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The theorem ‘Rudin’s Dowker space is $\mathrm{b}\mathrm{a}s\mathrm{e}$-normal’ was proved in [7] by
using some results of K. P. Hart in [3]. In this report, we give a direct proof
to this theorem.

Throughout this paper, all spaces are assumed to be $T_{1}$ topological spaces.
The symbol $\mathrm{N}$ denotes the set of all natural numbers. As usual, a cardinal is
the initial ordinal and an ordinal is the set of smaller ordinals. The cardinality
of a set $X$ is denoted by $|X|$ . For a space $X,$ $w(X)$ stands for the weight of
X. For a space $X$ and a subspace $A$ of $X$ , the closure of $A$ in $X$ is denoted
by $\overline{A}$.

Motivated by base-paracompactness of J. E. Porter [4], we introduced in
[6] the notion of base-normality. Recall that a space $X$ is said to be base-
normal if there is a base $\mathcal{B}$ for $X$ with $|B|=w(X)$ satisfying that every pair
of disjoint closed subsets $F_{0},$ $F_{1}$ of $X$ admits a locally finite cover $B’$ of $X$ by
members of $B$ such that, for every $B\in B’,$ either $\overline{B}\cap F_{0}=\emptyset$ or $\overline{B}\cap F_{1}=\emptyset$

holds. A space $X$ is said to be base-collectionwise normal if there is a base
$B$ for $X$ with $|\mathcal{B}|=w(X)$ satisfying that every discrete closed collection
{ $F_{\alpha}$ : a $\in\Omega$ } of $X$ admits a locally finite cover $B’$ of $X$ by members of
$B$ such that, for every $B\in B’,$ $|\{\alpha\in\Omega : \overline{B}\cap F_{\alpha}\neq\emptyset\}|\leq 1$. Note that
every base-normal space is normal, and G. Gruenhage constructed in [2] a
ZFC example of a countably compact zero-dimensional LOTS which is not
base-normal.

Recall that a Dowker space is a normal space $X$ for which $X\cross[0,1]$ is
not normal. In [6] we pointed out that a base-normal Dowker space can be
constructed by using a technique of Porter in [4]. Indeed, let $\mathrm{Y}$ be any Dowker
space. Then, the direct sum Ye $(\kappa+1)$ , where $\kappa$ is the cardinality of all open
subsets of $\mathrm{Y}$ and $\kappa+1$ has the usual order topology, is a base-normal Dowker
space (although $\mathrm{Y}$ itself is not necessarily assumed to be base-normal) ([6]).
Thus, it seems to be an interesting problem to find $\mathrm{b}\mathrm{a}s\mathrm{e}$-normal spaces among
Dowker spaces which have been obtained so far. In fact, on the 3rd Japan-
Mexico Joint Meeting on Topology and its Applications held in December,
2004, a participant asked a question if Rudin’s Dowker space is base-normal
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or not, and in [7] this question is affirmatively answered.

Let us first recall the construction of Rudin’s Dowker space in [5]. The
symbol $cf(\lambda)$ stands for the cofinality of A. Let

$F=\{f$ : $\mathrm{N}arrow\omega_{\omega}$ : $f(n)\leq\omega_{n}$ for all $n\in \mathrm{N}\}$

and

$X=\{f\in F$ : $\exists i\in \mathrm{N}$ such that $\omega<cf(f(n))<\omega_{i}$ for all $n\in \mathrm{N}\}$ .

Let $f,g\in F$ . Then, we define $f<g$ if $f(n)<g(n)$ for every $n\in \mathrm{N}$ , and
define $f\leq g$ if $f(n)\leq g(n)$ for every $n\in \mathrm{N}$ . Moreover, define

$U_{f,g}=\{h\in X : f<h\leq g\}$ .

The set $\{U_{f,g} : f,g\in F\}$ is a base for a topology of $X$ . The space $X$ is Rudin’s
Dowker space. We set $B=\{U_{f,g} : f,g\in F\}$ . Note that $w(X)=\omega_{\omega}^{\omega}=|B|$ .
For $U\subset F$ , define a map $t_{U}\in F$ by $t_{U}(n)= \sup\{f(n) : f\in U\}$ for each
$n\in \mathrm{N}$ . For undefined terminology, see [1].

To prove base-normality of Rudin’s Dowker space, we give a more strict
result as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ .

Theorem. Let $X$ be Rudin’s Dowker space, and $B$ the base for $X$ defined
as above. For every discrete closed collection $\{F_{\alpha} : \alpha\in\Omega\}$ of $X,$ there is
a disjoint cover $B’$ of $X$ by members of $B$ satisfying that, for every $B\in B’$ ,
$|\{\alpha\in\Omega : B\cap F_{\alpha}\neq\emptyset\}|\leq 1$ .

This theorem was proved in [7, Theorem 3.4] by using results in [3]. As was
announced in the introduction, we directly prove this.

Proof of Theorem. First show the following statements are valid.
(i) $X\in B$ .
(ii) If $U(1),$ $U(2)\in B$ , then $U(1)\cap U(2)\in B$ .
(iii) If $U(i)\in B,$ $i\in \mathrm{N},$ then $\bigcap_{i\in \mathrm{N}}U(i)\in B$ .

Indeed, (i) is easy to see and (ii) follows from (i) and (i\"u), so we only give a
proof of (iii). To prove (iii), let $U(i)\in B,$ $i\in \mathrm{N}$ . Then, each $U(i)$ is expressed
as $U(i)=U_{f.,g:}$ for some $f_{1},$ $g_{i}\in F$ . Define $f,g\in F$ by $f(n)= \sup_{i\in \mathrm{N}}f_{i}(n)$ ,
$n\in \mathrm{N}$ , and $g(n)= \min_{i\in \mathrm{N}g:}(n),$ $n\in \mathrm{N}$ . Notice that $f\not\in X$ . Hence, we have
$\bigcap_{1\in \mathrm{N}}U_{f_{1,ff:}}=U_{f,g}$. Thus, $\bigcap_{:\in \mathrm{N}}U(i)\in B$ .

Next, we show the following:
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Claim. For every disjoint closed subsets $F_{0},$ $F_{1}$ of $X$ , there is a disjoint
cover $B’$ of $X$ by members of $B$ such that, for every $B\in B’,$ $either\overline{B}\cap F_{0}=\emptyset$

or $\overline{B}\cap F_{1}=\emptyset$ holds.

To show this, let $F_{0}$ and $F_{1}$ be disjoint closed subsets of $X$ . The proof in [5]
makes for each countable $\mathit{0}$rdinal a a disjoint open collection ,$J_{\alpha}$ of $X$ which
covers $F_{0}\cup F_{1}$ . We modify the proof in [5] so as to make disjoint open covers
$,J_{\alpha}$ of $X$ (consisting of members of $B$).

Inductively, we construct disjoint open covers $J_{\alpha}$ of $X,$ $0\leq\alpha<\omega_{1}$ , with
$,J_{\alpha}\subset B$ having the following property:

For every $\beta<\alpha$ and every $V\in J_{\alpha}$ , there exists $U\in J_{\beta}$ such that
(1) $V\subset U$,
(2) if $V\cap F_{0}\neq\emptyset\neq V\cap F_{1}$ , then $t_{V}\neq t_{U}$ ,
(3) if $U\cap F_{0}=\emptyset$ or $U\cap F_{1}=\emptyset$ , then $U=V$.
First, set $J_{0}=\{X\}$ . By (i), it follows that $X\in B$ , hence $J_{0}\subset B$ .
Next, assume that $J_{\beta}$ has been constructed for every $\beta<\alpha$ .
Case 1. $\alpha$ is limit. For every $f\in X$ and every $\beta<\alpha$ , choose a unique

$U(f)_{\beta}$ such that $f\in U(f)_{\beta}\in J_{\beta}$ . Define

$U_{f}= \bigcap_{\beta<a}U(f)_{\beta}$
for every $f\in X$, and $J_{\alpha}=\{U_{f} : f\in X\}$

.

Then, by (iii), it follows that $.\mathit{7}_{a}\subset B$ . Moreover, $J_{\alpha}$ is a disjoint cover of $X$

because each $J_{\beta}$ is a disjoint cover of $X$ . Fix $\beta<\alpha$ . We shall show that $U_{f}$

and $U(f)_{\beta}$ satisfying conditions (1), (2) and (3) above. Since $U_{[}\subset U(f)_{\beta}$ ,
(1) holds. To show (2), assume $U_{f}\cap F_{0}\neq\emptyset\neq U_{f}\cap F_{1}$ . Then, $U(f)_{\beta+1}\cap F_{0}\neq$

$\emptyset\neq U(f)_{\beta+1}\cap F_{1}$ . Hence, it follows from the assumption of induction that
$t_{U(f)_{\beta+1}}\neq t_{U(f)\rho}$ . Since $t_{U_{f}}\leq t_{U(f)_{\beta+1}}\leq t_{U(f)_{\beta}}$ , we have $t_{U_{f}}<t_{U([)_{\beta}}$ , so
(2) holds. To show (3), assume either $U(f)_{\beta}\cap F_{0}=\emptyset$ or $U(f)_{\beta}\cap F_{1}=\emptyset$

holds. Then, since $U(f)_{\beta}=U(f)_{\beta’}$ for every $\beta’$ with $\beta<\beta’<\alpha$ , we have
$U(f)_{\beta}=U(f)_{\beta’}$ . It follows that $U_{f}=U(f)_{\beta}$ . So, (3) holds.

Case 2. $\alpha=\beta+1$ . Fix $U\in J_{\beta}$ . We shall construct a disjoint cover $J(U)$

of $U$ with $I(U)\subset \mathcal{B}$ so as to have the following property:

For every $V\in J(U)$ ,
(2) if $V\cap F_{0}\neq\emptyset\neq V\cap F_{1}$ , then $t_{V}\neq t_{U}$ ,
(3) if $U\cap F_{0}=\emptyset$ or $U\cap F_{1}=\emptyset$ , then $U=V$.

Case A. $U\cap F_{0}=\emptyset$ or $U\cap F_{1}=\emptyset$ . Define

$J(U)=\{U\}$ .
Then, $J(U)\subset B$ , and $U$ satisfies conditions (2) and (3).
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Case B. $U\cap F_{0}\neq\emptyset\neq U\cap$ $F_{1}$ , and there exists $i\in \mathrm{N}$ such that
$cf(t_{U}(i))\leq\omega$ . Then, we select $i_{U}$ so as to satisfy $cf(t_{U}(i_{U}))\leq\omega$ . Then,
as in [5], we can show that $cf(t_{U}(i_{U}))=\omega$ . Choose an increasing sequence
$\{\lambda_{U}(n) : n\in \mathrm{N}\}$ of terms of $t_{U}(i_{U})$ cofinal with $t_{U}(i_{U})$ . Set

$V(U, n)=\{f\in U$ : $\lambda_{U}(n-1)<f(i_{U})\leq\lambda_{U}(n)\}$

for each $n\in$ N. Define

,7 $(U)=\{V(U, n) : n\in \mathrm{N}\}$ .

Note that $V(U, n)=U_{f,g}\cap U$ , where $f,$ $g\in F$ is defined by $f(i_{U})=\lambda_{U}(n-1)$

and $f(n)=0$ if $n\neq i_{U}$ , and $g(i_{U})=\lambda_{U}(n)$ and $g(n)=\omega_{n}$ if $n\neq i_{U}$ . Since
$U_{f,g},$ $U\in B$ , it follows from (ii) that $V(U, n)\in B$ . Thus, $J(U)\subset B$ . For
every $V’\in J(U)$ , we can express as $V’=V(U, n)$ for some $n\in \mathrm{N}$ , and we
have $t_{V’}(i_{U})=\lambda_{U}(n)=t_{U}(i_{U})$ , which shows $t_{V’}\neq t_{U}$ . Hence, $V’$ and $U$

satisfy conditions (2) and (3).

Case C. $U\cap F_{0}\neq\emptyset\neq U\cap F_{1}$ , and $cf(t_{U}(n))>\omega$ for every $n\in$ N.
By the quite similar proof to those of [5, Lemmas 5 and 6], we can select
$f_{U}\in F$ such that $f_{U}<t_{U}$ and such that either $\{h\in U : f_{U}<h\}\cap F_{0}=\emptyset$

or $\{h\in U : f_{U}<h\}\cap F_{1}=\emptyset$ holds. For every $M\subset \mathrm{N}$ , set

$V(U, M, f_{U})=\{h\in U$ : $h(n)h(n)>f_{U}(n)\leq f_{U}(n)$ $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}n\in M,\mathrm{a}\mathrm{n}\mathrm{d}n\in \mathrm{N}-M\}$

Define
$J(U)=\{V(U, M, f_{U})$ : $M\subset \mathrm{N}\}$ .

Likewise the proof of Case $\mathrm{B}$ , by (ii), we can show that $V(U, M, f_{U})\in B$ for
each $M\subset$ N. Thus, $J(U)\subset B$ . Also, we can show that $J(U)$ is a disjoint
cover of $U$ . Finally, it is not difficult to show $V(U, M, f_{U})$ and $U$ satisfy
conditions (2) and (3).

Set
$J_{a}= \bigcup_{U\in J\rho}J(U)$

.

By using conditions (2) and (3) above and the assumption of induction, we
can show that $J_{a},$ $0\leq\alpha<\omega_{1}$ , have the required property.

For every $f\in X$ and every $\alpha$ with $0\leq\alpha<\omega_{1}$ , there exists a unique
$U(f)_{\alpha}\in J_{\alpha}$ such that $f\in U(f)_{\alpha}$ . Let $\beta$ and $\alpha$ with $\beta<\alpha<\omega_{1}$ . Then, we
have $U(f)_{\alpha}\subset U(f)_{\beta}$ , hence $t_{U(f)_{\alpha}}\leq t_{U(f)_{\beta}}$ . If $U(f)_{\alpha}\cap F_{0}\neq\emptyset\neq U(f)_{\alpha}\cap F_{1}$ ,
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then $t_{U(f)_{\alpha}}(n)<t_{U(f)_{\beta}}(n)$ for some $n\in \mathrm{N}$ . As in [5], for every $n\in \mathrm{N}$ one can
move backward in $\omega_{n}$ only finitely many steps. Hence, there exists $\alpha(f)<\omega_{1}$

such that
$U(f)_{\alpha(f)}\cap F_{0}=\emptyset$ or $U(f)_{\alpha(f)}\cap F_{1}=\emptyset$.

By (3), if $\alpha(f)<\beta<\omega_{1}$ then $U(f)_{\beta}=U(f)_{\alpha(f)}$ . Clearly, $\{U(f)_{\alpha(f)} : f\in X\}$

is a cover of $X$ consisting of elements of $B$ . To prove $\{U(f)_{\alpha(f)} : f\in X\}$

is pairwise disjoint, assume $U(f)_{\alpha(f)}\cap U(g)_{\alpha(g)}\neq\emptyset$ . Take $\beta<\omega_{1}$ so as
to satisfy $\alpha(f)<\beta$ and $\alpha(g)<\beta$ . It follows from $U(f)_{\beta}=U(f)_{a(f)}$ and
$U(g)_{\beta}=U(g)_{a(g)}$ that $U(f)_{\beta}\cap U(g)_{\beta}\neq\emptyset$ . Since $J_{\beta}$ is pairwise disjoint, we
have $U(f)_{\beta}=U(g)_{\beta}$ , hence $U(f)_{\alpha(f)}=U(g)_{\alpha(g)}$ . This shows that { $U(f)_{a(f)}$ :
$f\in X\}$ is pairwise disjoint, and this is the required $B’$ in Claim.

Finally, to complete the proof, let $\{F_{\alpha} : \alpha\in\Omega\}$ be a discrete closed
collection of $X$ . Since $X$ is collectionwise normal, there is a discrete open
collection $\{U_{\alpha} : \alpha\in\Omega\}$ of $X$ such that $F_{\alpha}\subset$ $U_{\alpha}$ for each $\alpha\in\Omega$ . Due to
the fact shown above, for every $\alpha\in\Omega$ , there is a disjoint cover $B_{\alpha}$ of $X$ by
members of $B$ such that, for every $B\in B_{\alpha}$ , either $B\cap$ $F_{\alpha}=\emptyset$ or $B\subset U_{\alpha}$

holds. For every $\alpha\in\Omega$ , define

$B_{\alpha}^{*}=\{B\in B_{\alpha} : B\subset U_{\alpha}\}$ .

Note that $F_{\alpha}\subset\cup B_{\alpha}^{*}\subset U_{\alpha}$ for every $\alpha\in\Omega$ . Set

$B^{*}= \cup\bigcup_{\alpha\in\Omega}B_{\alpha}^{*}$

$\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\cup B_{a}^{*}$ is clopen for each $\alpha\in\Omega$ , and $\{\cup B_{\alpha}^{*} : \alpha\in\Omega\}$ is discrete in $X$ , it
follows that $B^{*}$ is clopen in $X$ . Hence, by the fact shown in the above, there
is a disjoint cover $C$ of $X$ by members of $B$ such that, for each $C\in C$ , either
$C\cap B^{*}=\emptyset$ or $C\subset B^{*}$ holds. Then, $\{C\in C:C\cap B^{*}=\emptyset\}\cup\bigcup_{\alpha\in\Omega}B_{\alpha}^{l}$ is the
required disjoint cover of $X$ by members of $B$ . This completes the proof. $\square$

The notion of base-normality is motivated by the well-known fact that $X$ is
normal if and only if every pair of disjoint closed subsets $F_{0},$ $F_{1}$ of $X$ admits a
locally finite open cover $\mathcal{U}$ of $X$ such that, for every $U\in \mathcal{U},$ either $\overline{U}\cap F_{0}=\emptyset$

or $\overline{U}\cap F_{1}=\emptyset$ holds. On the other hand, it is easy to see that “locally finite”
in the above fact can be replaced by “star-finite”; a collection $\{U_{\alpha} : \alpha\in\Omega\}$

of subsets of $X$ is said to be star-finite if $|\{\beta\in\Omega : U_{\beta}\cap U_{a}\neq\emptyset\}|<$ co
holds for every $\alpha\in\Omega$ . In order to consider a base version of this fact, we
define a space $X$ to be strongly base-normal if there is a base $B$ for $X$ with
$|B|=w(X)$ satisfying that every pair of disjoint closed subsets $F_{0},$ $F_{1}$ of
$X$ admits a star-finite cover $B’$ of $X$ by members of $\mathcal{B}$ such that, for every
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$B\in B’$ either $\overline{B}\cap F_{0}=\emptyset$ or $\overline{B}\cap F_{1}=\emptyset$ holds. The Theorem in the above
shows that Rudin’s Dowker space possesses this property. Also, note that
there is a base-normal space (in fact, a metric space) which is not strongly
base-normal ([7]). Related results on strongly base-normal spaces, see [7].
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