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1. LANDAU-LIFSCHITZ EQUATION

1.1. $\sigma$ spin model. As a model of the ferromagnetic spin, the following equation is known: For
a sphere valued function $u(t, x)$ : $\mathbb{R}\mathrm{x}\mathbb{R}^{n}arrow \mathrm{S}^{2}$ ,

(1.1) $\{$

$\partial_{t}u=\kappa u$ A $\Delta u+\epsilon$ ( $u$ A ( $u$ A Au)), $t>0,x\in \mathbb{R}^{n}$ ,
$|u(t,x)|=1$ , $t\geq 0,x\in \mathbb{R}^{n}$ ,
$u(\mathrm{O},x)=u_{0}(x)$ , $x\in \mathbb{R}^{n}$ ,

where A denotes the cross product and $\epsilon\geq 0$ and $\kappa>0$ are physical constants. This equation
has a dispersive structure as well as the dissipative effect. To see this, we draw back to the
most simple original model of the Ferromagnetic spin. The hyperbolic analogue was originally
considered earlier by Sideris [60] and Shatah [62].

1.2. The dispersion case. The original model connecting the above equation is the $\sigma$ spin
model of ferromagnetics known as the Heisenberg $\sigma$ spin model [66]. It is considered as the
following discrete setting: Let $S(t, x)$ : $\mathbb{R}\mathrm{x}\mathbb{Z}^{n}arrow \mathrm{S}^{2}$ denote the spin of the ferromagnetic atom
located on $\mathbb{Z}^{2}$ . Each spin moves by the reactant only from the closest neighbors. The dynamics is
determined by the following equation: Let $h_{k}=(0, \cdots 0, h, 0\cdots 0)$ be a distance vector between
each lattice.

(1.2) $\{$

$\partial_{t}S(t,x_{1})=\kappa\sum_{k=1}^{n}S(t, x_{i})$ A $\{S(t,x_{1}+h_{k})+S(t, x_{i}-h_{k})\}$ , $t\in \mathbb{R},x_{1}\in \mathbb{Z}^{n}$ ,

$|S(t,x_{i})|=1$ , $t\in \mathbb{R},x_{1}\in \mathbb{Z}^{n}$ ,
$S(\mathrm{O},x_{1})=S_{0}(x:)$ , $X:\in \mathbb{Z}^{\mathfrak{n}}$ ,

where A is the cross product, the positive parameter $h$ is the distance of the each lattice point
and $\kappa$ is a coupling constant. Noting

$\partial_{t}S=\overline{\kappa}\sum_{k=1}^{n}S(t, x_{i})\wedge\{\frac{S(t,x_{i}+h_{k})-2S(t,x_{1})+S(t,x_{1}-h_{k})}{h^{2}}\}$

the continuum approximation is introduced by passing $harrow \mathrm{O}$ . One may find by changing the
coupling constant appropriately,

(1.3) $\{$

$\partial_{t}S=\tilde{\kappa}S\wedge \mathrm{A}\mathrm{S}$ , $t\in \mathrm{R},x\in \mathbb{R}^{n}$ ,
$|S(t, x)|=1$ , $t\in \mathbb{R},x\in \mathbb{R}^{n}$ ,
$S(\mathrm{O},x)=S_{0}(x)$ , $x\in \mathbb{R}^{n}$ .

This continuum limit of the spin is called Heisenberg’s $\sigma$ model is corresponding to the equation
(1.1) in the case when $\epsilon=0$ and this is pure dispersive case.

This equation has a strong connection with the approximation theory of the motion of the
vortex filament. According to the localized inductive approximation (LIA), the motion of the
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vortex filament is described by the space-time curve $\gamma(t, x);\mathbb{R}\cross \mathbb{R}arrow \mathbb{R}^{3}$ which is governed by
the following partial differential equations.

(1.4) $\{$

$\partial_{t}\gamma=\partial_{x}\gamma\wedge\partial_{x}^{2}\gamma$ $t\in \mathbb{R},x\in \mathbb{R}$ ,
$|\gamma(t, x)|=1$ , $t\in \mathbb{R},$ $x\in \mathbb{R}$ ,
$\gamma(0,x)=\gamma_{0}(x)$ , $x\in \mathbb{R}$ .

This equation was discovered by Da Rios [17] and also $\mathrm{r}$ -discovered by Ricca and it has a
relation with so called the compressible dispersive Navier-Stokes equations. One can observe
that by differentiate the equation and letting $\partial_{x}\gamma=u$

(1.5) $\partial_{t}(\partial_{x}\gamma)=\partial_{x}^{2}\gamma$ A $\partial_{x}^{2}\gamma+\partial_{x}\gamma$ A $\partial_{x}^{2}(\partial_{x}\gamma)$

and we have
$\Rightarrow\partial_{t}u=u$ A $\partial_{x}^{2}u$ ,

which yields (1.3). One of the remarkable property of this equation is that the equation can
be transformed into a complete integrable nonlinear partial differential equation by the famous
Hasimoto transform. Applying the Frenel-Serre frame, we may introduce the curvature and
torsion along the vortex filament and we define the new unknown function $\psi(t,x)$ such that

$\psi(t,x)=\kappa(t, x)\exp\{i\int_{0}^{x}\tau(t, y)dy-i/2\int_{0}^{t}a(\tau)d\tau\}$ ,

where $\kappa(t, x)=|\partial_{x}^{2}\gamma|$ : the curvature,

$\tau(t,x)=\frac{1}{|\partial_{x}^{2}\gamma|^{2}}\partial_{x}\gamma\cdot(\partial_{x}^{2}\gamma\wedge\partial_{x}^{3}\gamma)$ : the torsion.

Then $\psi(t, x)$ solves the canonical 1-dimensional nonlinear Schr\"odinger equation (c- NLS)

$i \partial_{\ell}\psi+\partial_{x}^{2}\psi=\frac{1}{2}|\psi|^{2}\psi$

(cf. [43], [37]). Therefore the case $\epsilon=0$ for (1.1) is considered as the 2-dimensional analogue
of the dispersive equation. Since the last decade, the Mathematical research of the theory of
the vortex filament developed extensively. Fukumoto-Miyazaki [24] derived the equation (1.4)
directly from the fluid dynammics and the Biot Savard law and find the higher correction terms
appearing when the axial flow or higher $\mathrm{d}\mathrm{i}$-pole flow are taking into account (cf. Fukumoto-
Moffat [25] $)$ . The existence and uniqueness theory to those newly discovered equation was
done by Nishiyama-Tani [43], Tani-Nishiyama [68]. Krther the corresponding equations by the
Hasimoto transform are also studied. For the third order modified $\mathrm{K}\mathrm{d}\mathrm{V}$-NLS equation (also
called as Hirota equation), the well posedness problem is studied by Takaoka [67] and the forth
order NLS by Segata [57], [58] $)$ .

1.3. The dissipative case. In contrast with the case $\epsilon=0$ , the counter part of the limiting
case $\epsilon=1$ and $\kappa=0$ is considered as the dissipative case. One can easily observe that
$(u\cdot\Delta u)=-|\nabla \mathrm{u}|^{2}$ by $u$ being sphere valued and the equation is exactly corresponding to
the harmonic heat flow onto sphere:

(1.6) $\{$

$\partial_{t}u=|u|^{2}\Delta u-(u\cdot\Delta u)u=\Delta u+|\nabla u|^{2}u$, $t>0,x\in \mathbb{R}^{n}$ ,
$|u(t,x)|=1$ , $t\geq 0,x\in \mathbb{R}^{n}$ ,
$u(\mathrm{O},x)=u_{0}(x)$ , $x\in \mathrm{R}^{n}$ .

In the other word, if we let the coupling constant $\kappaarrow 0$ then the equation is connect to the time
dependent harmonic map (harmonic heat flow) onto a sphere. (see also [32], [38], [45], [41]).

In general, the harmonic map &om the manifold to the manifold is defined by the minimizing
problem of the Dirichlet integral and studied by many authors. If the target manifold is a unit
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sphere, by embedded function $u$ , the harmonic map from a bounded domain $\Omega\subset \mathbb{R}^{n}$ is described
by

(i7) $\{$

$-\Delta u=u$ ( $\nabla u$ , Vu), $x\in$ St $\subset \mathbb{R}^{n}$ ,
$u(x)=\phi(x)$ , $x\in\partial\Omega$ .

The heat flow version of the above equation is introduced by Eells-Sampson [19] in order to
construct a homotopy from general smooth data to the harmonic map.

(1.8) $\{$

$\partial_{t}u-\Delta \mathrm{u}=u|\nabla u|^{2}$ , $t>0$ , $x\in\Omega\subset \mathbb{R}^{n}$ ,
$u(x)=\phi(x)$ , $x\in\partial\Omega$ ,
$u(\mathrm{O},x)=\mathrm{u}_{0}(x)$ , $x\in\Omega$ .

The above equation is directly obtained from the Landau-Lifshitz model (1.1) by simply erasing
the dispersive term.

This equation satisfies formally the Energy inequality as is naturally deduced by its variational
origin: Multiplying the equation by $\partial_{t}u$ and integrated by parts, we see

$|| \nabla u(t)||_{2}^{2}+2\int_{0}^{t}||\partial_{t}u(s)||_{2}^{2}ds\leq||\nabla u_{0}||_{2}^{2}$ for $\mathrm{a}.\mathrm{a}$. $t>0$ .

This energy inequality enable us to construct a weak global solution of (1.8) like the Leray-
Hopff weak solution to the Navier-Stokes equations (Chen-Struwe [14]). When $n\geq 3$ , the
solution started from a smooth initial data may develops a singularity with in a finite time
(Coron-Gidaglia [16]). When $n=2$, although the stational solution to (1.8) has a unique
smooth solution, the time dependent problem surprisingly develops a singularity with a finite
time from a smooth initial data (Struwe [63], Chen-Ding [11], Chang-Ding-Ye $[12]\rangle$ .

By a formal observation, the following type of the energy inequality is immediately obtained:

(1.9) $|| \nabla u(t)||_{L^{2}(M)}^{2}+2\int_{0}^{t}||\partial_{\ell}u(\tau)||_{L^{2}(M)}^{2}d\tau\leq||\nabla u\mathrm{o}||_{L^{2}(M)}^{2}\equiv E_{0}$, $t\in[0,T]$ .

Based on the above energy inequality, a weak solution is constructed in the space
$u\in L^{\infty}(\mathrm{O},T;\dot{H}^{1}(M;@^{m}))$ with $\partial_{t}u\in L^{2}(0,T;L^{2}(M;\mathrm{S}^{m}))$ . When the dimension of the base
manifold $M$ is 2, then Struwe [63] constructed the weak solution which is piecewise smooth in
time variable. On the other hand, the existence of a partially regular global weak solution w\"as

established by Chen-Struwe [14] by the penalty method. If the initial data is smooth, a smooth
local solution exists by using the Bochner type formula (see for example Eells-Sampson [19]
and Struwe [63] $)$ . This time-local smooth solution is belonging to $u\in W^{1,\infty}(M;\mathrm{S}^{m})$ and the
maximal existence time is characterized by $||\nabla u_{0}||_{\infty}$ .

The regularity of the weak solution fails in general because of the existence of a blowing up
solution for a large initial data. The example for the map from $B_{1}(0)\subset \mathbb{R}^{n}$ to a sphere was
shown by Coron-Ghidaglia [16] for $n\geq 3$ and Chang-Ding-Ye [12] for $n=2$. However, some
smallness assumption on the initial data or integrability condition on the solution itself are
capable to give the regularity.

In fact in [45], it is proved that for a timelocal smooth solution $u:[0,T_{0})\mathrm{x}\mathbb{R}^{n}arrow \mathrm{S}^{m}$ of (2.1)
for some $T_{0}$ can be extended over $[T_{0},T_{0}+T’)$ for some $T’>0$ , provided

(1.10) $\int_{0}^{T_{0}}||\nabla u(t)||_{BMO}^{2}dt<\infty$ .

Here BMO is the space of a function having bounded mean oscillations defined by

$f\in L_{lo\mathrm{c}}^{1}(\mathbb{R}^{n})$ , $||f||_{BMo\equiv\sup_{x,R}\frac{1}{|B_{R}|}} \int_{B_{R}(x)}|f(y)-\overline{f}_{B_{R}(x)}|dy<\infty$ ,

where $\overline{J}_{B_{R}}$ is the average of $f$ over $B_{R}(x)=\{y\in \mathbb{R}^{n};|x-y|<R\}$ .
The above results can be compared with the existing blow-up solutions for (2.1). Coron-

Ghidaglia [16] and Chen-Ding [11] showed that there exists a finite time blowing up solution
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to (2.1) for $n\geq 3$ . For $n=2,$ Chang-Ding-Ye [12] constructed a blowing up solution from a
smooth data (see for the regularity of the stationary harmonic maps, Schoen-Uhlenbeck [56],
H\’elen [32], Evans [21] and for the non-stationary case, Feldman [22] $)$ . The solution satisfies

$\int_{0}^{T}||\nabla u(t)||_{\infty}^{\theta}dt=\infty$ $(\theta>1)$ ,

where $T>0$ is the expected blow-up time.
An analogous situation can be observed in the theory of a weak solution to the incompressible

fluid mechanics. For the viscous incompressible fluid govemed by the Navier-Stokes equation;

(1.11) $\{$

$\partial_{t}u-\Delta u+u\cdot\nabla u+\nabla p=0$, $t>0,x\in \mathbb{R}^{n}$ ,
$\mathrm{d}\mathrm{i}\mathrm{v}u=0$, $t>0,x\in \mathrm{R}^{n}$ ,
$u(0, x)=u_{0}(x)$ ,

it is well known that there exists a global weak solution $u$ based on an analogous energy inequality
to (2.1) due to Leray [40];

$||u(t)||_{2}^{2}+2 \int_{0}^{t}||\nabla u(\tau)||_{2}^{2}d\tau\leq||u_{0}||_{2}^{2}$ .

Although a full regularity of the weak solution to (1.11) still remains open, there are some
sufficient conditions for the regularity of the solution in terms of a semi-norm invariant under

the scaling that maintain the equations invariant. For the Navier-Stokes case, the equation
is invariant under the scaling; $u_{\lambda}(t, x)=\lambda u(\lambda^{2}t, \lambda x),$ $p_{\lambda}(t, x)=\lambda^{2}p(\lambda^{2}t, \lambda x)(\lambda>0)$ . Hence a
criterion by the space-time norms such as

$\int_{0}^{T}|||\nabla|^{\alpha}u(t)||_{p}^{\theta}dt<\infty$, $\frac{2}{\theta}+\frac{n}{\mathrm{p}}=1+\alpha$ , $2\leq\theta<\infty$

gives the regularity of the weak solution. This is known as the Serrin condition (Prodi [52],
Ohyama [44], Serrin [61], Giga [26], Beirao da Veiga [3] $)$ . For non-viscid case, there are some
corresponding conditions known as the $\mathrm{B}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{e}- \mathrm{K}\mathrm{a}\mathrm{t}\triangleright \mathrm{M}\mathrm{a}\mathrm{j}\mathrm{d}\mathrm{a}’ \mathrm{s}$ blow up criterion [2] and extended
by several authors [39], [38] $)$ . By observing the analogous scaling $uarrow u_{\lambda}=u(\lambda^{2}t, \lambda x)$ that
preserves the equation (2.1), it is expected that there is a regularity criterion for (2.1) under the
condition;

$\nabla u\in L^{\theta}(0,T;L^{p}(\mathbb{R}^{n}))$ , $\frac{2}{\theta}+\frac{n}{p}=1$ , $n<p\leq\infty$ .

Those conditions is corresponding to the Serrin criterion and enough to show the regularity of
the strong solution to (2.1).

In view of the limiting condition to (1.11) the Leray-Hopf weak solution to (1.11) is regular
under the corresponding regularity assumption for vorticity:

$\int_{0}^{\infty}||\mathrm{r}\mathrm{o}\mathrm{t}u(\tau)||_{BMO}d\tau<\infty$.

Hence it is expected that under the analogous regularity condition such as (1.10), certain weak
solutions to (2.1) are shown to be regular. This is shown in [45] as an extension problem for the
smooth (strong) solution for (2.1). However to show (1.10) being the criterion for a weak solution
to (2.1) is not so straight forward, indeed. For the case of the Navier-Stokes equation, the proof
is heavily depending on the fact that any weak solution corresponds the smooth solution for
certain time interval. This partial uniqueness result fails in general for a weak solution to (2.1)
by Bertsch-Dal Passo-Pisante [5] (cf. Freire [23]).
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2. THE HARMONIC HEAT FLOW

One of the regularity class for the weak solution to

(2.1) $\{$

$\partial_{t}u=\Delta u+|\nabla u|^{2}u$ , $t>0,$ $x\in \mathbb{R}^{n}$ ,

$|u(t,x)|=1$ , $t\geq 0,x\in \mathrm{R}^{n}$ ,
$u(\mathrm{O},x)=u_{0}(x)$ , $x\in \mathbb{R}^{n}$ ,

(2.1) is the class introduced by Struwe [63]: $V=\{u:Marrow \mathbb{R}^{2}$ : $\nabla u\in L^{\infty}(\mathrm{O},T;L^{2}(M)\rangle,$ $\partial_{t}u,$ $\Delta u\in$

$L^{2}(0,T;L^{2}(M))\}$ . where $M$ denote the 2-dimensional Riemannian manifold. Our aim here is to
extend this class larger when $dimM=2$ in terms of the mean oscillation of the solution. For
this purpose, we recall the definition of the class of the Bounded Mean Oscillation.

Definition. Let $u$ be a map from $\mathbb{R}^{n}$ to a unit sphere $\mathrm{S}^{m}$ . A map $u$ is in a bounded mean
oscillation over $\mathbb{R}^{n};BMO=BMO(\mathbb{R}^{n};\mathrm{S}^{m})$ if

$||u||_{BMO(\mathrm{R}^{\mathfrak{n}})} \equiv\sup_{x\in \mathrm{R}^{n},R>0}\frac{1}{|B_{R}(x)|}\int_{B_{R}(x)}|u(y)-\overline{u}_{B_{R}}|dy<\infty$,

where $B_{R}(x)$ is a ball on $\mathbb{R}^{n}$ with radius $R>0$ and

$\overline{u}_{B_{R}}=\frac{1}{|B_{R}|}\int_{B_{R}(x)}u(y)dy$

with $|B_{R}|$ is the geodesic volume of the ball.
However, we may show certain kind of weak solutions to (2.1) are regular under the same

assumption (1.10) when we restrict the base manifold as in 2 dimensions. To state this precisely,
we introduce the definition of the weak solution:

Definition. A map $u:\mathcal{M}arrow \mathrm{S}^{m}$ is a weak solution of (2.1) over $[0, T)$ if
(1) $\nabla u\in L^{\infty}(\mathrm{O},T;L^{2}(\mathcal{M}))$ and $\partial_{t}u\in L^{2}(0,T;L^{2}(M))$ .
(2) $||\nabla u(t)||_{L^{2}(\mathcal{M})}^{2}\leq||\nabla u_{0}||_{L^{2}(\mathcal{M})}^{2}\equiv E_{0}$ holds for all $t\geq 0$ .
(3) $u$ satisfies the harmonic heat flow in the sense of distribution:

For all $\phi\in C_{0}^{1}([0,T);C_{0}^{\infty}(\mathcal{M})^{n})$ ,

$- \int_{0}^{T}u(\tau)\cdot\partial_{t}\phi(\tau)dxd\tau+\int_{0}^{T}(\nabla u(\tau), \nabla\phi(\tau))_{\mathit{9}}d\tau=\int_{0}^{T}u(\nabla u, \nabla u)_{g}\phi(\tau)dxd\tau+u_{0}\cdot\phi$ ,

where $(\cdot, \cdot)_{\mathit{9}}$ is the $L^{2}$ inner product on M.
The existence of a weak solution satisfies the above first two conditions are proved in most

general case by Chen-Struwe [14]. The strong solution that has finite point singularity has been
discussed by Struwe [61], Schoen-Uhlenbeck [56].

We suppose an extra regularity condition to the weak solution which is associated with the
scaling invariant norm involving $BMO$ which is shown for weak solution in Misawa-Ogawa [41].

Theorem 2.1 (Limiting regularity criterion [41]). Let $u$ be a weak solution to (2.1) defined in
the above. If, for some $T>0$ , the solution $u$ satisfies

(2.2) $\int_{0}^{T}||\nabla u(\tau)||_{BMO(\mathrm{R}^{2})}^{2}d\tau<\infty$ ,

then the solution is regular up to $t=T$ . Namely,
$\mathrm{u}\in C((0,T];W^{1,\infty}(\mathbb{R}^{2};\mathrm{S}^{2}))\cap C^{1}((0,T];W^{2,\infty}(\mathbb{R}^{2};\mathrm{S}^{2}))$ . In the other words, if the solution blows
up at some time $t\leq T$ , then

$\int_{0}^{T}||\nabla u(\tau)||_{BMO(\mathrm{R}^{2})}^{2}d\tau=\infty$ .

In particular, if for any $t>0$ and some $T>0$

(2.3) $\int_{t}^{t+T}||\nabla u(\tau)||_{BMO(\mathrm{R}^{2})}^{2}d\tau<\infty$ ,
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then the weak solution is globally regular.

The key ingredients to show the regularity is twofold. One is to employ a critical type of
the Sobolev inequalities. Brezis-Gallouet [6] and Brezis-Wainger [8] firstly showed the following
inequality: For $s>n/p$ ,

(2.4) $||f||_{\infty}\leq C(1+|||\nabla|^{n/p}f||_{\mathrm{p}}(1o\mathrm{g}(e+||f||_{W^{\iota,\mathrm{p}}}))^{1-1/p})$

for $f\in W^{\epsilon,p}(\mathbb{R}^{n})$ . Analogous but vector version of this inequality was found by Beale-Kato-
Majda [2]: For $f\in W^{s,p}(\mathbb{R}^{n};\mathbb{R}^{n})$ with $\mathrm{d}\mathrm{i}\mathrm{v}f=0$ ,

(2.5) $||\nabla f||_{\infty}\leq C(1+||\nabla f||_{2}+||\mathrm{r}\mathrm{o}\mathrm{t}f||_{\infty}\log(e+||f||_{Wp}.,))$

and used for the regularity theory of the fluid mechanics. Kozono-Taniuchi [39] generalized the
above inequality involving $BMO$ ; for $s>n/p+1,$ $f\in W^{s,p}$ with $\mathrm{d}\mathrm{i}\mathrm{v}f=0$,

(2.6) $||\nabla f||_{\infty}\leq C(1+||\mathrm{r}\mathrm{o}\mathrm{t}f||BMo\log(e+||f||W^{\iota,\mathrm{p}}))$

and $\mathrm{K}\mathrm{o}\mathrm{z}\mathrm{o}\mathrm{n}\infty \mathrm{O}\mathrm{g}\mathrm{a}\mathrm{w}\mathrm{a}$-Taniuchi[38] in Besov spaces. We first introduce a generalized version of
the critical Sobolev inequality in the Lizorkin-Riebel space (cf. Ogawa [45]) that includes all
the above inequalities. We first give the sharp version of the inequality shown in [45].

Lemma 2.2 (Sharp version of logarithmic inequality [45]). For any $p,$ $\rho,$ $\sigma\in[1, \infty],$ $q\in[1, \infty)$ ,
$\nu\leq\sigma_{1},$ $\sigma_{2},$ $\nu<\rho$ and $\gamma>0$ , there enists a constant $C$ which is only depending on $n,$ $p$ such
that for $f\in\dot{F}_{p,\sigma_{1}}^{n/p+\gamma}(\mathbb{R}^{n})\cap\dot{F}_{p,\sigma_{2}}^{n/p-\gamma}(\mathbb{R}^{n})$, we have for $\gamma<\gamma’$

(2.7) $||f||_{\dot{P}_{\infty,\nu}^{0}}, \leq C||f||_{\dot{F}_{\infty,\rho}^{0}},(1+(\frac{1}{\gamma}\log^{+}\frac{||f+||_{\dot{F}_{\mathrm{p}.\sigma_{1}}^{n/\mathrm{p}+\gamma’}}+,||f-||_{\dot{F}_{\mathrm{p},\sigma_{2}}^{n/\mathrm{p}-\gamma’}}}{||f||_{\dot{p}0\infty,\rho}})^{1/\nu-1/\rho})$ ,

where
$f_{+}= \sum_{j\geq 0}\phi_{j}*f$

and
$f_{-}= \sum_{j\leq 0}\phi_{j}*f$

.

REMARK 1. In the theorem, the assumption $\gamma>0$ is essential. The analogous version of the
inequality (2.7) in the Besov space was proved in Ogawa-Taniuchi [48].

The relation between the Lizorkin-Tiriebel spaces and $BMO(\mathbb{R}^{n})$ is well understood. Namely
$\dot{F}_{\infty,2}^{0}(\mathbb{R}^{n})$ cr $BMO(\mathbb{R}^{n})$ . In another word, there exists a constants $C$ such that

$C^{-1}||f||_{\dot{F}_{\infty 2}^{0}}’\leq||f||_{BMO}\leq C||f||_{\dot{F}_{\infty,\mathrm{z}}^{\mathrm{r}}}$

which is is due to Peetre and Triebel [69] (see also Bui Hui Qui [9]).

Rom (2.7) and the equivalence between $\dot{F}_{\infty,2}^{0}(\mathbb{R}^{n})\simeq BMO(\mathbb{R}^{n})$ and $F_{\infty,\infty}(\mathbb{R}^{n})\simeq\dot{B}_{\infty,\infty}^{0}(\mathbb{R}^{n})$

it is explicitly shown that the difference between $L^{\infty}(\mathbb{R}^{n}),$ $BMO(\mathbb{R}^{n})$ and the Besov space
$\dot{B}_{\infty,\infty}^{0}(\mathbb{R}^{n})$ as follows. This is a version of the sharp form of the Kozono-Taniuchi inequality
(2.6).

Proposition 2.3. If $\nabla f\in W^{1,q}(\mathbb{R}^{n})\cap L^{2}(\mathbb{R}^{n})$ for $n<q$ , we have

(2.8) $||\nabla f||_{\infty}\leq C(q)(1+||\nabla f||_{BMO}(\log^{+}(||\nabla f||_{W^{1,q}}+||f||_{\infty}))^{1/2})$ .

It then, turns out that the second exponent of those spaces giveI an explicit dependence of
the power of the logarithmic term to the higher regularity, which reflects hypotheses on the
integral exponent in the time direction of those criteria. In the following section, we show a
refined version of the $\mathrm{B}\mathrm{e}\mathrm{a}\mathrm{l}\triangleright \mathrm{K}\mathrm{a}\mathrm{t}\mathrm{e}\succ$-Majda and Kozono-Taniuchi type inequalities and give some
discussion. Then in the successive section, we recall the regularity criterion for the strong
(smooth) solution to (2.1).
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To extend the above observation into a general weak solution, we need to employ the second
ingredient which is a version of the monotonicity formula and so called $\epsilon$ -regularity argument
by means of the mean oscillation of the gradient of the solution.

Proposition 2.4 ([41]). Let $u$ be a smooth solution of (2.1). For any fixed $\delta>0,$ $T>0$ and
$r>0$ we set a time interval $I_{\delta^{1/2}r}(T)=(T-\delta r^{2},T)$ . Then for any $x_{0}\in \mathbb{R}^{2}$ , there exists an
absolute constant $C>0$ such that for any $r\in(\mathrm{O}, R)$ , we have

$\int_{I_{\delta^{1/2,}}(T)}(\frac{1}{\pi r^{2}}\int_{B,(x_{0})}|\nabla u(\tau)-\overline{\nabla u}_{B_{f}(x\mathrm{o})}(\tau)|^{2}dx)d\tau$

$\leq\int_{I_{\delta^{1/2_{R}}}(T)}(\frac{1}{\pi R^{2}}\int_{B_{R}(x\mathrm{o})}|\nabla u(\tau)-\overline{\nabla u}_{B_{R}}(\tau)|^{2}dx)d\tau+C\delta E(u\mathrm{o})$,

where $B_{R}(x_{0})=\{|x-x\mathrm{o}|<R\}$ .

The above proposition is a variant of the known monotonicity formula for a smooth solution
of the harmonic heat flow. The advantage of the above formula is the monotonicity is in fact
realized in the level of the mean oscillation of the gradient of the solution so that it is suitable
for our purpose. Using Proposition 2.4 we may derive so called $\epsilon$ regularity theorem by the
mean oscillation. Namely there exist some small constants $\epsilon_{0}>0$ and $R_{0}>0$ such that if for
some $R<R_{0}$ ,

$\frac{1}{R^{2}}\int_{t_{0}-R^{2}}^{t_{2}}\int_{B_{R}(x_{0})}|\nabla u(t,x)-\overline{\nabla u}_{R}|^{2}dxdt<\epsilon_{0}$

with $\overline{\nabla u}_{R}$ is roughly speaking the average of $\nabla u$ over $(t_{0}-R^{2},t_{0})\mathrm{x}B_{R}(x_{0})$ , then the solution
is regular around the space time point (to, $x_{0}$ ). This is an improved version of the existing
regularity criterion (see [64]) and generally true even for the higher dimensional case (cf. [41]).

3. THE $\mathrm{s}\circ \mathrm{H}\mathrm{R}\ddot{\mathrm{O}}$ DIGNER MAP

According to [66], the Heisenberg model (1.3) can be interpreted as a kind of a derivative
nonlinear Schr\"odinger equations.

Let $\pi:\mathrm{S}^{2}\backslash \{(0,0, -1)\}arrow \mathbb{C}$

$S=(S_{1}, S_{2}, S_{3})=( \frac{Reu}{1+|u|^{2}},$ $\frac{Imu}{1+|u|^{2}},$ $\frac{1-|u|^{2}}{1+|u|^{2}})$

be the standard stereo graphic projection and the solution of (1.3) transformed into the following
semi-linear Schr\"odinger equation of the derivative type.

(3.9) $\{$

$i \partial_{t}u+\Delta u=\frac{2\overline{u}(\nabla u,\nabla u)}{1+|u|^{2}}$ , $t\in \mathbb{R},x\in \mathbb{R}^{n}$ ,

$u(0,x)= \frac{S_{1,0}(x)+iS_{2,0}(x)}{1+|S_{3,0}(x)|^{2}}$, $x\in \mathbb{R}^{n}$ .

There are many research on the nonlinear Schr\"odinger type equation with the derivative nonlin-
ear terms ([30], [50]). Among others, Stem-Sulem-Bardos [66] has also considered this equation
and showed the time local well-posendess in the Sobolev space $H^{n/2+1}(\mathbb{R}^{n})$ with $(n\geq 3)$ .

In fact, the above equation is originally derived from the $\sigma$ spin model initially considered as
the model of the nonlinear hyperbolic equation. The earliest work on this direction is due to
Shatah [59] and Sideris [60] (cf. [65]). Later on, Cheng-Uhlenbeck-Shatah ([13]) re-formulated
this equation with the geometric point of view and consider the equation as a map into the
general Riemannian manifold. They considered the equation when $n=1$ and $n=2$ with the
axially symmetric case.
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Concerning the Schr\"odinger map with the target manifold as a unit sphere, it is formulated
by using the covariant derivative

$D_{x}$. $= \partial_{i}+\frac{2\overline{u}\partial_{i}u}{1+|u|^{2}}$ ,

then the $\sigma$ spin model (3.9) is expressed by the following way.

(3.10) $\{$

$i\partial_{t}u=D_{1}\partial_{i}u$ ,
$u(0,x)=u\mathrm{o}(x)$ ,

where the covariant derivative satisfies the condition as the well-known Levi-Cibita connection

(3.11) $D_{k}\partial_{j}u=D_{j}\partial_{\mathrm{k}}u$ .

The nature of the solution to the Schr\"odinger map heritages the property of the solution to
the harmonic heat flow as well as the dispersive structure of the solution from the Schr\"odinger
part. There are several result that the case of the target manifold is not a sphere but some other
particular manifolds.

$\bullet$ Grillakis-Stefanopoulos [29] considered the equation (3.9) corresponding to the one for the
target is $\mathrm{S}^{2}$ and also $\mathbb{H}^{2}$ .

$\bullet$ M.Tsutsumi [70] considered the one dimensional ferromagnetic spin model to the Lobachevski
plain $\mathcal{L}=\{u=(u_{1},u_{2}, u_{3})||u_{1}|^{2}+|u_{2}|^{2}-|u_{8}|^{3}=-1, u_{3}>0\}$ and constructed a time global
solution $S(t, x);\mathbb{R}\mathrm{x}\mathrm{T}^{1}arrow \mathcal{L}$ by showing the higher order conservation law of the energy.. N. Koiso [37] generalized the vortex filament equation from a manifold to a Keher manifold
and reduce the equation into the nonlinear Schr\"odinger equation..

4. 2-DIMENSIONAL CASE

In what follows we consider the initial value problem for the Schrdinger map (3.9) in the
two special dimension $n=2$ . Practically this situation corresponds a model for a simulation of
the magnetic tape of media.

For this special case, the function space for solving the equation required the larger space so
that it is not included into $L^{\infty}$ . Since the principal part of the equation is the Schrdinger type,
the suitable and the best possible choice of the function space is the Sobolev space based on
$L^{2}$ namely $H^{s}(\mathbb{R}^{2})$ and for the above mentioned purpose, $H^{1}$ is the critical space. Indeed, the
smaller spaces than $H^{1}$ , say $H^{s}$ with $s>1$ are all included into $L^{\infty}$ so that the original spin can
not reach the south pole under this setting of the problem. Considering the original problem, it
is natural to consider the case when the map covers whole $\mathrm{S}^{2}$ .

However the corresponding Schr\"odinger map in the Sobolev space $H^{t}(\mathbb{R}^{2})(s>1)$ never can
reach the South pole since this space is embedded into $L^{\infty}$ and this shows that the image never
reach the infinity point. This problem is closely related to the local well-posedness problem
for the $\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{r}\ddot{\alpha}$ ldinger map and for the two dimensional case, it is critical to construct the local
solution in the critical space $H^{1}(\mathbb{R}^{2})$ since this space gives no restriction on the sides of solution
by $H^{1}(\mathbb{R}^{2})\not\subset L^{\infty}(\mathbb{R}^{2})$ . Indeed, this space is the critical space by the scaling point of view,
namely $\dot{H}^{1}(\mathbb{R}^{2})$ is the invariant space for the scaling $u(t,x)arrow u(\lambda^{2}t, \lambda x)$ .

Nohmod-Stefanov-Uhlenbeck [42] has introduced a proper gauge transform (the Coulomb
gauge) and considered the transformed equation called as the modified $\mathrm{S}\mathrm{c}\mathrm{b}\ddot{\mathrm{o}}\mathrm{d}\dot{\mathrm{o}}$ger map &om
the above original Schr\"odinger map and discuss the time local well-posedness. Let $\psi(t,x)$ be a
phase function of the gauge such that

(4.1)
$\nabla_{j}\psi-2Im\frac{u\nabla_{j}\overline{u}}{1+|\mathrm{u}|^{2}}\equiv-a_{j}$ ,

Coulomb (Hodge) gauge: $\mathrm{d}\mathrm{i}\mathrm{v}a=0$
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and by using the solution $u$ for (3.9), they define a new function $e^{i\psi}\nabla_{j}uarrow u_{j}$ by the gauge
transform. It then follows from the above definition that $\psi$ is explicitly given by

$\psi(t,x)=-2(-\Delta)^{-1}\mathrm{d}\mathrm{i}\mathrm{v}\frac{Im(u\nabla_{j}\overline{u})}{1+|u|^{2}}$.

and the corresponding equation to (3.9) is introduced as the following modified version of the
Schr\"odinger map:

(4.2) $\{$

$i\partial_{t}u+\Delta u=-2ia\cdot\nabla u-Au+2Im(\overline{u}\otimes u)u+a_{0}u$ , $t\in \mathbb{R},x\in \mathbb{R}^{2}$ ,
$u(\mathrm{O},x)=u_{0}(x)$ , $x\in \mathbb{R}^{2}$ ,

where
$\vec{a}=(a_{1},a_{2})=4Im\mathrm{d}\mathrm{i}\mathrm{v}(-\Delta)^{-1}(u\otimes u)$, $A=|\vec{a}|$ ,

$a_{0}=4(- \Delta)^{-1}\{\nabla:\nabla_{j}Re(u_{i}u_{j})-\frac{1}{2}\Delta|u|^{2}\}$ .

In [42], they treat this new equation (4.2) and established the time-local well posedness of this
equation by using the Bourgain method of the restriction norm. Namely they showed that for
the initial data $u_{0}\in H^{s}(\mathbb{R}^{2})s>0$ , there exists a time local solution in the same Sobolev class.
The result is corresponding to the solution in $H^{2+\Xi}(\mathbb{R}^{2})$ for the original Schr\"odinger map.

Recently, J. Kato [33] (and [34]) investigate the above modified equation and give a existence
and uniqueness of the solution in the larger function space. Namely the weak solution in the class
$H^{3/2+e}(\mathbb{R}^{2})$ is unique. He used the argument due to Koch-Tzvetkov [36] for the Benjamin-Ono
equation.

5. SOLVABILITY IN THE ENERGY CLASS

In what follows we consider the Schr\"odinger map (3.9) under the different type of gauge from
the one used in [42].

The corresponding new equation to (3.9) is obtained by a new gauge transform that basically
obtained the following strategy. We choose ta new gauge phase function so that $\mathrm{t}$ he worst
nonlinear term appeared in the modified Schr\"odinger map is canceled. This is along the idea
due to Hayashi [30] and Doi [18] (see also [31], [50] and [49]), however since the problem is
nonlinear, this new gauge may cause a new nonlinear term that may be worse than the original
one. First of all we differentiate the equation (3.9) and let $v=\nabla u$ as a new unknown vector
function of $(t,x)$ . Then the equation can be read as the system such that

(5.1) $\{$

$i \partial_{t}v+\Delta v=\frac{4\overline{u}}{1+|u|^{2}}v\cdot\nabla v+\frac{2(v\cdot v)(\overline{v}_{j}-\overline{u}^{2}v_{j})}{(1+|u|^{2})^{2}}$ , $t>0,x\in \mathbb{R}^{2}$ ,

$v(\mathrm{O},x)=\nabla u_{0}(x)$ , $x\in \mathbb{R}^{2}$ .

The choose a new gauge as $\theta(t, x)$ and for $E(u, v)=e^{\theta\langle t,x)}’$ , we let

(5.2) $w_{j}=E^{-1}v_{j}$ .
The equation that $w$ solves is

(5.3) $\{$

$i \partial_{t}w+\Delta w=F(v,w)w-2i(\nabla\theta\cdot\nabla)w+\frac{4\overline{u}E}{1+|u|^{2}}(w\cdot\nabla)w$

$+ \frac{4i\overline{u}wE}{1+|u|^{2}}(w\cdot\nabla)\theta+H(u, w, E)$ , $t>0,x\in \mathbb{R}^{2}$ ,

$w_{j}(0,x)=E^{-1}\nabla_{j}u_{0}(x)$ , $x\in \mathrm{R}^{2}$ ,
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where
$F(u,v)=\partial_{t}\theta-i\Delta\theta+(\nabla\theta, \nabla\theta)$ ,

$H_{j}(u, w, E)= \frac{2(w\cdot w)}{1+|u|^{2}}\overline{w}_{j}|\overline{E}|^{2}-\frac{2\overline{u}^{2}(w\cdot w)}{1+|u|^{2}}w_{j}E^{2}$ .

We then choose the phase of the gauge $\theta$ so that the most difficult term the second term of the
right hand side of the equation (5.4) can be canceled:

$2i \nabla_{k}\theta=\frac{4\overline{u}}{1+|u|^{2}}w_{k}E=\frac{4\overline{u}}{1+|u|^{2}}v_{k}$.

Certainly this chose of gauge can cancel the worst term, however it may appear more complex
term $F(u, w)$ that may things more complicated. The essential fact here is that we may show
the following fact:

Lemma 5.1. The nonlinear term $F(\mathrm{u}, w)$ appeared in (5.4) is empressed as follows.
$F(v, w)=- \frac{6\overline{u}^{2}}{(1+|u|^{2})^{2}}(v\cdot v)+4\nabla_{k}\nabla_{l}(-\Delta)^{-1}[w_{k}\otimes w_{l}]$ .

Therefore the transformed equation (5.4) has no term that may cause the derivative loss. The
original equation (3.9) can be solved as regarding the solution of the system:

(5.4) $\{$

$i\partial_{t}w_{j}+\Delta w_{j}=2(w\cdot w)\overline{w}_{j}+4w_{j}\nabla_{k}\nabla_{1}(-\Delta)^{-1}[w\otimes\overline{w}]$ , $t>0,x\in \mathbb{R}^{2}$ ,
$u(\mathrm{O}, x)=u_{0}(x)$ , $x\in \mathbb{R}^{2}$ ,

$w_{j}(0,x)=E^{-1}\nabla_{j}u_{0}(x)$ , $x\in \mathbb{R}^{2}$ .
This system is essentially decoupled and can be solved for the second equation in the space

$C(\mathrm{O}, T;L^{2}(\mathbb{R}^{2})$ and we can obtain the time local wellposedness. By this observation we are able
to show the following theorem:

Theorem 5.2. For $u_{0}\in H^{1}(\mathbb{R}^{2})$ , the corresponding equation (5.4) to (3.9) that is obtained by
the transform (5.2) is time locally well-posed in the class $(L^{2}(\mathbb{R}^{2}))$ and satisfies the $L^{2}$ conser-
vation law:

$||w(t)||_{2}=||E(u_{0})^{-1}\nabla u_{0}||_{2}$

for all $t\in(\mathrm{O},T)$ , where $T>0$ is the maximal $e$ ristence time. If the data $E(u_{0})^{-1}\nabla u_{0}$ is small
in $L^{2}$ , then the solution $e$ vists globally in time.

The above theorem states that the transformed equation is time locally wellposed in the
corresponding class where the original Schr\"odinger map (3.9) is considered in the energy class
$H^{1}(\mathbb{R}^{2})$ . Especially the equation (3.9) has a unique time local solution in $H^{1}(\mathbb{R}^{2})$ and if the
data in this class is small then the solution globally exists. In view of the equation (5.4) the
worst derivative term is just canceled out and therefore the transform (5.2) may considered as
the two dimensional Hasimoto transform for the $\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{r}\propto$ ldinger map. We should note that for
$n=2$ , the nonlinear term of the second equation is the critical order for solvability in $L^{2}$ space.
Yet one may derive the time local well posedness for the above equation in this situation by the
method of Y.Tsutsumi [71] (see also Cazenave-Weisslar [10]). The transform (5.2) is somehow
corresponding to the 2-dimensional Hasimoto transform as it can be canceled the nonlinear term
that involving the derivative term.

Let us recall the fundamental result on the linear Schr\"odinger equation. That is so called the
Strichartz-Brenner space time estimate of $IP$ type.

Definition. Let $e^{1\Delta t}$ be two dimensional linear Schr\"odinger evolution group. If a pair of the
exponents $(\theta,p)$ verifies

$\frac{2}{\theta}+\frac{2}{p}=1$ , $2\leq p<\infty$ ,

21



then it is called as $L^{2}$-admissible. See for example, Ginibre-Velo [27], [28], Keel-Tao [39].
For a general nonlinear term $F(u)$ , the corresponding integral equation:

$u(t)=e^{it\Delta}u_{0}- \int_{0}^{t}e^{1(t-s)\Delta}F(u(s))ds$

yields a map from a certain complete metric $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}---;X_{T}arrow X_{T}$ where

$—[u](t)=e^{it\Delta}u_{0}- \int_{0}^{t}e^{1(t-\epsilon)\Delta}F(u(s))ds$

and existence and wellposedness problem can be derived from the existence of the unique fixed
point of the above map. Underlying fact is that the space $X_{T}$ is chosen so that the map is closed
in the metric by the Strichartz estimate.

If the nonlinear term $F(u)$ is expressed as the power of $u$ of order $p$ , there is a standard
argument by choosing $L^{2}$ admissible pair as $(\theta, q)=(\theta,p+1)$ (Ginibre-Velo, Lin-Strauss, Baillon-
Cazenave-Fuguira). For our case, let $n=2$ and choose $L^{2}$ admissible as $(\theta, q)=(4,4)$ and

$X_{T}= \{f;[0,T]\mathrm{x}\mathbb{R}^{2}arrow \mathbb{C};||f||_{L^{4}(I;L^{4}(\mathrm{R}^{2}))}\leq\frac{1}{2}\}$ ,

where $I=[0,T]$ and $M=C||u_{0}||_{2}$ with the metric
$d(u,v)=||u-v||_{L^{4}(I;L^{4})}$ ,

then $X_{T}$ is a complete metric space.
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