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BOUNDARY ESTIMATES OF p-HARMONIC FUNCTIONS IN A
METRIC MEASURE SPACE

JhEEE ARk AR #4811 3AB  (Hiroaki Aikawa)
Department of Mathematics, Hokkaido University

1. INTRODUCTION

The purpose of this note is two-fold. First we discuss Carleson type es-
timates, which provide control of the bound of positive harmonic functions
vanishing on a portion of the boundary. Such an estimate is well-known for
harmonic functions in certain Euclidean domains. We shall prove a Car-
leson type estimate for p-harmonic functions on bounded John domains in .
a complete metric space equipped with an Ahlfors Q-regular measure sup-
porting a (1, p)-Poincaré inequality for some 1 < p < Q. This part is based
on [4]. .

Secondly, we discuss the Holder continuity of p-harmonic functions up
to the boundary. It is classical that a domain is regular, then the Dirichlet so-
lution of a continuous boundary function is continuous up to the boundary.
It may be natural to think that the better continuity of a boundary function
ensures the better continuity of the Dirichlet solution. We shall investigate
conditions on a domain for every Holder continuous boundary function to
have Holder continuous solution with the same Holder exponent. Our re-
sults are new even in the Euclidean setting when p # 2. This part is based
on [5].

2. CARLESON ESTIMATES FOR HARMONIC FUNCTIONS
Let us begin with the classical result due to Carleson.

Theorem A (Carleson [11]). Let D be a bounded Lipschitz domain in
R". Then there exists a constant A > 1 with
the following property: for € € D and R > 0
small, take a point yg € D such that [yr—§€| = R
and dist(yg, 0D) > R/A. Then

u £ Au(yr) on DN B(£R),
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whenever u is a positive harmonic function in D N B(¢, AR) with u = 0 on
0D N B(¢, AR).

Ever since the Carleson’s work there have been a large number of studies
on this subjects. Most of them generalize the domain D and exploited har-
monic analysis on non-smooth domains. There are several ways to prove
the Carleson estimates in non-smooth domains:

(i) Carleson [11] and Jerison—Kenig [18] employed the uniform bar-
rier. This argument requires the Capacity Density Condition for the
complement of the domain.

(ii) In[1], the author prove the Carleson estimate by showing the Bound-
ary Harnack principle first. The boundary Harnack principle was
deduced from the estimates of the Green functions and representa-
tion of harmonic functions as the Green potential. This approach is
not applicable to non-linear equations.

(iii) In the study of the Martin boundary of Denjoy domains, Benedicks
[6] observed the Domar method [15] is useful. See Chevallier [13].
The Domar method is a very robust argument based on the sub-
mean value property of subharmonic functions. In the sequel, we
shall observe that the Domar method is applicable even to solutions
of non-linear equations in metric measure spaces.

3. METRIC MEASURE SPACE

Let (X, d, 1) be a proper metric measure space with doubling Borel mea-
- sure u. Here we say that X is proper if closed and bounded subsets of X are
compact, and that y is doubling if there is a constant 4 > 1 such that
H(B(x,2r)) < Au(B(x, 1)),
where B(x,7) = {y € X : d(x,y) < r} is the open ball with center x and
radius r. For simplicity, we assume that X is Ahlfors Q-regular, i.e.,
A7'r2 < u(B(x,r)) < Ar?  for every ball B(x, 7).

Throughout the note we fix 1 < p < Q. We shall define the notion of
p-harmonicity. '

For a moment let f be a smooth function on R" and let Xy be a rectifiable
curve. Then

If(x)—f(y)l=U: Vf-dx’sj:Wﬂds.
xy xy

In view of this observation, Heinonen-Koskela [17] defined an upper gra-
dient of a function f on a metric measure space X to be g > 0 such that for



every rectifiable curve xy C X
G.) -0 < [ gds
B

The above requirement is somewhat too strong for the limiting operation.
We say that g is a weak upper gradient of f if g satisfies (3.1) for all curves
xy except for p-module zero. By g, we denote the minimal p-weak upper
gradient of f, i.e.,

gs(x) := inf (lim sup gdﬂ) _
g r—0*  JB(x,r)

The minimal p-weak upper gradient g, satisfies (3.1) for all curves xy ex-
cept for p-module zero. See [23] for these accounts. We assume the follow-
ing (1, p)-Poincaré inequality.

Definition 1 ((1, p)-Poincaré inequality). There exist constants « 2 1 (scal-
ing constant) and A, > 1 such that

l/p
J[ lu — upepldp < Apr b[ gﬁdy)
B(x,r) B(x.xr)

whenever B(x,r) C X.

By the Holder inequality (1, g)-Poincaré inequality with ¢ < p implies
the (1, p)-Poincaré inequality. Conversely, Keith-Zhong [19] showed that

if X supports a (1, p)-Poincaré inequality, then there is ¢ < p such that

X supports a (1, g)-Poincaré inequality. Define the Sobolev space on X as
follows. ,

Definition 2 (Sobolev or Newtonian space [23]). Define

e = fX juf? dp)”” + fX o dy)”p.

If llu — vll;m. = 0, then we write u ~ v. The Newtonian space of X is the
quotient

NYP(X) = {u : lullyre < 00}/~

The space N'”(X) equipped with the norm || - |[y1» is a Banach space
and a lattice. Cheeger [12] gave an alternative definition of Sobolev space,
which coincides with the above Newtonian space for 1 < p < co. Moreover,
the modulus of the Cheeger derivative and the minimum upper gradient are
comparable:

A7l f () < g7(x) < Adf )|
([24, Corollary 3.7]). If f = A on E, then g, = |df] = 0 y-a.e. on E ([12,
Proposition 2.2]).
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Definition 3. Define the p-capacity of E C X by
Cap,(E) := inf( f P dye + f \dul? d,u)
¥ A X

Here inf is taken over all u € N'*(X) such that u = 1 on E. We say that a
property holds p-q.e. if it holds except for E with Cap ,(E) = 0.

Hereafter let Q c X be a bounded domain in X with Cap,(X'\ Q) > 0.
The null-Sobolev space for Q is defined by

NyP(Q) = {u € N"P(X) : u = 0 p-g.e.on X\ Q}.

Definition 4. We say that u is p-harmonic in Q if u € N, (Q) and

LgﬁdMSLgﬁwdﬂ

for all relatively compact subsets U of Q and for every function ¢ € Né P(0).
We say that u is Cheeger p-harmonic in Q if u € N, '2(Q) and

loc

f \dul? du < f d(u + Q)P di
U U

for all relatively compact subsets U of Q and for every function ¢ € Né'p 0).
This is equivalent to the Euler equation:

f \dulP~2du - dpdu = 0.
U

Remark 1. If p = 2, then the above Euler equation is linear and hence
" Cheeger 2-harmonicity is a linear property. On the other hand, the p-
harmonicity based on the upper gradient has no Euler equation and hence it
is non-linear even if p = 2.

Definition 5. We say that u is a p-subsolution if

fugfidu < fugﬁ’wdu

for all relatively compact subsets U of 2 and for every function ¢ € Né ?(0).
We say that u is a p-quasiminimizer if there exists 4, > 1 such that

fgfidysAqugi’wd#
U U

for all relatively compact subsets U of Q and for every nonpositive function
@ € N;’p (U). If the inequality holds for every nonpositive function ¢ € -
N;”’ (U), then u is called p-quasisubminimizer.
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It is easy to see that a Cheeger p-(sub)harmonic function is a p-quasi(sub)minimizer.
Basic properties will be given for p-quasi(sub)minimizers, and hence p-
(sub)harmonic functions and Cheeger p-(sub)harmonic functions can be
treated simultaneously.

Definition 6. By H ;‘,j f we denote the solution to the p-Dirichlet problem on
the open set U with boundary data f € N'?(U), i.e., H f is p-harmonic in
U and Hg f-fe€ Né 2(U). An upper semicontinuous function  is said to be
p-subharmonic in Q if the comparison principle holds, i.e., if / € N'"?(U)is
continuous up to U and u < f on dU, then u < HY f on U for all relatively
compact subsets U of Q.

Remark 2. We summarize functions:

(i) A (Cheeger) p-harmonic function is a p-quasiminimizer.
(ii) A (Cheeger) p-subsolution is a p-quasisubminimizer.
(iii) A bounded (Cheeger) p-subharmonic function is a p-quasisubminimizer.

4. DOMAR ARGUMENT

Let # > 0 be a locally bounded p-quasisubminimizer. Then u is in the De
Giorgi class, DG,(Q2), 1.e., if B(x, R) C £}, then

du < u—ky¥d
v[;yEB(x,p):u(y)>k} 8 (r-py {yeB(x,r):u(y)>lc}( )
for every k € Rand 0 < p < r < R/k. Here g, is the minimal p-weak upper
gradient of ¥ and x > 1 is the scaling constant for the Poincaré inequality
(122, 20, 21)).

The above inequality is very strong; its repeated application, together
with the De Giorgi method [14] yields the following estimate ([22]):

If u € DG,(Q2), 0 < R < diam(X)/3, B(x, R) C €, then for every ki, € R

1/
sup u < ko +A(J( (u— ko)ﬁd#) 7
B(x.R/2) B(x.R)

Let ky = 0 and # > 0. We obtain the weak submean value inequality:

(wsmv) u(x) < A4 s( J( uf dp)”p.

Here 4; > 1 is independent of x, R and . This inequality may be regarded
as a sort of the mean value inequality for p-subharmonic functions. Al-
though it is weak (4, > 1), it is sufficient to employ the Domar method and
to give the Carleson estimate.
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Lemma 1 ([15]). Let Q be a bounded open set and let 6o(x) = dist(x, X\ Q).
Suppose u > 0 locally bounded on Q satisfies (wsmv). If there exists a
positive constant € such that

Ii= f (log* )2 1** du < oo,
Q
then
u(x) < Aexp(Ale6q(x)" %) forall x € Q.
Let us prepare the following estimate. |

Lemma 2. Suppose u 2 0 satisfies (wsmv) and locally bounded on B(x, R).
Leta>2A4;,and 0 < t <u(x). If

u(ly € B(x,R) : 2’1- <u(y) < at}) < ’—‘%%R—»,

then there exists a point x' € B(x, R) with u(x’) > at.

Proof. Suppose u < at on B(x, R). Then (wsmv) gives

A f 1/p
<= u(yYdy + u@Ydy
u(B(x, R)) B(x,R)N{uga'¢) (y)p Y B(x.R)Nfu>a~11) )

1914 p s _
<Ly + @) 20 e,
a azp a

This 1s a contradiction. ]

Q
Proof of Lemma 1. Observe u(B(y,r)) > %— for 0 < r < 2diam(£2). Let
. L

)l/Q

R; = (410 u({y € Q : @’ %u(x) < u(y) < u(x)})) , which means

R¢ .
p(ly € Q: o’ %u(x) < u®) < du(x))) < y ;2 < HB(, Rj).
1

p azp

Then the lemma is proved by the following procedure:

° Sa(x) <2 ) R,
J=1

. Z R; < AI2(log* u(x))~*/2.
Jj=1

o u(x) < exp(AI'/%5o(x)"2/5),
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Let us illustrate the most crucial step (i): Let x; = x, t = u(x;). If
da(xy) < Ry, then STOP. Otherwise B(x;, R;) C €, so

p({y € B(x1,Ry) : a 'u(x) < u(y) < au(x))

<u(ly € Q:a'u(x) < uy) < au(x)} < }ﬂ%&)—z.

By Lemma 2 we find x, € B(x;,R;) with u(x;) > au(x;). If do(x;) <
R, then STOP. Otherwise B(x;,R;) C Q, and we find x;3 € B(x;, R;) with
u(x3) > au(x;) > a*u(x;). Repeat the procedure. Since u is locally bounded

above, {x;} is finite or x; — Q. This gives do(x) < 2 Z R;. O
J=1

5. CARLESON ESTIMATE FOR P-HARMONIC FUNCTIONS

A bounded domain D is called a uniform domain if for every couple of
points x,y € D there exists a curve y C D

connecting x and y such that W W

€(y) < 4d(x, ),
min{é(y(x,2)), €(y(z.y))} < 4da(z) (z€7).

A Lipschitz domain and an NTA domain are uniform domains. Roughly
speaking, a uniform domain is a domain satisfying the interior conditions
~ for an NTA domain.

A bounded domain D is called a John domain
with John center x, if the above condition holds
~ with one fixed point y = x and varying x € D.
Define the quasi hyperbolic metric by

ds
kp(x,y) = inf f ,
p(x,y) 5 Js 60(2)

where inf is taken over all curves Xy connecting x and y in D. A John
domain D satisfies the quasihyperbolic boundary condition

dp(xo)
dp(x) ta

This condition can be localized as follows.

kp(x, x0) < Alog

Definition 7 (Local reference points [3]). A boundary point & € 4D is said
to have a system of local reference points of order N if there exist R; > 0,
A¢ > 1 and 4, > 1 with the following property: if 0 < R < Ry, then we find



N points yy,...,N € DN S(& R) such that p(y;) = R/A¢ and such that for
every x € DN B(&,R/2) there is i € {1,. .., N} such that

R
kp(x, yi) = kpnae.acr (% 1) < A [log(5b(x)) H

Remark 3. If D is a uniform domain, then every boundary point £ € 8D has
a system of local reference points of order I; the constants R;, A¢, A¢ can be
taken independently on &£.

If D is a John domain, then there exists a finite number N such that each
& € 8D has a system of local reference points of order N; the constants R,
A¢, A¢ can be taken independently on £. In general N > 2. If D is a Denjoy
domain, then N = 2.

Theorem 1 (Carleson estimate for a John domain). Let D be a John domain

with & € dD. For small R > O take local refer-

ence points yy, . .., yny € DNS(&, R). Suppose

h > 0 is a bounded p-harmonic function on

D N B(¢,16R) with h = 0 on 8D N B(£, 16R).
N

Then h(x) < 4 )" h(y;)for x € DN B, R/4)

i=1

Corollary 1 (Carleson estimate for a uniform domain). Let D be a uniform

domain with ¢ € dD. For small R > 0 take
a nontangential point yr € DN S(&,R), i.e,
6p(yr) = R/A. Suppose h > 0 is a bounded
p-harmonic function on D N B(¢, AR) with
h =00ndD N B(£, AR). Then h(x) < Ah(yr)
Jor x € DN B(£,R). Here A > 1 depends only on D.

Proof. Let us give a sketch of the proof. In view of the geometry of a
uniform domain, we have

kp(x,yr) < Alog +A forxe DN B, AR).

dp(x)
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Then the Harnack inequality gives
h(x) R A
u(x) = <4 i
) h(yr) (5D(x))
Extend u by u = 0 on B(£,4AR) \ D. Then the extended function is a p-

subsolution & on Q = B(¢, AR) with (wsmv).
An elementary geometrical observation gives

h(x) Q-l+e . R w O-l+¢
= o o)) s S, (o0 )] s

Hence the Domar theorem yields

:((y")) = u(x) < Aexp(AI'*6q(x)"%%) < Aexp(AR?*R™9") = 4
R
for x € D N B(¢, R). See [4] for details. O

6. HOLDER ESTIMATES OF p-HARMONIC EXTENSION OPERATORS

Let D c R be a bounded open set and let f
be a function on dD. Let Ppf be the (Perron-
Wiener-Brelot) Dirichlet solution of f over D. A
~ boundary point & € AD is said to be regular if
lim, ¢ Ppf(x) = f(&) for every f € C(GD). We say that D is a regular
domain if every boundary point £ € 3D is regular. If D is regular, then Pp
maps C(8D) to H(D) N C(D). 1t is natural to raise the following question:
Does the better continuity of a boundary function f guarantee the better
continuity of Pp f?

An answer to this question was given in [2] for classical harmonic func-
tions on Euclidean domains with H6lder continuity. In this note we investi-
gate the same problem p-harmonic functions in metric measure space.

As was observed in the first part, the notions of p-harmonicity, p-Dirichlet
problem, p-Perron solution, p-regularity, p-capacity, p-Wiener criterion are
available (A. Bjorn, J. Bjérn, P. MacManus, and N. Shanmugalingam [10],
[8], [9] and [7]).

Let 0 < 8 < @ £ 1. Consider the family A,(E) of all bounded a-Holder
continuous functions # on E with norm

u(x) —u®)l _
u su u(x)| + su
lllae) = P| ()l xyelz_ Ay
) XEy
We shall study the operator norm:
| WPpAiaso
Ppllass = sup  ———P2

fens@D) 1 fllA.aD)
I/ lAgep)%0



Heinonen, Kilpeldinen and Martio [16, Theorem 6.44] studied the con-
dition for ||Ppllo—s < oo for B < « in Euclidean setting. The case most
interesting case @ = S has remained open.

7. TRIVIAL BOUNDARY POINTS

Is it true ||Pplle—p < 00 = D is p-regular?
This is not the case ([2]). A punctured ball D is p-irregular and yet
IPplle—p < o0. To avoid such a pathological example we rule out p-trivial

boundary points. We say that a € 4D is a p-trivial boundary point if there

is r > 0 such that Cap,(6D N B(a, r)) = 0.

Proposition 1. Suppose ||Ppllo-p < o for some 0 < B < a. Then D is a
p-regular domain if and only if 0D has no p-trivial points.

Hereafter let D be p-regular. Let @ = B. We shall study several condi-
tions for ||Ppllo—e < co. We have the local or interior Hélder continuity of
p-harmonic functions ([22, Theorem 5.2]): There exists @y > 0 such that
every p-harmonic function in D is locally ay-Holder continuous in D. This
constant @y depends only on p and the constants associated with the dou-
bling property of u and the Poincaré inequality, but not on D. In general,
ay < 1. In order to have ||Ppll,—o < 00, We restrict ourselves to @ < a.

8. RELATIONSHIPS AMONG SEVERAL CONDITIONS
The conditions for ||Pplla—e < oo involve the p-harmonic measure.

Definition 8. By the p-harmonic measure w,(E; U) we mean the upper
Perron solution Py y ¢ of the boundary function yz in U ([9]).

Remark 4. The p-harmonic measure w,(E; U) need not be a measure unless
p = 2 and the Cheeger harmonicity is adopted because of the non-linear
nature of p-harmonicity.

Definition 9. Global Harmonic Measure Decay Property: GHMD(a)
We say that D satisfies the global harmonic 2
measure decay property with exponent « if
there exist 4, > 1 and r¢ > 0 such that if
a€dDand 0 < r < ry, then

d(x,a) )a
r

w,(x;8D \ B(a,r), D) < 4, (

for all x € D N B(a, r).
Definition 10. Local Harmonic Measure Decay Property: LHMD(a)
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We say that D satisfies the local harmonic mea-
sure decay property with exponent « if there ex-
ist A3 > 1 and ry > 0 such that ifa € 6D and .
0 < r < rg then : W, =

d(x, a) )a
¥

wy(x; DN S(a,r), D N B(a,r)) < A3 (

for all x € DN B(a,r).

We shall use @,.(x) = min{d(x,a)? 1} for a € D as a test boundary
function with respect to a-Holder continuity. .

Theorem 2. Consider the following four conditions.

(1) “PD”a—m < oo,

(i) There exists A4 such that Ppg,q(x) < Asd(x, a)* forall x € D.
(iii) Global Harmonic Measure Decay of order a.
(iv) Local Harmonic Measure Decay of order a.

Then we have
() = (i) = (i) & (v).
If (iv) holds for some o > a, then (i) and (ii) hold.

As an immediate corollary, we observe that the larger a is the stronger
the property [|Pplla~e < 0 is.

Corollary 2. If0 < S < @ < ap and IlPDHa_,a < oo, then ||Ppllg-p < 0

Remark 5. It is not true that LHMD(@) = ||Ppllame < 0. There is a
domain D for which the LHMD() holds and yet ||Ppllg—a = 0.

Infactlet D = {z € C : |z < 1,|argz| < n/(2a)} for

0 < a < 1. Then the LHMD() with respect to the clas-

sical harmonic measure holds. Nevertheless ||Pplle—a = m
oo; if p(z) = |z|° for OD. then llglla,@p) < oo and yet %
Ppp(x) =~ x*log(1/x) as x | 0 on the positive real axis,

80 ||Ppllaypy = o0 ' J

Let us consider some exterior conditions of the domain D in terms of the
relative capacity:

Cap,(E,U) := inf{ﬁjg{}dp [uU€E Né'”(U) andu >1on E}.

Definition 11. We say that E is uniformly p-fat or satisfies the p-capacity
density condition if there exist 4s > 0 and o > 0 such that

Cap,(E N B(a, 1), B(a,2r))
Cap,(B(a,r), B(a, 2r))

whenevera € E and 0 < r < rq.

2 As
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Theorem 3. The following five conditions are equivalent:

(1) IPplla—e < oo for some a > 0.
(11) Pp@aqo(x) < Asd(x, a)® holds for some a > 0.
(111) GHMD(«) holds for some a > 0.
(iv) LHMD () holds for some a > O.
(V) X\ D satisfies the capacity density condition.

Corollary 3. If X\ D satisfies the volume density condition:
K(B(a,r) \ D)

u(B(a,r))
then ||Ppllg—a < o0 for some a > 0.

>A, foreveryacdDand<r<r,

Remark 6. Our arguments are based mostly on the comparison principle for
p-harmonic functions and the variational properties of the De Giorgi class,
which includes p-harmonic functions. The crucial part is GHMD —
LHMD for which we need the refinement of the submean value property for
the De Giorgi class.

Remark 7. The comparison principle implies LHMD = GHMD. The
converse implication GHMD =— LHMD is crucial. Let us illustrate its
proof:

Let u = w,(0D N B(a,r); D). Suppose { €
oDNS(a, Ar) (UP). Thenu < 3 on B(Z, cr), so
u < 1 — £ on a small ball intersecting B(Z, cr) / X
by some argument based on the De Giorgi A,
class. Repeatmg the same argument, we ob- { L. '
tain ¥ < 1 — & on S(a,4r). Hence w,(0D \ - T,,:T-wp =0
B(a,r); D) > € on D N S(a, Ar); in other words

wpy(DNS(a,Ar); DN B(a,Ar)) < & wp(BD \ B(a,r); D) on D N B(a, Ar).
Hence GHMD == LHMD.
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