Thus $\Gamma(X, \mathcal{L})$ is a torsion-free $\mathbb{C}[[t]]$-module, whence free.
Let $V\subseteq\Gamma(X, \mathcal{L})$ be a $\mathbb{C}[[t]]$ -submodule. Assume $V$ is saturated, that

is, the quotient module is free. Since $\Gamma(X, \mathcal{L})$ is free, so is $V$ . Assume
$V$ is nonzero, of rank $7^{\cdot}+1$ for a certain nonnegative integer 7. Let
$\beta=(s_{0}, \ldots, s_{r})$ be $\mathrm{a}\downarrow \mathbb{C}[[t]]$-basis of $V$ .

For each open subscheme $U\subseteq X$ such that $\mathcal{L}|_{U}$ and $\Omega_{U}^{2}$ are trivial, let
$\sigma\in\Gamma(U, \mathcal{L})$ and $\mu\in\Gamma(U, \Omega_{\mathrm{Y}}^{2}.)$ such that $\mathcal{L}|_{U}=\mathcal{O}_{U}\sigma$ and $\Omega_{U}^{2}=\mathit{0}_{U\mu},$ .
Then $s_{i}|_{U}=f_{i}\sigma$ for a regular function $f_{\iota}$ on $U$ for each $i,$ $=0,$ $\ldots$ , $r$ .
Also, there is a $\mathbb{C}[[t]]$ -derivation $\partial$ of $\Gamma(U, \mathcal{O}_{X})$ such that $D|_{U}(\cdot)=\partial(\cdot)\mu$ .
Form the Wronskiaii determinant:

$u)(\beta, \sigma, \mu)$ $:=$ .

As in Subsection 4.2, the $w(\beta, \sigma, \mu)$ patch $11\mathrm{p}$ to a section of

$\mathcal{L}^{\otimes r+1}\otimes(\Omega_{\lambda}^{2},)^{\copyright(\begin{array}{l},\cdot+\mathrm{l}2\end{array})}$.

Denote the zero scheme of this section by $W(V, \mathcal{L})$ . We call $\nu \mathrm{t}^{l^{\mathit{7}}}(V, \mathcal{L})$ the
relative ramification $di$visor associated to (V. L). As in Subsection 4.2,
this divisor does not depend on the choice of the basis $\beta$ .

Let $R_{*}:=W(V, \mathcal{L})\cap X_{*}$ . Since $X_{*}$ is smooth, $\eta|_{X_{*}}$ is bijective,
and it follows from Subsection 4.2 that $R_{*}$ is a Cartier divisor of $X_{*}$ .
So $\mathrm{M}^{I}(V, \mathcal{L})$ is indeed a divisor of $X$ . But $W(V, \mathcal{L})$ may contain the
components $C_{i}$ in its support. Let $\overline{\mathrm{M}^{r}\prime}(V, \mathcal{L})\subset X$ be the Cartier divisor
obtained by removing from $W(V, \mathcal{L})$ the components $C_{i}$ with their mul-
tiplicities. Then $\overline{W}(V, \mathcal{L})$ is $S$-flat, and restricts to $R_{*}$ on $X_{*}$ , whence

$\overline{\mathrm{M}^{7}}(V, \mathcal{L})=\overline{R_{*}}$ .

If $\mathcal{L}$ has focus on $C_{l}’$ , the sections $.9_{0},$
$\ldots,$

$S_{r}$ restrict to a basis of a
vector subspace $V_{t}\subseteq\Gamma(C,?’ C|c_{i})$ . Since $\eta$ is bijective off the nodes of
$X_{0}$ , it follows that

(5.6.2) $W(V, \mathcal{L})\cap C_{\mathfrak{i}}’=\overline{W}(V, C)\cap C_{i}’=W(V_{i}, C|_{C_{i}})\cap C_{i}’$ ,

where $C_{i}’’:=X_{0}- \bigcup_{j\neq i}C_{j}!$ .

5.7. Twists of modules. Keep Setup 5.1. Let, $\mathcal{L}$ be an invertible sheaf
on $X$ , and $V\subseteq H^{0}(X, \mathcal{L})$ a saturated $\mathbb{C}[[t]]$ -submodule.
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Let $\alpha$ be a n-t,uple of integers. Using the $\mathrm{n}\mathrm{a}\dagger,\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{l}$ identification
$\mathcal{L}^{\alpha}|_{X*}=C|_{X_{*}}$ , define

$V^{\alpha}:=$ { $s\in\Gamma(X,$ $\mathcal{L}^{\alpha})|s|_{X_{*}}=v|_{X_{*}}$ for some $v\in V$ }.
We call the submodule $V^{a}\subseteq\Gamma(X, \mathcal{L}^{\alpha})$ the $\alpha$ -twist of the submodule
$V\subseteq\Gamma(X, \mathcal{L})$ .

It follows directly from the definition t,hat $V^{\alpha}$ is a saturated submod-
ule of the same rank as $V$ . In addition. since the sections of $V^{a}$ and $V$

coincide over $X_{*}$ , we have that
$W(V, \mathcal{L})\cap\lambda_{*}’=W(V^{\alpha}, \mathcal{L}^{\alpha})\cap X_{*}$ ,

and hence $\overline{W}(V, \mathcal{L})=\overline{W}(V^{\alpha}, \mathcal{L}^{\alpha})$ .
5.8. The limit ramification $di,visor$. Keep Setup 5.1. Let $\mathcal{L}$ be an in-
vertible sheaf on $X$ and $V\subseteq H^{0}$ (X. $\mathcal{L}$ ) a saturated $\mathbb{C}[[t]]$ -submodule.
Let $W(V, \mathcal{L})$ be the corresponding relative ramiPcation divisor, and
$\overline{W}(V, \mathcal{L})$ the divisor obta,ined by removing from $W(V, \mathcal{L})$ the colnpo-

nents $C_{i}$, with their multiplicities. Then
linl $W(V, \mathcal{L}):=\overline{\mathrm{T}\mathrm{i}^{\gamma},}(V, \mathcal{L})\cap X_{0}$

is a, Cartier divisor, $\mathrm{c}\mathrm{a}$,lled the $\lim\uparrow_{c}t$ ramification divisor of $(\mathrm{T}/^{\vee}.\mathcal{L})$ .

Theorem 5.9. Keep Setup 5.1. Let $\mathcal{L}$ be an $i,nvertible$ sheaf on $X$ and
$V\subseteq\Gamma(\lambda’, \mathcal{L})$ a saturated submodnle. For each $C_{\iota}$ , let $\alpha_{l}$

, be a $n- t\tau\iota ple$

such, that $\mathcal{L}^{\alpha_{i}}$ has focus on $C_{i}$ , and let, $V_{i}\subseteq\Gamma(C_{i}a, \mathcal{L}^{\alpha_{i}}|_{C},)$ be the vector
subspace generated by $V^{\alpha_{\dagger}}$ . For each pair of distinct $C_{i}!$ and $C_{j}$ , let
$p_{i,j}$ be the connecting $num,berbet\uparrow veen\mathcal{L}^{\alpha_{\mathrm{i}}}$ and $\mathcal{L}^{\alpha_{j}}u$)$i,t,h$ respect to $C_{i}$

and $C_{j}’$ . For each $i,$ $=1,$ $\ldots,$
$7?$. let $\mathrm{M}/_{i}’$ be the ramification divisor of

$(V_{i}, \mathcal{L}^{\alpha_{j}}|_{C},)$ . Then

(5.9.1) $[ \lim W(V, \mathcal{L})]=\sum_{i=1}^{n}[W_{\iota’}\rfloor+\sum_{i<j}\sum_{P\in C_{j}\cap C_{j}}(r+1)(7^{\cdot}-l_{i,j})[P]$ .

Proof. Let $P\in X_{0}$ . Suppose first $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}_{}P$ is not a node of $X_{0}$ . So
$P\in C_{t}’$ for some $i$ , where

$C_{i}’:=X_{0}- \bigcup_{j\neq i}C_{j}’$
.

By (5.6.2),
$1\mathrm{n}\mathrm{l}\mathrm{l}\mathrm{l}\mathrm{t}_{P_{1}C}.$ (linl $W(V,$ $\mathcal{L})$ ) $=1\mathrm{m}\iota 11\mathrm{t}_{P,C_{j}}(W_{f},)$ .

So t,he coefliicients of $P$ on both sides of Equation (5.9.1) are equal.
Assume now that $P$ is a, node of $X_{0}$ . We may assume. without loss

of generality, that $P\in C_{1}\cap C_{2}$ . Let
$b_{i}:=\ln\iota\iota 1\mathrm{t}_{P,C_{j}}(\overline{W}(V, \mathcal{L})\cap C_{j}.)$

103



LIMIT LINEAR SERIES, AN INTRODUCTION

for $j=1,2.$ Since $\overline{W}(V, \mathcal{L})\cap X_{0}$ is a Cartier divisor of $X_{0}$ , the coefficient
of $P$ in [linl $W(V,$ $\mathcal{L})$ ] is $b_{1}+b_{2}$ .

Now, for each $j=1,2$ , there is a $n$-tuple of nonnegative integers $\mu_{j}$

$\mathrm{S}\mathrm{l}\mathrm{l}\mathrm{c}\mathrm{h}\nearrow$ that

(5.9.2) $\overline{W}(V, \mathcal{L})=W(V^{\alpha_{j}}, \mathcal{L}^{\alpha_{j}})-\sum_{\iota’=1}^{n}\mu_{j},{}_{i}C_{\iota’}$.

Notice that $\mu_{j,j}=0$ because $\mathcal{L}^{\alpha_{j}}$ has focus on $C_{j}$ . Then the intersection
$W(V^{\alpha_{j}}, C^{\alpha_{j}})\cap C_{j}$ is a, Cartier divisor of $C_{j}$ . Let

$a_{j}:=\mathrm{m}\mathrm{l}\mathrm{l}\mathrm{l}\mathrm{t}_{P,C_{j}}(W(V^{\alpha_{j}}, \mathcal{L}^{\alpha_{j}})\cap C_{j}’)$ .

Then
(5.9.3) $b_{1}=a_{1}-\mu_{1,2}$ and $\mathrm{I}_{J_{2}}=a_{2}-\mu_{2,1}$ .

Comparing Equations (5.9.2) for $j=1,2$ , we $\mathrm{g}\mathrm{e}\mathrm{t}_{l}$

$W(V^{\alpha_{1}}, \mathcal{L}^{\alpha_{1}})-W(V^{\alpha_{2}}, \mathcal{L}^{\alpha_{2}})=\sum_{i=1}^{n}(\mu_{1,i},-\mu_{2,i})C_{i}’$.

Now,
$O_{X}(W(V^{\alpha_{j}}, \mathcal{L}^{\alpha_{j}}))\cong(\mathcal{L}^{\alpha_{j}})^{\otimes r+1}\hat{\mathfrak{G}}(\Omega_{\lambda’}^{2})^{\otimes(\begin{array}{l},\cdot+12\end{array})}$

for $j=1,2$ . Thus
$(\mathcal{L}^{\alpha_{1}})^{\otimes r+1}=(C^{a_{2}})^{\otimes r+1}\otimes O_{X}^{\mu_{1}-\mu_{2}}$ .

Then, by Proposition 5.4,
$(7^{\cdot} +1)(\alpha_{1}-\alpha_{2})-(\mu_{1}-\mu_{2})\in \mathbb{Z}(1, \ldots, 1)$ .

Since $\mu_{1,1}=\mu_{2,2}=0$ , it follows that

$\mu_{1,2}+\mu_{2,1}=(r+1)(\alpha_{1,2}-\alpha_{1,1}+\alpha_{2,1}-\alpha_{2_{i}2})=(r+1)l_{1,2}$.

Thus, using Equations (5.9.3) we get

(5.9.4) $b_{1}+b_{2}=a_{1}+a_{2}-(\gamma\cdot+1)\ell_{1,2}$ .
Now, by adjunction, for each $j=1,2$ ,

$\Omega_{C_{j}}^{1}\cong(\Omega_{X}^{2}\otimes \mathcal{O}_{X}(C_{j}))|_{C_{j}}$ .

Since $C_{1}’+\cdots+C_{n}=\mathrm{d}\mathrm{i}\mathrm{v}_{X}(t,)$ , it follows that
$\Omega_{X}^{2}|_{C_{j}}=\Omega_{C_{j}}^{1}\otimes O_{C_{\mathrm{j}}}(\sum Q)$ ,

where $Q$ runs through all nodes of $X_{0}$ on $C_{j}$ . We claim that the restric-
tion of the map $\eta:\Omega_{\mathrm{x}/S}^{1}arrow\Omega_{X}^{2}$ of Subsection 5.6 to $C_{j}$, factors through
the natura,1 map

$\Omega_{C_{j}}^{1}rightarrow\Sigma Q\Omega_{C_{j}}^{1}\otimes \mathcal{O}_{C_{j}}(\sum Q)$ .
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Indeed, as we saw in Subsection 3.3, for each $Q$ we have $f^{*}t=u?$ ) in
$\hat{O}_{X,Q}$ , where $u$ and $?$) are equations of $C_{j}$ alld $\overline{C-X_{j}}$ , respectively. So

$f^{*}dt=ud?)+\uparrow)du\equiv\uparrow)du$ nlod $(u)$ .

Now, since $Q$ is a node, $?$) restricts to a local parameter of $C_{j}$ at $Q$ .
As $\eta$ was defined by taking the exterior product with $f^{*}dt$ , the claim
follows.

The upshot is that the $\mathcal{O}_{S}$-derivation $O_{X}arrow\Omega_{\lambda’}^{2}$ induced by $\eta$ re-
stricts on a neighborhood of $P$ in $C_{j}$

’ to $z \frac{d}{dz}$ where $z$ is a local parameter
for $C_{j}$ at $P$ . Since the $\mathbb{C}[[t]]$-submodule $V^{\alpha_{j}}\subseteq\Gamma(X, C^{\alpha_{j}})$ generates
$V_{j}\subseteq\Gamma(C_{j}, \mathcal{L}^{\alpha_{\mathrm{j}}}|c_{j})$ , using the multilinearit,$\mathrm{y}$ of the determinant, and
the product rule of derivations, we get

(5.9.5) $a_{j}=\mathrm{m}\mathrm{l}\mathrm{l}\mathrm{l}\mathrm{t}_{P,C_{j}}(W_{j})+$ .

Combining (5.9.4) with (5.9.5) for $j=1,2$ , we get

$b_{1}+b_{2}=\ln\iota 11\mathrm{t}_{P,C_{1}}(W_{1})+\mathrm{m}\mathrm{l}\mathrm{l}\mathrm{l}\mathrm{t}_{P,C_{2}}(W_{2})+(r\cdot+1)(7^{\cdot}-l_{1,2})$.

Since $b_{1}+b_{2}$ is the coefficient with which $P$ appears in [
$\lim W(V, \mathcal{L})\rfloor\square$’

the coefiiicients of $P$ on both sides of Equation (5.9.1) are equal.

6. APPLICATION

Proposition 6.1. Keep Setup 5.1. Let $\mathcal{L}$ be an invertible sheaf on $X$ ,

and $\mathcal{L}_{1},$

$\ldots,$
$C_{n}$ twists of C. For each, $pai_{J}r$ of distinct $C_{\mathrm{t}}$ and $C_{j}’$ , let

$\delta_{i,j}$ be the number of points of $C_{l}\cap C_{j_{i}}$ and $l_{i,j}.th,e$ conneciing number
between $\mathcal{L}_{i}$ and $\mathcal{L}_{j}wi_{c}th$ respect to $C_{i}$ and $G_{/_{j}}$ . Let $d$ be th,$e$ degree of $\mathcal{L}$

on the general fiber, and $d_{i}:=\deg \mathcal{L}_{i}|c_{\mathrm{t}}$ for each $\dot{?,}=1,$
$\ldots$ , nノ. Then

$d= \sum_{i=1}^{n}d_{i}-\sum_{i<j}\delta_{\dot{\mathrm{c}},j}l_{i,j}$ .

Proof. By Proposition 5.4. for each $\dot{?}=1,$
$\ldots,$

$r\iota$ there is a. $n$-tuple $\alpha_{i}$

such that $\mathcal{L}_{i}\cong C^{\alpha_{i}}$ and $\alpha_{i,i}=0$ . Restricting to $C_{?}$. and taking degrees.
we get

$\deg \mathcal{L}|c_{i}=d_{t}-\sum_{j\neq i}\alpha_{i,j}\delta_{i,j}$
.

Summing up for $i=1,$ $\ldots,$
$\uparrow?,$ , we get

$d= \sum_{i=1}^{n}\deg \mathcal{L}|c_{i}=\sum_{i=1}^{n}d_{i}-\sum_{i<j}(\alpha_{i,j}+\alpha_{j,i})\delta_{i.j\prime}$.
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Now, it is enough to observe that the connecting number between $C_{i}$

and $\mathcal{L}_{j}$ with respect to $C_{i}$ and $C_{j}^{\mathrm{v}}$ is

$\alpha_{i,j}-\alpha_{i,i}+\alpha_{j,i}-\alpha_{j,j}=\alpha_{i,j}+\alpha_{j,i}$ .

口

6.2. Proof of Theorem 2.11. Use the notation in Setup 5.1. Let $g$ be
the genus of $X_{*}$ . Fix a pair of nonnegative integers $(d_{7},\cdot)$ . Suppose
$W_{r}^{d}X_{*}\neq\emptyset$ . We will show that $\rho(g, d_{7},\cdot)\geq 0$ .

Since $W_{r}^{d}X_{*}$ is of finite type over $\mathbb{C}((t.))$ , there are a finite Peld exten-
sion $k$ of $\mathbb{C}((t))$ alld a $k$-point of $W_{r}^{d}X_{*}$ . As we saw in Subsection 3.3,
up to replacing the special fiber by an avatar, which is also a flag
curve, we may assume that $k,$ $=\mathbb{C}((t))$ . In other words, we may as-
sume we are given an invertible sheaf $L$ on $X_{*}$ of degree $d$ such that
$\dim\Gamma(X_{*}, L)\geq 7^{\cdot}+1$ .

Let 7 $J:=\dim\Gamma(X_{*}, L)-1$ . It is enough to show that $\rho(g, d, 7’)\geq 0$ .
Indeed, 7 $J\geq d-g$ by the Riemann-Roch theorem. Thus

$\rho(g, d, 7^{\cdot})=\rho(g, d, r’.)+(7^{\cdot}’-r)(7^{\cdot}+7’.+1+g-d)$

$\geq\rho(g, d, 7’.)+(7^{\cdot}’-7’)(7^{\cdot}+1)$

$\geq\rho(g, d_{7’},\cdot)$ .

So we may assume that $\dim\Gamma(X_{*}, L)=r+1$ .
Since $X$ is regular. $L$ extends to an invertible sheaf $\mathcal{L}$ on $X$ . So we

may apply the theory of limit linear series developed in Section 5.
Let $V:=H^{0}(X, \mathcal{L})$ . For each $C_{i}^{\mathrm{v}}$ , let $\mathcal{L}_{i}$ be a, twist of $\mathcal{L}$ with focus on

$C_{i}$ , and $d_{i}:=\deg C_{i}|_{C_{\mathrm{i}}}$ . $\mathrm{L}\mathrm{e}\mathrm{t}_{1}V_{i}\subseteq H^{0}(C_{\tau’}’, \mathcal{L}_{\iota’}|_{C_{\mathrm{i}}})$ be the vector subspace
generated by $H^{0}(X, \mathcal{L}_{i})$ , and let $W_{i}^{r},$ $\subset C_{i}$ be the ramification divisor of
(V, $\mathcal{L}_{i}|_{C_{i}}$ ).

Let $s_{i}$ be the sum of the multiplicities of the nodes of $\lambda_{0}’$ in $7\mathrm{f}^{\gamma_{i}}$ . By
the Pliicker formula, if $C_{t}$ is rational, $\deg W_{i}=(r+1)(d_{\mathrm{z}’}-7^{\cdot})$ , and
hence

(6.2.1) $s_{i}\leq(7^{\cdot}+1)(d_{i}-7^{\cdot})$ .

On the other hand, suppose $C_{i}$ is not rational. Since $X_{0}$ is a flag
curve, $C_{i}$, is elliptic, and contains only one node of $X_{0}$ . Call this node
$Q$ . Let $\epsilon_{0},$

$\ldots,$
$\epsilon_{r}$ be the order sequence of (V, $\mathcal{L}_{\iota’}|_{C_{\mathrm{i}}}$ ) at $Q$ .

We claim that $\epsilon_{r}\leq d_{i}$ , with equality only if $\epsilon_{r-1}\leq d_{i}-2$ . That $\epsilon_{\gamma}$. is
bounded by $d_{i}$ follows from $d_{i},=\deg \mathcal{L}_{i}|c_{i}$ . Now. suppose $\epsilon_{r}=d_{i}$ . Then
$\mathcal{L}_{i}|c_{1}\cong O_{C_{1}}.(d_{i}Q)$ . If $\epsilon_{r-1}=d_{i}-1$ , then $\mathcal{L}_{i}|c_{\tau}\cong O_{C_{j}}((d_{i}-1)Q+Q’)$

for some $Q’\in C_{i}-\{Q\}$ . It would follow that $O_{C_{l}},$ $(Q)\cong \mathcal{O}_{C_{j}}(Q’)$ , and
hence that $C_{i}$ is rational. So our claim is proved.
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From our claim, the ramification weight of (V, $\mathcal{L}_{i}|_{C_{\mathrm{i}}}$ ) a,t $Q$ is at most
$(r+1)(d_{i}-7^{\cdot})-r$ , and hence

(6.2.2) $s_{i}\leq(7^{\cdot}+1)(d_{l}-7^{\cdot})-7^{\cdot}$.
Since there are exactly $g$ elliptic components of $X_{0}$ , combining (6.2.1),
valid for $C_{i}$ rational, and (6.2.2), valid for $C_{\iota’}$ elliptic, we get

$\sum_{i=1}^{n}s_{i}\leq(7^{\cdot}+1)(\sum_{i=1}^{n}d_{i}-nr)-gr$.

Now, by Formula (5.9.1), since liln $\mathcal{W}^{7}(V, \mathcal{L})$ is an effect,ive divisor,

$\sum_{\prime,l=1}^{n}s_{i}+\sum_{i<j}(r+1)(7^{\cdot}-l_{i,j})\hat{\delta}_{i,j}\geq 0$ .

In particular,

$(r+1)( \sum_{i=1}^{n}d_{i}-n7^{\cdot})-gr+\sum_{i<j}(7^{\cdot}+1)(r-l_{i,j})\delta_{i,j}\geq 0$ .

Using Proposition 6.1, the left-hand side of the inequa,lity becomes

$(r+1)(d-7l7^{\cdot})-g \mathrm{r}+(7^{\cdot}+1)7^{\cdot}\sum_{i<j}\delta_{i,j}$
.

Furthermore, since $X_{0}$ is a flag curve, $\sum\delta_{i,j}=7\mathrm{t}-1$ . Then the in-
equality becomes

$(r\cdot+1)(d-r\cdot)-gr\geq 0$ ,
that is, $\rho(g, d, 7^{\cdot})\geq 0$ . The proof of Theorem 2.11 is complete.
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