On cubic polynomials with a parabolic fixed point of a capture type

学習院 大学院 自然科学研究科 数学専攻谷澤 晃（Hikaru Yazawa）
Faculty of Science，Gakushuin University

Abstract

We consider the location of each critical point of a cubic polynomial map with a parabolic fixed point．We show that，for any given number of iterations，there exists a cubic polynomial map with a parabolic fixed point such that the immediate parabolic basin contains just one of the critical points and the image of another critical point under the specified number of iterations．

1 Introduction

Let f be any cubic polynomial．If f has a parabolic fixed point α ，then a cycle of Fatou components of f is called the immediate parabolic basin for α if the cycle contains a parabolic petal for α ．

Roughly speaking，in this note we consider the dynamically location of each critical points of f with a parabolic fixed point whose basin contains both the critical points．We denote by c_{0} and c_{1} the critical points of f ． Using the Haissinsky pinching deformation，we prove the following result：
Theorem 1．1．For any positive integer n ，there exists a cubic polynomial map f with a parabolic fixed point such that the immediate parabolic basin contains c_{0} and $f^{\circ n}\left(c_{1}\right)$ ，and does not contain $f^{\circ k}\left(c_{1}\right)$ for any integer k with $0 \leq k<n$ ．

Now，suppose that f has a parabolic fixed point，and the parabolic basin contains c_{0} and c_{1} ．By analogy with Milnor［3］，we shall define the types of this parabolic fixed point．For $j=0,1$ ，we denote by U_{j} the Fatou component which contains c_{j} ．Without loss of generality，we may assume that U_{0} is contained in the immediate basin of the parabolic fixed point． Following from［3］，there exist four possibilities as follows．

Case 1: The Fatou component is adjacent, i.e., $U_{0}=U_{1}$.
Case 2: The Fatou component is bitransitive. Namely, $U_{0} \neq U_{1}$, and moreover there exist the smallest positive integers $p, q>0$ such that $f^{\circ p}\left(U_{0}\right)=$ U_{1} and $f^{\circ q}\left(U_{1}\right)=U_{0}$.

Case 3: The immediate parabolic basin captures U_{1}. Namely, the immediate parabolic basin does not contain U_{1}, but $f^{\circ k}\left(U_{1}\right)$ for some integer $k \geq 1$.

Case 4: Each of U_{0} and U_{1} is contained in the disjoint cycle of the immediate parabolic basin. Namely, U_{0} and U_{1} is contained in the immediate parabolic basin, and it follows that $f^{\circ n}\left(U_{0}\right) \cap f^{\circ m}\left(U_{1}\right)=\emptyset$ for any integers $n, m \geq 0$.

We define the types of the parabolic fixed point α as follows:
Definition 1.2. In Case $1,2,3$ or 4 , we say that α is a parabolic fixed point of an adjacent, bitransitive, capture, or disjoint type, respectively.

We will consider the type of the parabolic fixed point a the cubic polynomial map obtained by the Haissinsky pinching deformation, which is illustrated in the next section.

2 The Haissinsky Pinching deformation

Suppose that f is any cubic polynomial map with an attracting fixed point α. Let $B_{f}(\alpha)$ be the attracting basin for α. We consider the Haissinsky pinching deformation of f defined by pinching curves in $B_{f}(\alpha)$.

Following from [1], for any integer $q \geq 1$, there exist a smooth open arc γ and a neighborhood $U \subset B_{f}(\alpha)$ of γ satisfying the following conditions.

- $\bar{\gamma} \backslash \gamma$ consists of the attracting fixed point α and a repelling periodic point β of period q.
- $f^{\circ q}(\gamma)=\gamma, f^{\circ q}(U)=U$, and $\left.f^{\circ q}\right|_{U}$ is univalent.
- $f^{\circ n}(U) \cap f^{\circ m}(U)=\emptyset$ for any $0 \leq n<m<q$.
- There exist a number $\sigma>0$ and a conformal map $\Phi_{\sigma}: U \rightarrow\{|z|<\pi\}$ such that $\Phi_{\sigma} \circ f^{\circ q}(z)=\Phi_{\sigma}(z)+\sigma$ for all $z \in U$.
We call the union $S:=\bigcup_{k \geq 0} f^{0-k}(\bar{\gamma})$ the support of pinching, and define $S_{0}:=\bigcup_{k \geq 0} f^{\circ k}(\bar{\gamma})$. It follows from [1] that we have a sequence of quasiconformal maps $\left(h_{t}\right)_{t \geq 0}$ satisfying the following conditions.
- h_{t} converges uniformly on $\widehat{\mathbb{C}}$ to a local quasiconformal map h_{∞} on $\widehat{\mathbb{C}} \backslash S$.
- $f_{t}:=h_{t} \circ f \circ h_{t}^{-1}$ converges uniformly on $\widehat{\mathbb{C}}$ to a cubic polynomial f_{∞}.
- $h_{\infty}(\alpha)$ is a parabolic fixed point of f_{∞}.
- $h_{\infty}\left(S_{0}\right)=h_{\infty}(\alpha)$.

For further details, see [1] or [2].

3 Proof of Theorem 1.1

We first prove the following lemma needed later.
Lemma 3.1. Let n be any positive integer, and let λ be any complex number in $\mathbb{D} \backslash\{0\}$. Then there exists a cubic polynomial f, with $f^{\circ n}\left(c_{1}\right)=c_{0}$, such that f has an attracting fixed point of multiplier λ whose attracting basin is simply connected.

Proof. Consider a monic and centered cubic polynomial

$$
P_{A, B}(z)=z^{3}-3 A z+\sqrt{B},(A, B) \in \mathbb{C}^{2}
$$

Suppose that $P_{A, B}$ has a fixed point of multiplier λ. Then the fixed point is $\alpha_{A, \lambda}:=\sqrt{A+\lambda / 3}$, and hence, $P_{A, B}$ is affine conjugate to the cubic polynomial map

$$
Q_{A, \lambda}(z)=z^{3}+3 \alpha_{A, \lambda} z^{2}+\lambda z
$$

with critical points $c_{A, \lambda}^{ \pm}:=-\alpha_{A, \lambda} \pm \sqrt{A}$.
Suppose that $\lambda \in(-1,0)$, and the parameter A is any real number $>$ $-\lambda / 3$ such that the attracting basin for zero is simply connected.

For each integer $k \geq 0$, we denote by $z_{A, \lambda}(k)$ the unique point on \mathbb{R}_{+}such that $Q_{A, \lambda}^{\circ k}\left(z_{A, \lambda}(k)\right)=c_{A, \lambda}^{+}$. For any integer $k>0$ and for any real number A^{\prime} with $A^{\prime}>A$, we have $z_{A, \lambda}(k)<z_{A, \lambda}(k+1)$ and $z_{A, \lambda}(k)>z_{A^{\prime}, \lambda}(k)$. Thus since $Q_{A, \lambda}\left(c_{A, \lambda}^{-}\right) \rightarrow+\infty$ as $A \rightarrow+\infty$, for any integer $n>0$ there exists a real number A such that $Q_{A, \lambda}^{\circ n}\left(c_{A, \lambda}^{-}\right)=c_{A, \lambda}^{+}$.

Let λ^{\prime} be any complex number in $\mathbb{D} \backslash\{0\}$. Then it follows from [5] that there exists a quasiconformal map h such that the cubic polynomial map $g:=h \circ Q_{A, \lambda} \circ h^{-1}$ has an attracting fixed point with multiplier λ^{\prime}.

We use the Haissinsky pinching deformation of f obtained from this lemma.

Proof of Theorem 1.1. Without loss of generality, we may assume that $f(z)=z^{3}+3 \alpha_{A, \lambda} z^{2}+\lambda z, c_{0}=c_{A, \lambda}^{+}$and $c_{1}=c_{A, \lambda}^{-}$.

Suppose that λ is any real number with $-1<\lambda<0$, and A is a real number $>-\lambda / 3$ such that the attracting basin for zero is simply connected. Recall that $B_{f}(0)$ is the attracting basin for zero. Let φ_{f} be the Kœnigs map such that $\varphi_{f}(0)=0$, and $\varphi_{f}(z)=\lambda z$ for all $z \in B_{f}(0)$. We may assume that $\varphi_{f}\left(c_{0}\right)=1$.

Define the half-line $\hat{\gamma}:=i \mathbb{R}^{+}$, so that $\hat{\gamma}$ is periodic of period two under the iterates of the $\operatorname{map} L(z):=\lambda z$. We denoted by γ the connected component of the preimage of $\hat{\gamma}$ under φ_{f} whose closure contains zero. Thus, we have the support of pinching $S:=\bigcup_{k \geq 0} f^{\circ-k}(\bar{\gamma})$, and denote by f_{∞} the limit of the Haissinsky pinching deformation of f defined by S.

Let n be any positive integer. From Lemma 3.1, we have a parameter A such that $f^{\circ n}\left(c_{1}\right)=c_{0}$. For each integer $k \geq 1$, we denote by $\alpha(k)$ the point on \mathbb{R}_{+}such that $f^{\circ k}(\alpha(k))=0$, and by $S_{\alpha(k)}$ the connected component of S which contains $\alpha(k)$.

At first consider the case $n \geq 2$. Since for each integer $k \geq 1$ the component $S_{\alpha(k)}$ separates the origin and $f^{\circ k}\left(c_{1}\right)$, it follows that f_{∞} has a parabolic fixed point of a capture type.

Next, consider the case $n=1$. Since no connected component of S separates the origin and c_{1}, it follows that f_{∞} has a parabolic fixed point of a bitransitive type.

In order to obtain a polynomial with a parabolic fixed point of a capture type, we will use the Branner-Hubbard deformation of f obtained by wringing the almost complex structure on the attracting basin for zero (cf. [5]). In particular, we consider the Branner-Hubbard deformation which does not change the multiplier of the origin.

Let $s=1+2 \pi i / \log \lambda$, and let l be the quasi-conformal map defined as $l(z):=z|z|^{s-1}$.

Recall that φ_{f} is the Kœnigs map defined on $B_{f}(0)$. We define the holomorphic map $\psi_{f}: \mathbb{D} \rightarrow \mathbb{C}$ as the inverse map of φ_{f} such that $\psi_{f}(0)=0$.

Let σ_{0} be the standard almost complex structure of $\widehat{\mathbb{C}}$, and let σ be the almost complex structure defined as follows:

$$
\sigma= \begin{cases}\sigma_{0} & \text { on } \widehat{\mathbb{C}} \backslash B_{f}(0) \tag{1}\\ \left(l \circ \varphi_{f}\right)^{*}\left(\sigma_{0}\right) & \text { on } \psi_{f}(\mathbb{D}) \\ \left(l \circ \varphi_{f} \circ f^{\circ k}\right)^{*}\left(\sigma_{0}\right) & \text { on } f^{-k}\left(\psi_{f}(\mathbb{D})\right) \backslash f^{-k+1}\left(\psi_{f}(\mathbb{D})\right)\end{cases}
$$

where k is an integer ≥ 1.
From the Measurable Riemann Mapping Theorem, we obtain the quasiconformal map h such that $h^{*} \sigma_{0}=\sigma$. Suppose that $h(0)=0, h(1)=1$
and $h(\infty)=\infty$. Then, we obtain a cubic polynomial map $g=h \circ f \circ h^{-1}$ with the attracting fixed point zero. It follows from [5] that the multiplier is $g^{\prime}(0)=h(\lambda)=\lambda|\lambda|^{s-1}=\lambda$, and that the Kœnigs map $\varphi_{g}=l \circ \varphi_{f} \circ h^{-1}$.

Following from the argument similar to the above discussion, we define $S^{\prime} \subset B_{g}(0)$ as the support of the pinching deformation, and denote by g_{∞} the limit of the pinching deformation of g defined by the support S^{\prime}.

There exists a cycle of connected components of $B_{f}(0) \backslash h^{-1}\left(S^{\prime}\right)$ under the iterates of f,

If c_{1} is not contained in this cycle, then one of the critical points of g_{∞} is not contained in the immediate parabolic basin of g_{∞}.

We consider the inverse image of $i \mathbb{R}$ under $\varphi \circ h^{-1}$. We introduce a preliminary definition as follows. For any point z of the backward orbit of the origin, we denote by $D_{f}(z ; r)$ the connected component of the set $\left\{w:\left|\varphi_{f}(w)\right|<r\right\}$ which contains the point z.

Since f has no critical point in the open set $D_{f}\left(0 ;|\lambda|^{-1}\right)$ except c_{0}, it follows that f maps $D_{f}\left(0 ;|\lambda|^{-1}\right) \backslash\left\{c_{0}\right\}$ to $D_{f}(0 ; 1) \backslash\left\{c_{0}\right\}$ in two-to-one correspondence. Thus f has the unique preimage α^{\prime} of the origin such that $\alpha^{\prime} \frac{1}{\tau} 0$ and $\alpha^{\prime} \in D_{f}\left(0 ;|\lambda|^{-1}\right) \backslash\left\{c_{0}\right\}$.

We extend ψ_{f} to the conformal map $\psi_{f, 0}$ defined on $\mathbb{D}\left(0 ;|\lambda|^{-1}\right) \backslash\left[1,|\lambda|^{-1}\right)$ to a subset of $D_{f}\left(0 ;|\lambda|^{-1}\right)$. Moreover, we define $\psi_{f, 1}$ as the conformal map defined on $\mathbb{D}\left(0 ;|\lambda|^{-1}\right) \backslash\left[1,|\lambda|^{-1}\right)$ such that $\varphi_{f} \circ \psi_{f, 1} \equiv$ identity map and $\psi_{f, 1}(0)=\alpha^{\prime}$.

The end points of the image of the set $\left\{y i\left|-|\lambda|^{-1}<y<|\lambda|^{-1}\right\}\right.$ under $\psi_{f, 0} \circ h^{-1}$ is contained in the boundary of $\psi_{f, 1}\left(\mathbb{D}\left(0 ;|\lambda|^{-1}\right) \backslash\left[1,|\lambda|^{-1}\right)\right)$. Hence, the connected component of the preimage of $i \mathbb{R}$ under $\varphi_{f} \circ h^{-1}$ which contains zero passes through the boundary of $\psi_{f, 1}\left(\mathbb{D}\left(0 ;|\lambda|^{-1}\right) \backslash\left[1,|\lambda|^{-1}\right)\right)$, and does not separate c_{0} and c_{1}. On the other hand, the connected component of the preimage of $i \mathbb{R}$ under $\varphi_{f} \circ h^{-1}$ which contains α^{\prime} separates c_{0} and c_{1}. Therefore, the cycle of the Fatou components of g does not contain one of the critical points of g, and hence g_{∞} has a parabolic fixed point of a capture type.

4 Notes

Consider the family of cubic polynomials $P_{A, B}(z):=z^{3}-3 A z+\sqrt{B}$ with $P_{A, B}(-\sqrt{A})=\sqrt{A}$. We have $B=A(1-2 A)^{2}$. The connectedness locus of the family of $P_{A, A(1-2 A)^{2}}(z)=z^{3}-3 A z+\sqrt{A}-2 A \sqrt{A}, A \in \mathbb{C}$, is showed in Figure 2.

Figure 1: Sketch for the pinching curves.

Figure 2: The connectedness locus of the family of cubic polynomials $P_{A, A(1-2 A)^{2}}, A \in \mathbb{C}$.
$P_{A, A(1-2 A)^{2}}$ is affine conjugate to the cubic polynomial map

$$
F_{A}(z):=\left(P_{A, A(1-2 A)^{2}}(\sqrt{A} z+\sqrt{A})-\sqrt{A}\right) / \sqrt{A}=A z^{3}+3 A z^{2}-4 A
$$

Suppose that $0<|A|<1 / 4$. Then the map F_{A} satisfies the inequality $\left|F_{A}(z)+4 A\right|<|4 A|$, that is, F_{A} maps the disk of radius $\left|F_{A}(0)\right|$ centered at $F_{A}(0)$ into itself. Hence F_{A} has an attracting fixed point in the disk.

Let α_{A} be the attracting fixed point.
Proposition 4.1. If A turns around the origin once, then the multiplier of the attracting fixed point of F_{A} turns around the origin twice.

Proof. Let D be the disk of radius $\left|F_{A}(0)\right|$ centered at $F_{A}(0)$. If A turns around the origin once, then the center of D turns around the origin once.

Set $0<r<1 / 4, \theta \in[0,1]$, and $A=r e^{2 \pi i \theta}$. Since the radius of D is the constant $\left|F_{A}(0)\right|$, the attracting fixed point α_{A} also turns around the origin once. Thus the multiplier $F_{A}^{\prime}\left(\alpha_{A}\right)=3 A \alpha_{A}\left(\alpha_{A}+2\right)$ turns around the origin twice.

References

[1] P. Haissinsky, Pincement de polynômes, Comment. Math. Helv. 77 (2002), no. 1, 1-23.
[2] T. Kawahira, Note on dynamically stable perturbations of parabolics, RIMS Kokyuroku, 1447 (2005), pp 90-107.
[3] J. Milnor, Remarks on iterated cubic maps, Experiment. Math. 1 (1992), no. 1, 5-24.
[4] J. Milnor, Dynamics in one complex variable, Friedr. Vieweg \& Sohn, Braunschweig, 2000.
[5] C. Petersen, Tan Lei, Branner-Hubbard motions and attracting dynamics, preprint.
[6] L. Tan, On pinching deformations of rational maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 353-370.

