BOUNDARY ESTIMATES OF p-HARMONIC FUNCTIONS IN A METRIC MEASURE SPACE 北海道大学大学院理学研究科 相川 弘明 (Hiroaki Aikawa) Department of Mathematics, Hokkaido University ## 1. Introduction The purpose of this note is two-fold. First we discuss Carleson type estimates, which provide control of the bound of positive harmonic functions vanishing on a portion of the boundary. Such an estimate is well-known for harmonic functions in certain Euclidean domains. We shall prove a Carleson type estimate for p-harmonic functions on bounded John domains in a complete metric space equipped with an Ahlfors Q-regular measure supporting a (1, p)-Poincaré inequality for some 1 . This part is based on [4]. Secondly, we discuss the Hölder continuity of p-harmonic functions up to the boundary. It is classical that a domain is regular, then the Dirichlet solution of a continuous boundary function is continuous up to the boundary. It may be natural to think that the better continuity of a boundary function ensures the better continuity of the Dirichlet solution. We shall investigate conditions on a domain for every Hölder continuous boundary function to have Hölder continuous solution with the same Hölder exponent. Our results are new even in the Euclidean setting when $p \neq 2$. This part is based on [5]. ## 2. Carleson estimates for harmonic functions Let us begin with the classical result due to Carleson. Theorem A (Carleson [11]). Let D be a bounded Lipschitz domain in R^n . Then there exists a constant A > 1 with the following property: for $\xi \in \partial D$ and R > 0 small, take a point $y_R \in D$ such that $|y_R - \xi| = R$ and $\operatorname{dist}(y_R, \partial D) \ge R/A$. Then $u \leq Au(y_R)$ on $D \cap B(\xi, R)$, 2000 Mathematics Subject Classification. 31B05, 31B25, 31C35. Key words and phrases. Carleson estimate, p-harmonic function, metric measure space. This work was supported in part by Grant-in-Aid for Scientific Research (B) (No. 15340046) Japan Society for the Promotion of Science. whenever u is a positive harmonic function in $D \cap B(\xi, AR)$ with u = 0 on $\partial D \cap B(\xi, AR)$. Ever since the Carleson's work there have been a large number of studies on this subjects. Most of them generalize the domain *D* and exploited harmonic analysis on non-smooth domains. There are several ways to prove the Carleson estimates in non-smooth domains: - (i) Carleson [11] and Jerison-Kenig [18] employed the uniform barrier. This argument requires the *Capacity Density Condition* for the complement of the domain. - (ii) In [1], the author prove the Carleson estimate by showing the *Boundary Harnack principle* first. The boundary Harnack principle was deduced from the estimates of the Green functions and representation of harmonic functions as the Green potential. This approach is not applicable to non-linear equations. - (iii) In the study of the Martin boundary of Denjoy domains, Benedicks [6] observed the Domar method [15] is useful. See Chevallier [13]. The Domar method is a very robust argument based on the submean value property of subharmonic functions. In the sequel, we shall observe that the Domar method is applicable even to solutions of non-linear equations in metric measure spaces. #### 3. METRIC MEASURE SPACE Let (X, d, μ) be a proper metric measure space with doubling Borel measure μ . Here we say that X is proper if closed and bounded subsets of X are compact; and that μ is doubling if there is a constant $A \ge 1$ such that $$\mu(B(x,2r)) \leq A\mu(B(x,r)),$$ where $B(x,r) = \{y \in X : d(x,y) < r\}$ is the open ball with center x and radius r. For simplicity, we assume that X is Ahlfors Q-regular, i.e., $$A^{-1}r^{\mathcal{Q}} \le \mu(B(x,r)) \le Ar^{\mathcal{Q}}$$ for every ball $B(x,r)$. Throughout the note we fix 1 . We shall define the notion of p-harmonicity. For a moment let f be a smooth function on \mathbb{R}^n and let \widetilde{xy} be a rectifiable curve. Then $$|f(x) - f(y)| = \Big| \int_{\widetilde{xy}} \nabla f \cdot dx \Big| \le \int_{\widetilde{xy}} |\nabla f| ds.$$ In view of this observation, Heinonen-Koskela [17] defined an upper gradient of a function f on a metric measure space X to be $g \ge 0$ such that for every rectifiable curve $\widetilde{xy} \subset X$ $$(3.1) |f(x)-f(y)| \leq \int_{\overline{xy}} g ds.$$ The above requirement is somewhat too strong for the limiting operation. We say that g is a weak upper gradient of f if g satisfies (3.1) for all curves \widetilde{xy} except for p-module zero. By g_f we denote the minimal p-weak upper gradient of f, i.e., $$g_f(x) := \inf_{g} \left(\limsup_{r \to 0^+} \int_{B(x,r)} g d\mu \right).$$ The minimal p-weak upper gradient g_f satisfies (3.1) for all curves \widetilde{xy} except for p-module zero. See [23] for these accounts. We assume the following (1, p)-Poincaré inequality. **Definition 1** ((1, p)-Poincaré inequality). There exist constants $\kappa \ge 1$ (scaling constant) and $A_p \ge 1$ such that $$\int_{B(x,r)} |u - u_{B(x,r)}| d\mu \le A_p r \left(\int_{B(x,\kappa r)} g_u^p d\mu \right)^{1/p}$$ whenever $B(x, r) \subset X$. By the Hölder inequality (1, q)-Poincaré inequality with q < p implies the (1, p)-Poincaré inequality. Conversely, Keith-Zhong [19] showed that if X supports a (1, p)-Poincaré inequality, then there is q < p such that X supports a (1, q)-Poincaré inequality. Define the Sobolev space on X as follows. Definition 2 (Sobolev or Newtonian space [23]). Define $$||u||_{N^{1,p}} = \left(\int_X |u|^p d\mu\right)^{1/p} + \left(\int_X g_u^p d\mu\right)^{1/p}.$$ If $||u - v||_{N^{1,p}} = 0$, then we write $u \sim v$. The Newtonian space of X is the quotient $$N^{1,p}(X) = \{u: ||u||_{N^{1,p}} < \infty\}/\sim$$ The space $N^{1,p}(X)$ equipped with the norm $\|\cdot\|_{N^{1,p}}$ is a Banach space and a lattice. Cheeger [12] gave an alternative definition of Sobolev space, which coincides with the above Newtonian space for 1 . Moreover, the modulus of the Cheeger derivative and the minimum upper gradient are comparable: $$A^{-1}|df(x)| \le g_f(x) \le A|df(x)|$$ ([24, Corollary 3.7]). If f = A on E, then $g_f = |df| = 0$ μ -a.e. on E ([12, Proposition 2.2]). **Definition 3.** Define the *p-capacity* of $E \subset X$ by $$\operatorname{Cap}_{p}(E) := \inf_{u} \left(\int_{X} |u|^{p} d\mu + \int_{X} |du|^{p} d\mu \right)$$ Here inf is taken over all $u \in N^{1,p}(X)$ such that u = 1 on E. We say that a property holds p-q.e. if it holds except for E with $\operatorname{Cap}_p(E) = 0$. Hereafter let $\Omega \subset X$ be a bounded domain in X with $\operatorname{Cap}_p(X \setminus \Omega) > 0$. The null-Sobolev space for Ω is defined by $$N_0^{1,p}(\Omega) = \{ u \in N^{1,p}(X) : u = 0 \text{ p-q.e. on } X \setminus \Omega \}.$$ **Definition 4.** We say that u is p-harmonic in Ω if $u \in N^{1,p}_{loc}(\Omega)$ and $$\int_{U} g_{u}^{p} d\mu \leq \int_{U} g_{u+\varphi}^{p} d\mu$$ for all relatively compact subsets U of Ω and for every function $\varphi \in N_0^{1,p}(U)$. We say that u is Cheeger p-harmonic in Ω if $u \in N_{loc}^{1,p}(\Omega)$ and $$\int_{U} |du|^{p} d\mu \leq \int_{U} |d(u+\varphi)|^{p} d\mu$$ for all relatively compact subsets U of Ω and for every function $\varphi \in N_0^{1,p}(U)$. This is equivalent to the Euler equation: $$\int_{U} |du|^{p-2} du \cdot d\varphi \, d\mu = 0.$$ Remark 1. If p = 2, then the above Euler equation is linear and hence Cheeger 2-harmonicity is a linear property. On the other hand, the p-harmonicity based on the upper gradient has no Euler equation and hence it is non-linear even if p = 2. **Definition 5.** We say that u is a p-subsolution if $$\int_{U} g_{u}^{p} d\mu \leq \int_{U} g_{u+\varphi}^{p} d\mu$$ for all relatively compact subsets U of Ω and for every function $\varphi \in N_0^{1,p}(U)$. We say that u is a p-quasiminimizer if there exists $A_{qm} \ge 1$ such that $$\int_{U} g_{u}^{p} d\mu \leq A_{qm} \int_{U} g_{u+\varphi}^{p} d\mu$$ for all relatively compact subsets U of Ω and for every nonpositive function $\varphi \in N_0^{1,p}(U)$. If the inequality holds for every nonpositive function $\varphi \in N_0^{1,p}(U)$, then u is called p-quasisubminimizer. It is easy to see that a Cheeger p-(sub)harmonic function is a p-quasi(sub)minimizer. Basic properties will be given for p-quasi(sub)minimizers, and hence p-(sub)harmonic functions and Cheeger p-(sub)harmonic functions can be treated simultaneously. **Definition 6.** By $H_p^U f$ we denote the solution to the *p*-Dirichlet problem on the open set U with boundary data $f \in N^{1,p}(U)$, i.e., $H_p^U f$ is *p*-harmonic in U and $H_p^U f - f \in N_0^{1,p}(U)$. An upper semicontinuous function u is said to be p-subharmonic in Ω if the comparison principle holds, i.e., if $f \in N^{1,p}(U)$ is continuous up to ∂U and $u \leq f$ on ∂U , then $u \leq H_p^U f$ on U for all relatively compact subsets U of Ω . ## Remark 2. We summarize functions: - (i) A (Cheeger) p-harmonic function is a p-quasiminimizer. - (ii) A (Cheeger) p-subsolution is a p-quasisubminimizer. - (iii) A bounded (Cheeger) p-subharmonic function is a p-quasisubminimizer. ## 4. Domar argument Let $u \ge 0$ be a locally bounded p-quasisubminimizer. Then u is in the De Giorgi class, $DG_p(\Omega)$, i.e., if $B(x, R) \subset \Omega$, then $$\int_{\{y \in B(x,\rho) : u(y) > k\}} g_u^p \, d\mu \le \frac{A}{(r-\rho)^p} \int_{\{y \in B(x,r) : u(y) > k\}} (u-k)^p \, d\mu$$ for every $k \in \mathbb{R}$ and $0 < \rho < r < R/\kappa$. Here g_u is the minimal p-weak upper gradient of u and $\kappa \ge 1$ is the scaling constant for the Poincaré inequality ([22, 20, 21]). The above inequality is very strong; its repeated application, together with the De Giorgi method [14] yields the following estimate ([22]): If $u \in DG_p(\Omega)$, $0 < R < \operatorname{diam}(X)/3$, $B(x, R) \subset \Omega$, then for every $k_0 \in \mathbb{R}$ $$\sup_{B(x,R/2)} u \le k_0 + A \Big(\int_{B(x,R)} (u - k_0)_+^p d\mu \Big)^{1/p}.$$ Let $k_0 = 0$ and $u \ge 0$. We obtain the weak submean value inequality: (wsmv) $$u(x) \le A_s \Big(\int_{B(x,R)} u^p \, d\mu \Big)^{1/p}.$$ Here $A_s \ge 1$ is independent of x, R and u. This inequality may be regarded as a sort of the mean value inequality for p-subharmonic functions. Although it is weak $(A_s > 1)$, it is sufficient to employ the Domar method and to give the Carleson estimate. **Lemma 1** ([15]). Let Ω be a bounded open set and let $\delta_{\Omega}(x) = \operatorname{dist}(x, X \setminus \Omega)$. Suppose $u \geq 0$ locally bounded on Ω satisfies (wsmv). If there exists a positive constant ε such that $$I := \int_{\Omega} (\log^+ u)^{Q-1+\varepsilon} d\mu < \infty,$$ then $$u(x) \le A \exp(AI^{1/\varepsilon}\delta_{\Omega}(x)^{-Q/\varepsilon})$$ for all $x \in \Omega$. Let us prepare the following estimate. **Lemma 2.** Suppose $u \ge 0$ satisfies (wsmv) and locally bounded on B(x, R). Let $a > 2A_s$ and $0 < t \le u(x)$. If $$\mu(\{y \in B(x,R) : \frac{t}{a} < u(y) \le at\}) \le \frac{\mu(B(x,R))}{a^{2p}},$$ then there exists a point $x' \in B(x, R)$ with u(x') > at. *Proof.* Suppose $u \le at$ on B(x, R). Then (wsmv) gives $$t \leq \frac{A_s}{\mu(B(x,R))} \Big(\int_{B(x,R)\cap\{u\leq a^{-1}t\}} u(y)^p dy + \int_{B(x,R)\cap\{u>a^{-1}t\}} u(y)^p dy \Big)^{1/p}$$ $$\leq A_s \Big(\Big(\frac{t}{a}\Big)^p + \frac{(at)^p}{a^{2p}} \Big)^{1/p} = \frac{2^{1/p} A_s}{a} t < 2^{1/p-1} t.$$ This is a contradiction. Proof of Lemma 1. Observe $\mu(B(y,r)) \ge \frac{r^Q}{A_1}$ for $0 < r < 2 \operatorname{diam}(\Omega)$. Let $$R_j = (A_1 a^{2p} \mu(\{y \in \Omega : a^{j-2} u(x) < u(y) \le a^j u(x)\}))^{1/Q}$$, which means $$\mu(\{y \in \Omega : a^{j-2}u(x) < u(y) \le a^{j}u(x)\}) \le \frac{R_{j}^{Q}}{A_{1}a^{2p}} \le \frac{\mu(B(x,R_{j}))}{a^{2p}}.$$ Then the lemma is proved by the following procedure: • $$\delta_{\Omega}(x) \leq 2 \sum_{j=1}^{\infty} R_j$$. • $$\sum_{j=1}^{\infty} R_j \leq A I^{1/Q} (\log^+ u(x))^{-\varepsilon/Q}.$$ • $$u(x) \leq \exp(AI^{1/\varepsilon}\delta_{\Omega}(x)^{-Q/\varepsilon})$$ Let us illustrate the most crucial step (i): Let $x_1 = x$, $t = u(x_1)$. If $\delta_{\Omega}(x_1) < R_1$, then STOP. Otherwise $B(x_1, R_1) \subset \Omega$, so $$\mu(\{y \in B(x_1, R_1) : a^{-1}u(x) < u(y) \le au(x)\}\$$ $$\le \mu(\{y \in \Omega : a^{-1}u(x) < u(y) \le au(x)\} \le \frac{\mu(B(x_1, R_1))}{a^{2p}}.$$ By Lemma 2 we find $x_2 \in B(x_1, R_1)$ with $u(x_2) > au(x_1)$. If $\delta_{\Omega}(x_2) < R_2$, then STOP. Otherwise $B(x_2, R_2) \subset \Omega$, and we find $x_3 \in B(x_2, R_2)$ with $u(x_3) > au(x_2) > a^2u(x_1)$. Repeat the procedure. Since u is locally bounded above, $$\{x_j\}$$ is finite or $x_j \to \partial \Omega$. This gives $\delta_{\Omega}(x) \le 2 \sum_{j=1}^{\infty} R_j$. # 5. Carleson estimate for p-harmonic functions A bounded domain D is called a *uniform domain* if for every couple of points $x, y \in D$ there exists a curve $\gamma \subset D$ points $x, y \in D$ there exists a curve $\gamma \subset L$ connecting x and y such that $$\ell(\gamma) \le Ad(x, y),$$ $\min\{\ell(\gamma(x, z)), \ell(\gamma(z, y))\} \le A\delta_{\Omega}(z) \quad (z \in \gamma).$ A Lipschitz domain and an NTA domain are uniform domains. Roughly speaking, a uniform domain is a domain satisfying the interior conditions for an NTA domain. A bounded domain D is called a *John domain* with John center x_0 if the above condition holds with one fixed point $y = x_0$ and varying $x \in D$. Define the *quasi hyperbolic metric* by $$k_D(x,y) = \inf_{\widetilde{x}\widetilde{y}} \int_{\widetilde{x}\widetilde{y}} \frac{ds}{\delta_D(z)},$$ where inf is taken over all curves \widetilde{xy} connecting x and y in D. A John domain D satisfies the quasihyperbolic boundary condition $$k_D(x, x_0) \le A \log \frac{\delta_D(x_0)}{\delta_D(x)} + A.$$ This condition can be localized as follows. **Definition 7** (Local reference points [3]). A boundary point $\xi \in \partial D$ is said to have a system of local reference points of order N if there exist $R_{\xi} > 0$, $\lambda_{\xi} > 1$ and $A_{\xi} > 1$ with the following property: if $0 < R < R_{\xi}$, then we find N points $y_1, ..., N \in D \cap S(\xi, R)$ such that $\delta_D(y_j) \ge R/A_{\xi}$ and such that for every $x \in D \cap \overline{B}(\xi, R/2)$ there is $i \in \{1, ..., N\}$ such that $$k_D(x, y_i) = k_{D \cap B(\xi, \lambda_{\xi}R)}(x, y_i) \le A_{\xi} \left[\log \left(\frac{R}{\delta_D(x)} \right) + 1 \right].$$ Remark 3. If D is a uniform domain, then every boundary point $\xi \in \partial D$ has a system of local reference points of order 1; the constants R_{ξ} , λ_{ξ} , A_{ξ} can be taken independently on ξ . If D is a John domain, then there exists a finite number N such that each $\xi \in \partial D$ has a system of local reference points of order N; the constants R_{ξ} , λ_{ξ} , A_{ξ} can be taken independently on ξ . In general $N \geq 2$. If D is a Denjoy domain, then N = 2. Theorem 1 (Carleson estimate for a John domain). Let D be a John domain with $\xi \in \partial D$. For small R > 0 take local reference points $y_1, \ldots, y_N \in D \cap S(\xi, R)$. Suppose h > 0 is a bounded p-harmonic function on $D \cap B(\xi, 16R)$ with h = 0 on $\partial D \cap B(\xi, 16R)$. Then $$h(x) \leq A \sum_{i=1}^{N} h(y_i)$$ for $x \in D \cap B(\xi, R/4)$. Corollary 1 (Carleson estimate for a uniform domain). Let D be a uniform domain with $\xi \in \partial D$. For small R > 0 take a nontangential point $y_R \in D \cap S(\xi, R)$, i.e., $\delta_D(y_R) \geq R/A$. Suppose h > 0 is a bounded p-harmonic function on $D \cap B(\xi, AR)$ with h = 0 on $\partial D \cap B(\xi, AR)$. Then $h(x) \leq Ah(y_R)$ for $x \in D \cap B(\xi, R)$. Here A > 1 depends only on D. *Proof.* Let us give a sketch of the proof. In view of the geometry of a uniform domain, we have $$k_D(x, y_R) \le A \log \frac{R}{\delta_D(x)} + A \quad \text{for } x \in D \cap B(\xi, AR).$$ Then the Harnack inequality gives $$u(x) = \frac{h(x)}{h(y_R)} \le A\left(\frac{R}{\delta_D(x)}\right)^{\lambda}.$$ Extend u by u = 0 on $B(\xi, AR) \setminus D$. Then the extended function is a p-subsolution h on $\Omega = B(\xi, AR)$ with (wsmv). An elementary geometrical observation gives $$I = \int_{\Omega} \left(\log^+ \left(\frac{h(x)}{h(y_R)} \right) \right)^{Q-1+\varepsilon} d\mu \le A \int_{D \cap B(\xi, AR)} \left(\log^+ \left(\frac{R}{\delta_D(x)} \right)^{\lambda} \right)^{Q-1+\varepsilon} d\mu \le AR^Q.$$ Hence the Domar theorem yields $$\frac{h(x)}{h(y_R)} = u(x) \le A \exp(AI^{1/\varepsilon}\delta_{\Omega}(x)^{-Q/\varepsilon}) \le A \exp(AR^{Q/\varepsilon}R^{-Q/\varepsilon}) = A$$ for $x \in D \cap B(\xi, R)$. See [4] for details. # 6. Hölder estimates of p-harmonic extension operators Let $D \subset \mathbb{R}^n$ be a bounded open set and let f be a function on ∂D . Let $P_D f$ be the (Perron-Wiener-Brelot) Dirichlet solution of f over D. A boundary point $\xi \in \partial D$ is said to be regular if $\lim_{x\to\xi} P_D f(x) = f(\xi)$ for every $f \in C(\partial D)$. We say that D is a regular domain if every boundary point $\xi \in \partial D$ is regular. If D is regular, then P_D maps $C(\partial D)$ to $\mathcal{H}(D) \cap C(\overline{D})$. It is natural to raise the following question: Does the better continuity of a boundary function f guarantee the better continuity of $P_D f$? An answer to this question was given in [2] for classical harmonic functions on Euclidean domains with Hölder continuity. In this note we investigate the same problem p-harmonic functions in metric measure space. As was observed in the first part, the notions of p-harmonicity, p-Dirichlet problem, p-Perron solution, p-regularity, p-capacity, p-Wiener criterion are available (A. Björn, J. Björn, P. MacManus, and N. Shanmugalingam [10], [8], [9] and [7]). Let $0 < \beta \le \alpha \le 1$. Consider the family $\Lambda_{\alpha}(E)$ of all bounded α -Hölder continuous functions u on E with norm $$||u||_{\Lambda_{\alpha}(E)}:=\sup_{x\in E}|u(x)|+\sup_{\substack{x,y\in E\\x\neq y}}\frac{|u(x)-u(y)|}{d(x,y)^{\alpha}}<\infty.$$ We shall study the operator norm: $$||P_D||_{\alpha \to \beta} := \sup_{\substack{f \in \Lambda_\alpha(\partial D) \\ ||f||_{\Lambda_\alpha(\partial D)} \neq 0}} \frac{||P_D f||_{\Lambda_\beta(D)}}{||f||_{\Lambda_\alpha(\partial D)}}.$$ Heinonen, Kilpeläinen and Martio [16, Theorem 6.44] studied the condition for $||P_D||_{\alpha\to\beta}<\infty$ for $\beta<\alpha$ in Euclidean setting. The case most interesting case $\alpha=\beta$ has remained open. ## 7. TRIVIAL BOUNDARY POINTS Is it true $||P_D||_{\alpha \to \beta} < \infty \implies D$ is p-regular? This is not the case ([2]). A punctured ball D is p-irregular and yet $||P_D||_{\alpha\to\beta}<\infty$. To avoid such a pathological example we rule out p-trivial boundary points. We say that $a\in\partial D$ is a p-trivial boundary point if there is r>0 such that $\operatorname{Cap}_p(\partial D\cap B(a,r))=0$. **Proposition 1.** Suppose $||P_D||_{\alpha \to \beta} < \infty$ for some $0 < \beta \le \alpha$. Then D is a p-regular domain if and only if ∂D has no p-trivial points. Hereafter let D be p-regular. Let $\alpha = \beta$. We shall study several conditions for $||P_D||_{\alpha \to \alpha} < \infty$. We have the *local or interior Hölder continuity* of p-harmonic functions ([22, Theorem 5.2]): There exists $\alpha_0 > 0$ such that every p-harmonic function in D is locally α_0 -Hölder continuous in D. This constant α_0 depends only on p and the constants associated with the doubling property of p and the Poincaré inequality, but not on p. In general, p and p and the Poincaré inequality, but not on p and a #### 8. Relationships among several conditions The conditions for $||P_D||_{\alpha \to \alpha} < \infty$ involve the *p-harmonic measure*. **Definition 8.** By the *p-harmonic measure* $\omega_p(E; U)$ we mean the upper Perron solution \overline{P}_{UXE} of the boundary function χ_E in U ([9]). Remark 4. The p-harmonic measure $\omega_p(E; U)$ need not be a measure unless p=2 and the Cheeger harmonicity is adopted because of the non-linear nature of p-harmonicity. **Definition 9.** Global Harmonic Measure Decay Property: GHMD(α) We say that D satisfies the global harmonic measure decay property with exponent α if there exist $A_2 \ge 1$ and $r_0 > 0$ such that if $a \in \partial D$ and $0 < r < r_0$, then $$\omega_p(x;\partial D \setminus B(a,r), D) \le A_2 \left(\frac{d(x,a)}{r}\right)^{\alpha}$$ for all $x \in D \cap B(a, r)$. **Definition 10.** Local Harmonic Measure Decay Property: LHMD(α) We say that D satisfies the local harmonic measure decay property with exponent α if there exist $A_3 \ge 1$ and $r_0 > 0$ such that if $a \in \partial D$ and $0 < r < r_0$, then $$\omega_p(x; D \cap S(a,r), D \cap B(a,r)) \le A_3 \left(\frac{d(x,a)}{r}\right)^{\alpha}$$ for all $x \in D \cap B(a, r)$. We shall use $\varphi_{a,\alpha}(x) = \min\{d(x,a)^{\alpha}, 1\}$ for $a \in \partial D$ as a test boundary function with respect to α -Hölder continuity. Theorem 2. Consider the following four conditions. - (i) $||P_D||_{\alpha\to\alpha}<\infty$. - (ii) There exists A_4 such that $P_D\varphi_{a,\alpha}(x) \leq A_4d(x,a)^{\alpha}$ for all $x \in D$. - (iii) Global Harmonic Measure Decay of order α . - (iv) Local Harmonic Measure Decay of order α. Then we have (i) $$\iff$$ (ii) \implies (iii) \iff (iv). If (iv) holds for some $\alpha' > \alpha$, then (i) and (ii) hold. As an immediate corollary, we observe that the larger α is the stronger the property $||P_D||_{\alpha \to \alpha} < \infty$ is. **Corollary 2.** If $0 < \beta \le \alpha \le \alpha_0$ and $||P_D||_{\alpha \to \alpha} < \infty$, then $||P_D||_{\beta \to \beta} < \infty$ Remark 5. It is not true that LHMD(α) \Longrightarrow $||P_D||_{\alpha \to \alpha} < \infty$. There is a domain D for which the LHMD(α) holds and yet $||P_D||_{\alpha \to \alpha} = \infty$. In fact let $D = \{z \in \mathbb{C} : |z| < 1, |\arg z| < \pi/(2\alpha)\}$ for $0 < \alpha \le 1$. Then the LHMD(α) with respect to the classical harmonic measure holds. Nevertheless $||P_D||_{\alpha \to \alpha} = \infty$; if $\varphi(z) = |z|^{\alpha}$ for ∂D . then $||\varphi||_{\Lambda_{\alpha}(\partial D)} < \infty$ and yet $P_D \varphi(x) \approx x^{\alpha} \log(1/x)$ as $x \downarrow 0$ on the positive real axis, so $||P_D \varphi||_{\Lambda_{\alpha}(D)} = \infty$. Let us consider some exterior conditions of the domain D in terms of the relative capacity: $$\operatorname{Cap}_{p}(E, U) := \inf \{ \int_{U} g_{u}^{p} d\mu : u \in N_{0}^{1,p}(U) \text{ and } u \geq 1 \text{ on } E \}.$$ **Definition 11.** We say that E is uniformly p-fat or satisfies the p-capacity density condition if there exist $A_5 > 0$ and $r_0 > 0$ such that $$\frac{\operatorname{Cap}_p(E \cap B(a,r), B(a,2r))}{\operatorname{Cap}_p(B(a,r), B(a,2r))} \ge A_5$$ whenever $a \in E$ and $0 < r < r_0$. **Theorem 3.** The following five conditions are equivalent: - (i) $||P_D||_{\alpha \to \alpha} < \infty$ for some $\alpha > 0$. - (ii) $P_D \varphi_{a,\alpha}(x) \leq A_4 d(x,a)^{\alpha}$ holds for some $\alpha > 0$. - (iii) GHMD(α) holds for some $\alpha > 0$. - (iv) LHMD(α) holds for some $\alpha > 0$. - (v) $X \setminus D$ satisfies the capacity density condition. **Corollary 3.** If $X \setminus D$ satisfies the volume density condition: $$\frac{\mu(B(a,r)\setminus D)}{\mu(B(a,r))} \ge A, \quad \text{for every } a \in \partial D \text{ and } < r < r_0,$$ then $||P_D||_{\alpha \to \alpha} < \infty$ for some $\alpha > 0$. Remark 6. Our arguments are based mostly on the comparison principle for p-harmonic functions and the variational properties of the De Giorgi class, which includes p-harmonic functions. The crucial part is $GHMD \implies LHMD$ for which we need the refinement of the submean value property for the De Giorgi class. Remark 7. The comparison principle implies LHMD \implies GHMD. The converse implication GHMD \implies LHMD is crucial. Let us illustrate its proof: Let $u = \omega_p(\partial D \cap B(a,r); D)$. Suppose $\zeta \in \partial D \cap S(a,Ar)$ (*UP*). Then $u \leq \frac{1}{2}$ on $B(\zeta,cr)$, so $u \leq 1 - \varepsilon$ on a small ball intersecting $B(\zeta,cr)$ by some argument based on the De Giorgi class. Repeating the same argument, we obtain $u \leq 1 - \varepsilon$ on S(a,Ar). Hence $\omega_p(\partial D \setminus B(a,r); D) \geq \varepsilon$ on $D \cap S(a,Ar)$; in other words $\omega_p(D \cap S(a,Ar); D \cap B(a,Ar)) \le \varepsilon^{-1}\omega_p(\partial D \setminus B(a,r); D)$ on $D \cap B(a,Ar)$. Hence $GHMD \implies LHMD$. ## REFERENCES - [1] H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan 53 (2001), no. 1, 119-145. - [2] _____, Hölder continuity of the Dirichlet solution for a general domain, Bull. London Math. Soc. 34 (2002), no. 6, 691–702. - [3] H. Aikawa, K. Hirata, and T. Lundh, Martin boundary points of John domains and unions of convex sets, J. Math. Soc. Japan (to appear in 2006). - [4] H. Aikawa and N. Shanmugalingam, Carleson-type estimates for p-harmonic functions and the conformal Martin boundary of John domains in metric measure spaces, Michigan Math. J. 53 (2005), no. 1, 165–188. - [5] _____, Hölder estimates of p-harmonic extension operators, J. Differential Equations (2005). - [6] M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in Rⁿ, Ark. Mat. 18 (1980), no. 1, 53-72. - [7] A. Björn and J. Björn, Boundary regularity for p-harmonic and p-superharmonic functions on metric spaces, in preparation. - [8] A. Björn, J. Björn, and N. Shanmugalingam, The Dirichlet problem for p-harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173-203. - [9] _____, The Perron method for p-harmonic functions in metric spaces, J. Differential Equations 195 (2003), no. 2, 398-429. - [10] J. Björn, P. MacManus, and N. Shanmugalingam, Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces, J. Anal. Math. 85 (2001), 339-369. - [11] L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393-399. - [12] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428-517. - [13] N. Chevallier, Frontière de Martin d'un domaine de \mathbb{R}^n dont le bord est inclus dans une hypersurface lipschitzienne, Ark. Mat. 27 (1989), no. 1, 29-48. - [14] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43. - [15] Y. Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (1957), 429-440. - [16] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications. - [17] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1-61. - [18] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80-147. - [19] S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, preprint (2003), http://wwwmaths.anu.edu.au/keith/selfhub.pdf. - [20] J. Kinnunen and O. Martio, Nonlinear potential theory on metric spaces, Illinois J. Math. 46 (2002), no. 3, 857-883. - [21] _____, Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 459-490. - [22] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401-423. - [23] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243-279. - [24] _____, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), no. 3, 1021–1050. DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO 060-0810, JAPAN *E-mail address*: aik@math.sci.hokudai.ac.jp