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Rudin’s Dowker space is base-normal
— a direct proof —
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The theorem ‘Rudin’s Dowker space is base-normal’ was proved in [7] by
using some results of K. P. Hart in [3]. In this report, we give a direct proof
to this theorem.

Throughout this paper, all spaces are assumed to be T} topological spaces.
The symbol N denotes the set of all natural numbers. As usual, a cardinal is
the initial ordinal and an ordinal is the set of smaller ordinals. The cardinality
of a set X is denoted by |X|. For a space X, w(X) stands for the weight of
X. For a space X and a subspace A of X, the closure of A in X is denoted
by A.

Motivated by base-paracompactness of J. E. Porter [4], we introduced in
[6] the notion of base-normality. Recall that a space X is said to be base-
normal if there is a base B for X with |B| = w(X) satisfying that every pair
of disjoint closed subsets Fy, F; of X admits a locally finite cover B’ of X by
members of B such that, for every B € B, either BN Fy =@ or BNF, =0
holds. A space X is said to be base-collectionwise normal if there is a base
B for X with [B| = w(X) satisfying that every discrete closed collection
{Fs : o € Q} of X admits a locally finite cover B’ of X by members of
B such that, for every B € B, [{a € Q : BN F, # 0}| < 1. Note that
every base-normal space is normal, and G. Gruenhage constructed in [2] a
ZFC example of a countably compact zero-dimensional LOTS which is not
base-normal.

Recall that a Dowker space is a normal space X for which X x [0,1] is
not normal. In [6] we pointed out that a base-normal Dowker space can be
constructed by using a technique of Porter in [4]. Indeed, let Y be any Dowker
space. Then, the direct sum Y @ (x+1), where & is the cardinality of all open
subsets of Y and x+ 1 has the usual order topology, is a base-normal Dowker
space (although Y itself is not necessarily assumed to be base-normal) ([6]).
Thus, it seems to be an interesting problem to find base-normal spaces among
Dowker spaces which have been obtained so far. In fact, on the 3rd Japan-
Mexico Joint Meeting on Topology and its Applications held in December,
2004, a participant asked a question if Rudin’s Dowker space is base-normal



or not, and in [7] this question is affirmatively answered.

Let us first recall the construction of Rudin’s Dowker space in [5]. The
symbol c¢f()) stands for the cofinality of A. Let

F={f:N-w, : f(n)<w, foral neN}

and

X={f.€F : 3 € N such that w < ¢f(f(n)) < w; for all ne N}.

Let f,g € F. Then, we define f < g if f(n) < g(n) for every n € N, and
define f < g if f(n) < g(n) for every n € N. Moreover, define

U,={heX:f<h<g}

Theset {Uy, : f,g € F} is a base for a topology of X. The space X is Rudin’s
Dowker space. We set B = {U;, : f,g € F}. Note that w(X) = w = |B|.
For U C F, define a map ty € F by ty(n) = sup{f(n) : f € U} for each
n € N. For undefined terminology, see [1].

To prove base-normality of Rudin’s Dowker space, we give a more strict
result as follows.

Theorem. Let X bé Rudin’s Dowker space, and B the base for X defined
as above. For every discrete closed collection {F, : a € Q} of X, there is

a disjoint cover B' of X by members of B satisfying that, for every B € B/,
Ha€eQ:BNF,#0} <1.

This theorem was proved in [7, Theorem 3.4] by using results in [3]. As was
announced in the introduction, we directly prove this.

Proof of Theorem. First show the following statements are valid.
- (i) X eB.
@) IFUQ),U(2) € B, then U(1)NU(2) € B.
(iii) If U(:) € B, i € N, then ;N U (%) € B.

Indeed, (i) is easy to see and (ii) follows from (i) and (iii), so we only give a

proof of (iii). To prove (iii), let U(¢) € B, ¢ € N. Then, each U() is expressed
as U(i) = Uy, for some f;, g; € F. Define f,g € F by f(n) = supsen fi(n),
n € N, and g(n) = min;en gi(n), n € N. Notice that f ¢ X. Hence, we have
Miex Usig: = Upg- Thus, MienU (1) € B.

Next, we show the following:
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Claim. For every disjoint closed subsets Fy, F1 of X, there is a disjoint
cover B' of X by members of B such that, for every B € B', either BNFy = 0)
or BN F; =0 holds. -

To show this, let Fy and F} be disjoint closed subsets of X. The proof in [5]
makes for each countable ordinal a a disjoint open collection J, of X which
covers Fy U Fy. We modify the proof in [5] so as to make disjoint open covers
Ja of X (consisting of members of B).

Inductively, we construct disjoint open covers J, of X, 0 € o < w;, with
Jo C B having the following property:

For every 8 < a and every V € J,, there exists U € Jp such that
1) VcU,
(2) lfVﬁFo #@ 7’:VﬁF1, then tv -‘,étU,
B)ifUNFy=0orUNF,=0,then U =V.

First, set Jy = {X}. By (i), it follows that X € B, hence J; C B.

Next, assume that Js has been constructed for every 8 < a.

Case 1. a is limit. For every f € X and every 8 < «, choose a unique
U(f)p such that f € U(f)s € Js. Define

Uy = nU(f)ﬂ for every f e X, and Jo={Us: f € X}.

f<a

Then, by (iii), it follows that J, C B. Moreover, J, is a disjoint cover of X
because each Jp is a disjoint cover of X. Fix 8 < a. We shall show that Uy
and U(f)s satisfying conditions (1), (2) and (3) above. Since Uy C U(f),
(1) holds. To show (2), assume U;NFy # 0 # UsNFy. Then, U(f)g11NFo #
0 # U(f)p+1 N F1. Hence, it follows from the assumption of induction that
ty(f)en # tuine Since ty; <ty S tu(s,, We have ty, < tuq,, so
(2) holds. To show (3), assume either U(f)sNFo =@ or U(f)sgNFr =0
holds. Then, since U(f)s = U(f)g for every B’ with 8 < ' < a, we have
U(f)s = U(f)pl It follows that Uy = U(f)s. So, (3) holds.

Case 2. o = B+1. Fix U € J3. We shall construct a disjoint cover J(U)
of U with J(U) C B so as to have the following property:

For every V € J(U),
2y if VNF; #0#VnNF, then ty # ty,
(B fUNFp=0orUNF, =0,thenU=V.

Case A.UNFy=0or UNF, = 0. Define
| J(U) ={U}.
Then, J(U) C B, and U satisfies conditions (2)’ and (3)’.
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Case B.UNF, # 0 # U N F, and there exists ¢ € N such that
cf(ty(7)) < w. Then, we select iy so as to satisfy c¢f(ty(iv)) < w. Then,
as in [5], we can show that ¢f(ty(iy)) = w. Choose an increasing sequence
{Av(n) : n € N} of terms of ty(iy) cofinal with ty(iy). Set

V(U,n) = {f €U:Ay(n—1) < f(iv) < /\U(n)}
for each n € N. Define
JU)={V(U,n):neN}

Note that V(U,n) = U; ,NU, where f, g € F is defined by f(iy) = Ay(n—1)
and f(n) =0 if n # iy, and g(iy) = Ay(n) and g(n) = w, if n # iy. Since
Usg, U € B, it follows from (ii) that V(U,n) € B. Thus, J(U) C B. For
every V' € J(U), we can express as V' = V(U,n) for some n € N, and we
have ty(iy) = My(n) = ty(iy), which shows tyr # ty. Hence, V' and U
satisfy conditions (2)’ and (3)’. :

Case C. UNF, # 0 # U N F, and cf(ty(n)) > w for every n € N.
By the quite similar proof to those of [5, Lemmas 5 and 6], we can select

fu € F such that fy < ty and such that either {h€ U : fy <h}NFp =0
or{heU: fy <h}N F; =0 holds. For every M C N, set

VUM, fy) = {h cU - h(n) < fu(n) for every n € M, and }

h(n) > fy(n) forevery ne N—- M

Define
J(U) = {V(U, M, fy):McC N}.

Likewise the proof of Case B, by (ii), we can show that V(U, M, fy) € B for
each M C N. Thus, J(U) C B. Also, we can show that J(U) is a disjoint
cover of U. Finally, it is not difficult to show V(U, M, fy) and U satisfy
conditions (2)’ and (3)’.
Set
Jo= |J J).
UeJs

By using conditions (2)’ and (3)’ above and the assumption of induction, we
can show that J,, 0 € a < wy, have the required property.

For every f € X and every o with 0 < o < w,, there exists a unique
U(f)a € Ja such that f € U(f)q. Let 8 and o with § < a < w;. Then, we
have U(f)a - U(f)ﬁ, hence tU(f)a < tU(f)ﬁ. If U(f)a NF # 0 # U(f)a N F,
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then ty(y), (n) < tu(s),(n) for some n € N. As in [5], for every n € N one can
move backward in wy, only finitely many steps. Hence, there exists a(f) < w;
such that

Uf)apy NFo=0 or U(f)apy NF1=0.

By (3), if a(f) < B < wy then U(f)s = U(f)a(s). Clearly, {U(f)a(s) : f € X}
is a cover of X consisting of elements of B. To prove {U(f)qas) : f € X}
is pairwise disjoint, assume U(f)acs) N U(9)a(y) # 0. Take f < w; so0 as
to satisfy a(f) < § and a(g) < B. It follows from U(f)s = U(f)a(s) and
U(9)g = U(9)a(q) that U(f)sNU(g)s # 0. Since Jp is pairwise disjoint, we
have U(f)s = U(g), hence U(f)a(s) = U(g)a(g). This shows that {U(f)a(y) :
f € X} is pairwise disjoint, and this is the required B’ in Claim.

Finally, to complete the proof, let {F, : a € Q} be a discrete closed
collection of X. Since X is collectionwise normal, there is a discrete open
collection {Uy, : @ € Q} of X such that F, C U, for each a € Q. Due to
the fact shown above, for every a € €2, there is a disjoint cover B, of X by
members of B such that, for every B € B,, either BNF, =0 or B C U,
holds. For every a € Q, define .

B, ={B€By:BCU,}
Note that F, C |J B, C U, for every a € . Set

r-Uys

a€efl

Since | J B, is clopen for each o € , and {{JB;, : a € Q} is discrete in X, it
follows that B* is clopen in X. Hence, by the fact shown in the above, there
is a disjoint cover C of X by members of B such that, for each C € C, either
CNB*=0or C C B* holds. Then, {C € C:CNB* =0} U cq B is the
required disjoint cover of X by members of B. This completes the proof. O

The notion of base-normality is motivated by the well-known fact that X is
normal if and only if every pair of disjoint closed subsets Fy, F; of X admits a
locally finite open cover & of X such that, for every U € U, either UNFy =
or UNF; = 0 holds. On the other hand, it is easy to see that “locally finite”
in the above fact can be replaced by “star-finite”; a collection {U, : & € Q}
of subsets of X is said to be star-finite if |{8 € Q:UsgNU, # 0} < w
holds for every a € Q. In order to consider a base version of this fact, we
define a space X to be strongly base-normal if there is a base B for X with
|B| = w(X) satisfying that every pair of disjoint closed subsets Fy, F; of
X admits a star-finite cover B’ of X by members of B such that, for every
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B € B' either BN Fy =0 or BN F; = 0 holds. The Theorem in the above
shows that Rudin’s Dowker space possesses this property. Also, note that
there is a base-normal space (in fact, a metric space) which is not strongly
base-normal ([7]). Related results on strongly base-normal spaces, see [7].
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