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1. INTRODUCTION AND MAIN RESULT

The purpose of this note is to sketch a proof of the result stated in Main Theorem below.
Consider a cubic complex H\’enon map:

$f_{a,b}$ : (x,$y)\mapsto(-x^{3}+a-by,$x)

with $(a, b)=(-1.35,0.2)$ and let $J$ be the Julia set of $f_{a,b}$ .

Main Theorem. The cubic complex H\’enon map above is hyperbolic but is not topologically
conjugate on $J$ to a small perturbation of any expanding polynomial in one variable.

Here, a H\’enon map or, more generally, a polynomial diffeomorphism $f$ of $\mathbb{C}^{2}$ is said to
be hyperbolic if its Julia set is a hyperbolic set for $f$ (see Definition 2.2 and Lemma 3.3).
Hyperbolic polynomial diffeomorphisms of $\mathbb{C}^{2}$ have been extensively studied, e.g., from the
viewpoint of Axiom A theory by [BS1] and the combinatorial point of view \‘a la Douady-
Hubbard by [BS7]. In $[\mathrm{H}\mathrm{O}2, \mathrm{F}\mathrm{S}]$ it has been shown that a sufficiently small perturbation
of any expanding polynomial $p(x)$ of one variable in the generalized H\’enon family:

$f_{p,b}$ : $(x, y)\mapsto(p(x)-by, x)$

is hyperbolic. However, this was so far the only known example of a polynomial diffeomor-
phism of $\mathbb{C}^{2}$ which was rigorously shown to be hyperbolic. Moreover, the dynamics of such
$f_{\mathrm{p},b}$ can be modeled by the projective limit of the one-dimensional map $p(x)$ on its Julia set.
Thus, it was not known whether there exists a hyperbolic polynomial diffeomorphism of $\mathbb{C}^{2}$

which can not be obtained in this way, and the above theorem provides the first example
of a hyperbolic complex H\’enon map with essentially two-dimensiona! dynamics.

In the rest of this article, we will outline the proof of Main Theorem which relies on some
analytic tools from complex analysis (see Section 4), a combinatorial idea called the fusion
to construct two-dimensional dynamics from polynomials in one variable (see Section 5),
and rigorous numerics technique by employing interval arithmetic (see Section 6).
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2. HYPERBOLICITY: A MOTIVATION
Let $f$ : $Marrow M$ be a diffeomorphism from a Riemannian manifold $M$ to itself. We say

that a point $p\in M$ belongs to the non-wandering set $\Omega_{f}$ if for any neighborhood $U$ of $p$

there exists $n$ so that $U$ fi $f$“ $(U)\neq\emptyset$ . Apparently, periodic points of $f$ belong to $\Omega_{[}$ .
Definition 2.1. A compact invariant subset $\Lambda\subset M$ is said to be hyperbolic if there exist
constants $C>0$ and $0<\lambda<1$ , and a splitting $T_{p}M=E_{p}^{u}\oplus E_{p}^{s}$ for $p\in\Omega_{f}$ so that

(i) $Df(E_{p}^{u/s})=E_{f(p)}^{u/s}$ ,

$(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{i}\mathrm{i})||Df_{p}^{-n}(v)||\leq C\lambda^{n}||v||forv\in E_{p}^{u}||Df_{p}^{n}(v)||\leq C\lambda^{n}||v||forv\in E_{p}^{s}$

,

for all $n>0$ and $p\in\Omega_{f}$ .
A fundamental concept in the dynamical system theory since $1960’ \mathrm{s}$ is

Deflnition 2.2. We say that a diffeomorphism $f$ : $Marrow M$ satisfies Axiom $A$ if $\Omega_{f}$ is a
hyperbolic set and periodic points are dense in $\Omega_{f}$ .

Since the celebrated paper [Sm], it was widely believed that the maps satisfying Axiom
A are dense in the space of all systems. Although this belief turned out to be false in some
cases, it has been always a driving force for research of dynamical systems.

For polynomial diffeomorphisms of $\mathbb{C}^{2}$ , the only known example of an Axiom A map is a
small perturbation $f_{p,b}$ of an expanding polynomial $p$ in one variable $[\mathrm{H}\mathrm{O}2, \mathrm{F}\mathrm{S}]$ . Moreover,
the dynamics of such map $f_{p,b}$ is topologically conjugate to the projective limit of $p$ on
its Julia set $\hat{p}$ : $\lim_{arrow}(p, J_{p})arrow\lim_{arrow}(p, J_{p})$ , so it does not present essentially two-dimensional
dynamical features. In view of the belief above, it is thus natural to ask the following

Question. Does there exist an Axiom A polynomial diffeomorphism of $\mathbb{C}^{2}$ which is not
conjugate on its Julia set to the projective limit of any expanding polynomial in one vari able $l$?

Note that, for a polynomial diffeomorphism of $\mathbb{C}^{2}$ , its Julia set is hyperbolic if and only
if it satisfies Axiom A (see Lemma 3.3). The answer to this question was not known for
the last 15 years, and our Main Theorem gives an affirmative answer to it.

3. SOME PRELIMINARY RESULTS
Let $f$ be a polynomial diffeomorphism of $\mathbb{C}^{2}$ . It is known by a result of Friedland and

Milnor [FM] that $f$ is conjugate to either (i) an affine map, (ii) an elementary map, or
(iii) the composition of finitely many generalized complex H\’enon maps. Since the affine
maps and the elementary maps do not present dynamically interesting behavior, we will
hereafter focus only on a map in the class (iii), i.e. a map of the form $f=f_{p_{1},b_{1}}\mathrm{o}\cdots\circ f_{p_{k},b_{k}}$

throughout this article. The product $d\equiv\deg p_{1}\cdots\deg p_{k}$ is called the (algebraic) degree of
$f$ . Note also that we have $b\equiv\det(Df)=\det(Df_{p_{1},b_{1}})\cdots\det(Df_{p_{k},b_{k}})=b_{1}\cdots b_{k}$ .

For a polynomial diffeomorphism $f$ , let us define
$K_{f}^{\pm}=K^{\pm}\equiv$ { $(x,$ $y)\in \mathbb{C}^{2}$ : $\{f^{\pm n}(x,$ $y)\}_{n>0}$ is bounded in $\mathbb{C}^{2}$ },

i.e. $K^{+}$ (resp. $K^{-}$ ) is the set of points whose forward (resp. backward) orbits are bounded
in $\mathbb{C}^{2}$ . We also put $K\equiv K^{+}\cap K^{-}$ and $J^{\pm}\equiv\partial K^{\pm}$ . The Julia set of $f$ is defined as
$J_{f}=J\equiv J^{+}\cap J^{-}[\mathrm{H}\mathrm{O}1]$ . Obviously these sets are invariant by $f$ .

Hereafter, we will often consider two different spaces $A^{*}\subset \mathbb{C}^{2}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}*=\mathfrak{D}$ or $\Re$ , and
consider a polynomial diffeomorphism $f$ : $A^{\mathcal{D}}arrow A^{\Re}$ (notice that this does not necessarily
mean $f(A^{\mathcal{D}})\subset A^{\Re})$ . Here, $\mathfrak{D}$ signifies the domain and $\Re$ signifies the range of $f$ .
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A subset of $T_{p}\mathbb{C}^{2}$ is called a cone if it can be expressed as the union of complex lines
through the origin of $T_{p}\mathbb{C}^{2}$ . Let $\{C_{p}^{*}\}_{p\in A^{*}}(*=\mathfrak{D}, \Re)$ be two cone fields in $T_{p}\mathbb{C}^{2}$ over $A^{*}$

and $||\cdot||_{*}$ be metrics in $C_{p}^{*}$ .
Definition 3.1 (Pair of Expanding Cone Fields). We say that $(\{C_{p}^{\mathcal{D}}\}_{p\in A}\emptyset, ||\cdot||_{\mathcal{D}})$ and
$(\{C_{p}^{\Re}\}_{p\in A^{\Re}}, ||\cdot||_{\Re})$ form a pair of expanding cone fields for $f$ (or, $f$ expands the pair of
cone fields) if there exists a constant $\lambda>1$ so that

$Df(C_{p}^{\mathcal{D}})\subset C_{f(p)}^{\Re}$ and $\lambda||v||_{\mathcal{D}}\leq||Df(v)||_{\Re}$

hold for all $p\in A^{\mathcal{D}}\cap f^{-1}(A^{\Re})$ and all $v\in C_{\mathrm{p}}^{\mathcal{D}}$ . Similarly, a pair of contracting cone fields
for $f$ is defined as a pair of expanding cone fields for $f^{-1}$ .

In particular, when $A\equiv A^{\mathcal{D}}=A^{\Re},$ $||\cdot||\equiv||\cdot||_{\mathcal{D}}=||\cdot||_{\Re}$ and $C_{\mathrm{p}}^{\mathrm{u}}\equiv C_{p}^{\mathcal{D}}=C_{p}^{\Re}$ for
all $p\in A\cap f^{-1}(A)$ and the above condition holds, then we say $(\{C_{p}^{u}\}_{p\in A}, ||\cdot||)$ forms an
expanding cone field (or, $f$ expands the cone field). Similarly, the notion of contracting cone
field (or, $f$ contracts the cone field) can be defined.

The next claim tells that, to prove hyperbolicity, it is sufficient to construct some ex-
$\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$cone fields.

Lemma 3.2. If $f$ : $Aarrow A$ has both nonempty $expanding/contracting$ cone fields $\{C_{p}^{u/s}\}_{p\in A}$ ,
then $f$ is hyperbolic on $\bigcap_{n\in \mathbb{Z}}f^{n}(A)$ .

On the hyperbolicity of the polynomial diffeomorphisms of $\mathbb{C}^{2}$ , the following fact is known
(see [BS1], Lemma 5.5 and Theorem 5.6).

Lemma 3.3. $J_{f}$ is a hyperbolic set for $f$ if and only if $f$ satisfies Axiom $A$ .
Thanks to this fact, one may simply say that a polynomial diffeomorphism $f$ is hyperbolic

when the Julia set $J_{f}$ is a hyperbolic set for $f$ as in Introduction. In what follows, we thus
prove hyperbolicity of $f_{a,b}$ on its Julia set $J_{f}$ .

4. A CRITERION FOR HYPERBOLICITY
Let $A_{x}$ and $A_{y}$ be bounded regions in C. Let us put $A=A_{x}\cross A_{y}$ , and let $\pi_{x}$ : $Aarrow A_{x}$

and $\pi_{y}$ : $Aarrow A_{y}$ be two projections. Below, we will define two types of cone fields. The
first one (to which we do not assign a metric) looks more general than the other.
Definition 4.1 ( $\mathrm{H}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}/\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ Cone Fields). A cone field on $A$ is called a hori-
zontal cone field if each cone contains the horizontal direction but not the vertical direction.
A vertical cone field can be defined similarly.

Next, a very specific cone field is defined in terms of Poincar\’e metrics. Let $|\cdot|_{D}$ be the
Poincar\’e metric in a bounded domain $D\subset$ C. Define a cone field in terms of the “slope”
with respect to the Poincar\’e metrics in $A_{x}$ and $A_{y}$ as follows:

$C_{p}^{h}\equiv\{v=(v_{x}, v_{y})\in T_{p}A : |v_{x}|_{A_{x}}\geq|v_{y}|_{A_{\mathrm{y}}}\}$ .
A metric in this cone is given by $||v||_{h}\equiv|D\pi_{x}(v)|_{A_{x}}$ .

Definition 4.2 (Poincar\’e Cone Fields). We call $(\{C_{p}^{h}\}_{p\in A}, ||\cdot||_{h})$ the horizontal Poincar\’e
cone field. The vertical Poincar\’e cone field $(\{C_{p}^{v}\}_{p\in A}, ||\cdot||_{v})$ can be defined similarly.

A product set $A=A_{x}\cross A_{y}$ equipped with the $\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}/\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$Poincar\’e cone fields is
called a Poincar\’e box. A Poincar\’e box will be a building block for verifying hyperbolicity
of polynomial diffeomorphisms throughout this work.
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Let $A^{*}=A_{x}^{*}\cross A_{y}^{*}(*=\mathfrak{D}, \Re)$ be two Poincar\’e boxes, $f$ : $A^{\mathfrak{D}}arrow A^{\Re}$ be a holomorphic
injection and $\iota$ : $A^{\mathfrak{D}}\cap f^{-1}(A^{\Re})arrow A^{\mathfrak{D}}$ be the inclusion map. The following two conditions
will be used to state our criterion for hyperbolicity.

Definition 4.3 (Crossed Mapping Condition). We say that $f$ : $A^{\mathcal{D}}arrow A^{\Re}$ satisfies the
crossed mapping condition $(CMC)$ of degree $d$ if

$\rho_{f}\equiv(\pi_{x}^{\Re}\mathrm{o}f, \pi_{y}^{\mathfrak{D}}0\iota)$ : $\iota^{-1}(A^{\mathcal{D}})\cap f^{-1}(A^{\Re})arrow A_{x}^{\Re}\cross A_{y}^{\mathfrak{D}}$

is proprer of degree $d$ .
Let $F_{h}^{\mathfrak{D}}=\{A_{x}^{\mathcal{D}}(y)\}_{y\in A_{y}^{\mathrm{D}}}$ be the horizontal foliation of $A^{\mathcal{D}}$ with leaves $A_{x}^{\mathfrak{D}}(y)=A_{x}^{\mathfrak{D}}\cross\{y\}$

and $\mathcal{F}_{v}^{\Re}=\{A_{y}^{\Re}(x)\}_{x\in A_{x}^{\Re}}$ be the vertical foliation of $A^{\Re}$ with leaves $A_{y}^{\Re}(x)=\{x\}\cross A_{y}^{\Re}$ .
Definition 4.4 (No-Tangency Condition). We say that $f$ : $A^{\mathcal{D}}arrow A^{\Re}$ satisfies the
no-tangency condition $(NTC)$ if $f(\mathcal{F}_{h}^{\mathfrak{D}})$ and $.F_{v}^{\Re}$ have no tangencies. Similarly we say that
$f^{-1}$ : $A^{\Re}arrow A^{\mathfrak{D}}$ satisfies the $(NTC)$ if $F_{h}^{\mathfrak{D}}$ and $f^{-1}(F_{v}^{\Re})$ have no tangencies.

Notice that we do not exchange $h$ and $v$ of the foliations in the definition of the non-
tangency condition for $f^{-1}$ . Hence, $f$ satisfies the (NTC) iff so does $f^{-1}$ .

The following elementary example illustrates the two conditions given above.

Example. Given a polynomial diffeomorphism $f$ , choose a sufficiently large $R>0$ . Put
$\Delta_{x}(a;r)=\{x\in \mathbb{C} : |x-a|<r\},$ $D_{R}=\Delta_{x}(0;R)\cross\Delta_{y}(0;R),$ $V^{+}=V_{R}^{+}\equiv\{(x, y)\in \mathbb{C}^{2}$ :
$|x|\geq R,$ $|x|\geq|y|\}$ and $V^{-}=V_{R}^{-}\equiv\{(x, y)\in \mathbb{C}^{2} : |y|\geq R, |y|\geq|x|\}$ . Then, $f$ induces a
homomorphism:

$f_{*}:$ $H_{2}(D_{R}\cup V^{+}, V^{+})arrow H_{2}(D_{R}\cup V^{+}, V^{+})$ .
Since $H_{2}(D_{R}\cup V^{+}, V^{+})=\mathbb{Z}$, one can define the (topological) degree of $f$ to be $f_{*}(1)$ . It is
easy to see that the topological degree of $f$ is equal to the algebraic degree $d$ of $f$ .

Consider $f$ : $D_{R}arrow D_{R}$ and $\rho_{f}$ : $D_{R}\cap f^{-1}(D_{R})arrow D_{R}$ . Given $(x, y)\in D_{R},$ $f(\rho^{-1}(x,y))$

is equal to $f(D_{x}(y))\cap D_{y}(x)$ , where we write $D_{x}(y)=\Delta_{x}(0;R)\cross\{y\}$ and $D_{y}(x)=\{x\}\cross$

$\Delta_{y}(0;R)$ . Since $f(V^{+})\subset V^{+}$ and $f^{-1}(V^{-})\subset V^{-}$ hold, the number card $(f(D_{x}(y))\cap D_{y}(x))$

can be counted by the number of times $\pi_{x}\mathrm{o}f(\partial D_{x}(y))$ rounds around $\triangle_{x}(0;R)$ by the
Argument Principle. This is equal to the degree of $f$ , so it follows that card $(f(D_{x}(y))\cap$

$D_{y}(x))=d$ counted with multiplicity for all $(x, y)\in D_{R}$ . Thus, $f$ : $D_{R}arrow D_{R}$ satisfies
the (CMC). Notice that $f$ : $D_{R}arrow D_{R}$ satisfies the (NTC) iff card $(f(D_{x}(y))\cap D_{y}(x))=d$

counted without multiplicity for all $(x, y)\in D_{R}$ . (End of Example.)

Now, the central claim for verifying hyperbolicity is stated as

Theorem 4.5 (Hyperbolicity Criterion). Assume that $f$ : $A^{\mathcal{D}}arrow A^{\Re}$ satisfies the
crossed mapping condition $(CMC)$ of degree $d\geq 2$ . Then, the following are equivalent:

(i) $f$ preserves some pair of horizontal cone fields,
(ii) $f^{-1}$ preserves some pair of vertical cone $fields_{f}$

(iii) $f$ expands the pair of the horizontal Poincar\’e cone fields,
(iv) $f^{-1}e\varphi ands$ the pair of the vertical Poincar\’e cone fields,
(v) $f$ satisfies the no-tangency condition $(NTC)$ ,
(vi) $f^{-1}$ satisfies the no-tangency condition $(NTC)$ .

Moreover, when $A^{\mathcal{D}}=A^{\Re}=\mathcal{B}=B_{x}\cross B_{y;}$ where $B_{x}$ and $B_{y}$ are bounded open topological
disks in $\mathbb{C}$ , then any of the six conditions above is equivalent to the following:

(vii) $B\cap f^{-1}(B)$ has $d$ connected components.
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The (CMC) and the (NTC) can be rewritten as more checkable conditions so that we can
verify the hyperbolicity of some specific polynomial diffeomorphisms of $\mathbb{C}^{2}$ . To do this, given
two open subsets $V$ and $W$ of $\mathbb{C}$ , let us write the vertical boundary $\partial_{v}(V\cross W)=\partial V\cross W$

and the horizontal boundary $\partial_{h}(V\cross W)=V\cross\partial W$ .
Deflnition 4.6 (Boundary Compatibility Condition). We say that $f$ : $A^{\mathfrak{D}}arrow A^{\Re}$

satisfies the boundary compatibility condition $(BCC)$ if
(i) dist $(\pi_{x}^{\Re}\circ f(\partial_{v}A^{\mathfrak{D}}), A_{x}^{\Re})>0$ and
(ii) dist $(\pi_{y}^{\mathfrak{D}}\mathrm{o}f^{-1}(\partial_{h}A^{\Re}), A_{y}^{\mathcal{D}})>0$

hold, where dist $(\cdot, \cdot)$ means the Euclidean distance betw$\mathrm{e}en$ two sets in C.

Let us define

$C=C_{f} \equiv\bigcup_{y\in A_{y}^{\mathcal{D}}}$
{critical points of $\pi_{x}^{\Re}\mathrm{o}f$ : $A_{x}^{\mathfrak{D}}\cross\{y\}arrow A_{x}^{\Re}$ },

and call it the dynamical critical set of $f$ .
Deflnition 4.7 (Off-Criticality Condition). We say that $f$ : $A^{\mathcal{D}}arrow A^{\Re}$ satisfies the
off-criticality condition $(OCC)$ if dist $(\pi_{x}^{\Re}\circ f(C_{f}), A_{x}^{\Re})>0$ holds.

It is not difficult to see that the (BCC) implies the (CMC), and the (OCC) implies the
(NTC). Thus, the theorem above can be trivially extended to the setting

$f:_{1\leq j\leq}\mathrm{u}_{M_{\mathcal{D}}}A_{j}^{\mathfrak{D}}arrow 1\leq k\leq M\Re \mathrm{u}A_{k}^{\Re}$
,

where each $A_{i}^{*}$ is an open set in $\mathbb{C}^{2}$ biholomorphic to a Poincar\’e box of the form $A_{x}^{*}\cross$

$A_{y}^{*}$ (then, two natural projections for $A_{i}^{*}$ corresponding to $\pi_{x}^{*}$ and $\pi_{y}^{*}$ and the notion of
$\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}/\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ Poincar\’e cone fields in $A_{i}^{*}$ can be defined), and the domain and the
range are assumed to be the disjoint unions of $\{A_{i}^{*}\}_{1\leq i\leq M_{\mathrm{r}}}$ . Then, Theorem 4.5 can be
restated as
Corollary 4.8. If $f$ : $A_{j}^{\mathfrak{D}}arrow A_{k}^{\Re}$ satisfies the $(BCC)$ and the $(OCC)$ for $1\leq j\leq M_{\mathcal{D}}$ and
$1\leq k\leq M_{\Re}$ , then $f$ expands the pair of the $ho\mathit{7}^{\cdot}izontal$ Poincar\’e cone fields and contracts
the pair of the vertical Poincar\’e cone fields on their unions. In particular, if $A_{i}^{\mathfrak{D}}=A_{i}^{\Re}=A_{i}$

for all $1\leq i\leq M\equiv M_{\mathfrak{D}}=M_{\Re}$ and $f$ : $A_{j}arrow A_{k}$ satisfies the $(BCC)$ and the $(OCC)$ for
all $1\leq j,$ $k\leq M$ , then $f$ is hyperbolic on $\bigcap_{n\in \mathrm{z}}f^{n}(\mathrm{u}1\leq i\leq MA_{i})$ .

As a by-product of this criterion, we can give explicit bounds on parameter regions of
hyperbolic maps in the (quadratic) H\’enon family:

$f_{c,b}$ : $(x, y)\mapsto(x^{2}+c-by, x)$ ,

where $b\in \mathbb{C}^{\mathrm{x}}=\mathbb{C}\backslash \{0\}$ and $c\in \mathbb{C}$ are complex parameters.

Corollary 4.9. If $(\mathrm{c}, b)$ satisfies either
(i) $|c|>2(1+|b|)^{2}$ (a hyperbolic horseshoe case),
(ii) $c=0$ and $|b|<(\sqrt{2}-1)/2$ (an attractive fixed point case) or
(iii) $c=-1$ and $|b|<0.02$ (an attractive cycle of period two case),

then the complex H\’enon map $f_{c,b}$ is hyperbolic on $J$ .
Notice that $[\mathrm{H}\mathrm{O}2, \mathrm{F}\mathrm{S}]$ did not give any specific bounds on the possible perturbation

width $|b|$ which keeps the hyperbolicity of $f_{c,b}$ .
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We can extend the hyperbolicity criterion above to the case where some Poincar\’e boxes
have overlaps in the following way. Let $\{A_{i}\}_{i=0}^{N}$ be a family of Poincar\’e boxes in $\mathbb{C}^{2}$ each of
which is biholomorphic to a product set of the form $A_{x}^{i}\cross A_{y}^{i}$ with its horizontal Poincare
cone field $\{C_{p}^{A_{i}}\}_{p\in A}$ . in $A_{i}$ . Let us write $A= \bigcup_{i=0}^{N}A_{i}$ .
Definition 4.10 (Gluing of Poincar\’e Boxes). For each $p\in A$, let us write $I(p)\equiv$

$\{i:p\in A_{i}\}$ . We shall define a cone field $\{C_{p}^{\cap}\}_{p\in A}$ by

$C_{p}^{\cap} \equiv\bigcap_{i\in I[p)}C_{p}^{A_{i}}$

for $p\in A$ and a metric $||\cdot||_{\cap}$ in it by
$||v||_{\cap} \equiv\min\{||v||_{A}. : i\in I(p)\}$

for $v\in C_{\mathrm{p}}^{\cap}$ .
Remark 4.11. A Priori we do not know if $C_{p}^{\cap}$ is non-empty for $p$ with card$(I(p))\geq 2$ .

Given a subset $I\subset\{0,1, \cdots, N\}$ , let us write

$\langle I\rangle\equiv(\bigcap_{i\in I}A_{i})\backslash (\bigcup_{j\in I^{\mathrm{c}}}A_{j})=\{p\in A : I(p)=I\}$.

In what follows, we only consider the case card$(I(p))\leq 2$ . One then sees, for example,
$\langle i\rangle=A_{i}\backslash \bigcup_{j\neq i}A_{j}$ and $\langle i,j\rangle=A\cap A_{j}$ .

A crucial step in the proof of Main Theorem is to combine the hyperbolicity criterion
with the following:

Lemma 4.12 (Gluing Lemma). Let $p\in A\cap f^{-1}(A)$ . If for any $i\in I(f(p))$ there exists
$j=j(i)\in I(p)$ such that $f$ : $A_{j}arrow A_{i}$ satisfies the $(BCC)$ and the $(OCC)$ , then there is a
constant $\lambda>1$ so that $Df(C_{p}^{\cap})\subset C_{f(p)}^{\cap}$ and $||Df(v)||_{\cap}\geq\lambda||v||_{\cap}for$ $v\in C_{p}^{\cap}$ .

5. FUSION OF Two POLYNOMIALS
In this section we present a model study of fusion.
Think of two cubics $p_{1}(x)$ and $p_{2}(x)$ so that $p_{2}(x)=p_{1}(x)+\delta$ for some $\delta>0$ , both have

negative leading coefficients and have two real critical points $c_{1}>c_{2}$ . Let $\Delta_{x}(0;R)=\{|x|<$

$R\}$ and $\Delta_{y}(0;R)=\{|y|<R\}$ . Take $R>0$ sufficiently large so that $\partial\Delta_{x}(0;R)\cross\Delta_{y}(0;R)\subset$

$\mathrm{i}\mathrm{n}\mathrm{t}V^{+}$ and $\Delta_{x}(0;R)\cross\partial\Delta_{y}(0;R)\subset \mathrm{i}\mathrm{n}\mathrm{t}V^{-}$ hold. Assume that $p_{i}$ satisfies $p_{1}(c_{2})<-R$ ,
$p_{2}(c_{2})<-R$ and $p_{2}(c_{1})>R$ so that the orbits $|p_{1}^{k}(c_{2})|,$ $|p_{2}^{k}(c_{1})|$ and $|p_{2}^{k}(c_{2})|$ go to infinity as
$karrow\infty$ . Assume also that $c_{1}$ is a super-attractive fixed point for $p_{1}$ . Define $B_{y,1}$ to be the
connected component of $p_{1}^{-1}(\Delta_{y}(0;R))$ containing $c_{1}$ and $B_{y,2}$ to be the other component.
Let $H$ be a closed neighborhood of $c_{1}$ which is contained in the attractive basin of $c_{1}$ . Put
$A_{1}=(\Delta_{x}(0;R)\backslash H)\cross B_{y,1}$ and $A_{2}=\Delta_{x}(0;R)\cross B_{y,2}$ . Now, we assume that there exists a
generalized H\’enon map $f$ with
(1) $f|_{A_{i}}(x, y)\approx(p_{i}(x), x)$

for $i=1,2$ .
(a) Consider $f$ : $A_{1}arrow A_{1}\cup A_{2}$ . Then, the (BCC) would hold since

$\overline{f(H\cross B_{y,1})}\approx\overline{p_{1}(H)\cross H}\subset \mathrm{i}\mathrm{n}\mathrm{t}(H\cross B_{y,1})$

by the approximation (1) above and $R>0$ is large. Also the (OCC) would hold since
$\overline{f(\{c_{1}\}\cross B_{y,1})}\approx\overline{\{p_{1}(c_{1})\}\cross\{c_{1}\}}\subset \mathrm{i}\mathrm{n}\mathrm{t}(H\cross B_{y,1})$
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and
$\overline{f(\{c_{2}\}\cross B_{y,1})}\approx\overline{\{p_{1}(c_{2})\}\cross\{c_{2}\}}\subset \mathrm{i}\mathrm{n}\mathrm{t}V^{+}$

again by (1). Thus we may conclude that $f$ : $A_{1}arrow A_{1}\cup A_{2}$ satisfies the (BCC) and the
(OCC) if the argument above is verified rigorously.

(b) Consider $f$ : $A_{2}arrow A_{1}\cup A_{2}$ . Since $A_{2}$ does not have any holes like $H$ and $R>0$ is
large, the (BCC) would hold for $f$ on $A_{2}$ . Also the (OCC) would hold since

$\overline{f(\{c_{1}\}\cross B_{y,2})}\approx\overline{\{p_{2}(c_{1})\}\cross\{c_{1}\}}\subset \mathrm{i}\mathrm{n}\mathrm{t}V^{+}$

and
$\overline{f(\{c_{2}\}\cross B_{y,2})}\approx\overline{\{p_{2}(c_{2})\}\cross\{c_{2}\}}\subset \mathrm{i}\mathrm{n}\mathrm{t}V^{+}$ .

Thus we may conclude that $f$ : $A_{2}arrow A_{1}\cup A_{2}$ satisfies the (BCC) and the (OCC) if the
argument above is verified.

Combining these two considerations, we may expect that $f$ : $A_{1}\cup A_{2}arrow A_{1}\cup A_{2}$ is
hyperbolic on $\bigcap_{n\in \mathrm{Z}}f^{n}(A_{1}\cup A_{2})$ by the hyperbolicity criterion. In this way, the generalized
H\’enon map $f_{p,b}$ restricted to $A_{1}\cup A_{2}$ can be viewed as a fusion of two polynomials $p_{1}(x)$

and $p_{2}(x)$ in one variable. This method enables us to construct a topological model of the
dynamics of a generalized H\’enon map which have essentially two-dimensional dynamics.

6. RIGOROUS NUMERICS TECHNIQUE

Computer do not understand all real numbers. Let $\mathrm{F}^{*}$ be the set of real numbers which
can be represented by binary floating point numbers no longer than a certain length of
digits and put $\mathrm{F}\equiv \mathrm{F}^{*}\mathrm{U}\{\infty\}$ . Denote by 7 the set of all closed intervals with their end
points in F. Given $x\in \mathbb{R}$ , let $\downarrow x\downarrow \mathrm{b}\mathrm{e}$ the largest number in $\mathrm{F}$ which is less than $x$ and let
$\uparrow x\uparrow$ be the smalkst number in $\mathrm{F}$ which is greater than $x$ (when such number does not exist
in $\mathrm{F}^{*}$ , we assign $\infty$). It then follows that

$x\in[\downarrow x\downarrow, \uparrow x\uparrow]\in 2$ .
Interval arithmetic is a set of operations to output an interval in 7 from given two intervals
in 7. It contains at least four basic operations: addition, differentiation, multiplication and
division. Specifically, the addition of given two intervals $I_{1}=[a, b],$ $I_{2}=[c, d]\in 0$ is defined
by

$I_{1}+I_{2}\equiv[\downarrow a+c\downarrow, \uparrow b+d\uparrow]$ .
It then rigorously follows that $\{x+y:x\in I_{1}, y\in I_{2}\}\subset I_{1}+I_{2}$ . The other three operations
can be defined similarly. A point $x\in \mathbb{R}$ is represented as the small interval $[\downarrow x\downarrow, \uparrow x\uparrow]\in 3$ .
We also write $[a, b]<[c, d]$ when $b<c$ .

In this article interval arithmetic will be employed to prove rigorously the (BCC) and
the (OCC) for a given polynomial diffeomorphism of $\mathbb{C}^{2}$ . It should be easy to imagine how
this technique is used for checking the (BCC); we simply cover the vertical boundary of $A^{\mathcal{D}}$

by small real four-dimensional cubes (i.e. product sets of four small intervals) in $\mathbb{C}^{2}$ and
see how they are mapped by $\pi_{x}\circ f$ . Thus, below we explain how interval arithmetic will
be applied to check the (OCC).

The problem of checking the (OCC) for a given generalized H\’enon map $f_{p,b}$ reduces to
finding the zeros of the derivative $\frac{d}{dx}(p(x)-by_{0})$ for each fixed $y_{0}\in A_{y}^{\Re}$ . Essentially, this
means that one has to find the zeros for a family of polynomials $q_{y}(x)$ in $x$ parameterized
by $y\in A\subset \mathbb{C}$ . To do this, we first apply Newton’s method to know approximate locations
of its zeros. However, this method can not tell how many zeros we found in the region since
it does not detect the multiplicity of zeros.
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In order to count the multiplicity we employ the idea of winding number. That is, we first
fix $y\in A$ and write asmall circle in the $x$-plane centered at the approximate location of a
zero (which we had already found by Newton’s method). We map the circle by $q_{y}$ and count
how it rounds around the image of the approximate zero, which gives both the existence
and the number of zeros inside the small circle. Our method to count the winding number
on computer is the following. We may assume that the image of the approximate zero is
the origin of the complex plane. Cover the small circle by many tiny squares and map them
by $q_{y}$ . We then verify the following two points (i) check that the images of the squares have
certain distance from the origin which is much larger than the size of the image squares,
and (ii) count the number of changes of the signs in the real and the imaginary parts of
the sequence of image squares. These data tell how the image squares move one quadrant
to another (note that the transition between the first and the third quadrants and between
the second and the fourth are prohibited by $(\mathrm{i}))$ , and if the signs change properly, we are
able to know the winding number of the image of the small circle.

An advantage of this method is that, since the winding number is integer-valued, its
mathematical rigorous justification becomes easier (there is almost no room for round-off
errors to be involved). Another advantage of this winding number method is its stability;
once we check that the image of the circle by $q_{y}$ rounds a point desired number of times for
a fixed parameter $y$ , then this is often true for any nearby parameters. So, by dividing the
parameter set $A$ into small squares and verifying the above points for each squares, we can
rigorously trace the zeros of $q_{y}$ for all $y\in A$ .

7. PROOF OF MAIN THEOREM
Let $f=f_{a,b}$ be the cubic complex H\’enon map under consideration as in the Introduction.

We first define four specific Poincar\’e boxes $\{A_{i}\}_{i=0}^{3}$ with associated Poincar\’e cone fields
$\{C_{p}^{A:}\}_{p\in A_{j}}$ for $0\leq i\leq 3$ , where $A_{1}$ and $A_{2}$ are biholomorphic to a bidisk and $\pi_{1}(A_{i})=\mathbb{Z}$

for $i=0,3$ . As was seen in Definition 4.10, we can define the new cone field $(\{C_{p}^{\cap}\}_{p\in A}, ||\cdot||_{\cap})$

by using $\{C_{p}^{A_{i}}\}_{p\in A}.\cdot$ See Figure 1 below, where we described how the boxes are sitting in
$\mathbb{C}^{2}$ , how they are overlapped and how they are mapped by $f$ . The shaded regions are the
holes of $A_{0}$ and $A_{3}$ and their images. Note that the two disjoint Poincar\’e boxes $A_{i}(i=1,2)$

are figured out in the same place in Figure 1.

Figure 1. Poincar\’e boxes for the cubic H\’enon map $f_{a,b}$ .
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With a help of rigorous numerics technique described in the previous section we are able
to get the

Proposition 7.1. There are 10 programs written in $C++which$ rigorously verzfy the fol-
lowing assertions using interval arithmetic:

(i) $J_{j}\subset A$ ,
(ii) The following transitions: $A_{0}arrow A_{3},$ $A_{1}arrow A_{0},$ $A_{1}arrow A_{1f}A_{1}arrow A_{2f}A_{2}arrow A_{0}$ ,

$A_{2}arrow A_{1},$ $A_{2}arrow A_{2},$ $A_{3}arrow A_{0},$ $A_{3}arrow A_{1}$ and $A_{3}arrow A_{2}$ by $f$ satisfy the $(BCC)$

and the $(OCC)_{\rangle}$

(iii) There exists a bidisk $\mathcal{V}\supset\bigcap_{|n|\leq 2}f^{n}(A_{0}\cap A_{3})$ so that $f$ : $\mathcal{V}arrow \mathcal{V}$ satisfies the $(BCC)$

of degree one.

Combining this proposition with Corollary 4.8 and the Gluing Lemma, one can conclude
that the cubic H\’enon map $f_{a,b}$ is hyperbolic on its Julia set.

To conclude the proof, we show that $f_{a,b}$ is not topologically conjugate to a small per-
turbation of any hyperbolic polynomial in one variable. Assume that $f=f_{a,b}$ is conjugate
to a small perturbation $g=f_{q,b}$ of some expanding polynomial $q$ . The degree of $q$ then
should be three, so it has two critical points. If both of their orbits diverge to infinity,
then $J_{\mathit{9}}$ is totally disconnected. However, $J_{f}$ contains solenoids of period two, so this is
not the case. If both of their orbits are bounded, then $J_{g}$ is connected. However, $J_{f}$ is not
connected (note that the transitions $A_{i}arrow A_{0}$ for $i=1,2$ look like a horseshoe), so this is
not the case either. Thus, the only possibility is that one orbit converges to an attractive
cycle and the other diverges to infinity. Note that, by compareing the number of periodic
points, one sees that $q$ has a unique attractive cycle of period two, which attracts a critical
orbit. For two among the three fixed points of $f$ , the connected component of $J_{f}$ containing
the fixed point consists of the point itself. For two among the three fixed points of $g$ , the
connected component of $J_{g}$ containing the fixed point is homeomorphic to the projective
limit $\lim_{arrow}(p, J_{p})$ , where $p(x)=x^{2}-1$ . It follows that $f$ can not be topologically conjugate
to $g$ on their Julia sets. This finishes the proof of Main Theorem. Q.E.D.

For more details of the proof, consult [I].
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