An example of J^{+}for complex Hénon mappings which is locally connected nowhere

Teisuke Jin

Abstract

It is known that J^{+}for complex Hénon mappings is connected．We give a sufficient condition so that J^{+}is locally connected nowhere．

1 Introduction

In this paper we denote $z=(x, y) \in \mathbb{C}^{2}$ ．Let $p_{j}(y)$ be monic polynomials of $\operatorname{deg} g_{j}=d_{j}>1$ for $j=1, \ldots, m$ ．We call $g_{j}(x, y)=\left(y, p_{j}(y)-\delta_{j} x\right)$ generalized Hénon mappings，where $\delta_{j} \neq 0$ ．Moreover we define

$$
f=f_{m} \circ \cdots \circ f_{1}, \quad \delta=\delta_{1} \cdots \delta_{m}, \quad d=d_{1} \cdots d_{m}
$$

Friedland and Milnor［5］classified polynomial automorphisms of \mathbb{C}^{2} into three types：affine mapping，elementary mapping，composite of generalized Hénon mappings．The last one has complicated dynamical structures．

We define $K^{ \pm}=\left\{z \in \mathbb{C}^{2} \mid\left\{f^{ \pm n}(z) \mid n \in \mathbb{N}\right\}\right.$ is bounded $\}, J^{ \pm}=\partial K^{ \pm}$， $K=K^{+} \cap K^{-}$and $J=J^{+} \cap J^{-}$．They are closed invariant sets．

Let $d($,$) be the Euclidean distance in \mathbb{C}^{2}$ ．For $X \subset \mathbb{C}^{2}$ ，define the sta－ ble set $W^{s}(X)$ and the unstable set $W^{u}(X)$ as follows：$W^{s}(X)=\left\{z \in \mathbb{C}^{2}\right.$｜ $\left.d\left(f^{n}(z), f^{n}(X)\right) \rightarrow 0(n \rightarrow \infty)\right\}, W^{u}(X)=\left\{z \in \mathbb{C}^{2} \mid d\left(f^{n}(z), f^{n}(X)\right) \rightarrow\right.$ $0(n \rightarrow-\infty)\}$ ．

Let a be a periodic point with the period l such that the eigenvalues of $D\left(f^{l}\right)(a)$ are λ_{s} and $\lambda_{u}\left(\left|\lambda_{s}\right|<1<\left|\lambda_{u}\right|\right)$ ．Such a periodic point is called a saddle point．Then we call $W^{s}(a)$ a stable manifold and $W^{u}(a)$ an unstable manifold since there are non－singular bijective entire mappings $H_{s}: \mathbb{C} \rightarrow W^{s}(a)$ and $H_{u}: \mathbb{C} \rightarrow W^{u}(a)$ with $f \circ H_{s}(t)=H_{s}\left(\lambda_{s} t\right)$ and $f \circ H_{u}(t)=H_{u}\left(\lambda_{u} t\right)$ ．See ［9］for example．Bedford and Smillie［2］showed $\overline{W^{s}(a)}=J^{+}$and $\overline{W^{u}(a)}=J^{-}$．

We call $\widetilde{K}^{s}=H_{s}^{-1}(K)$ a stable slice and $\widetilde{K}^{u}=H_{u}^{-1}(K)$ an unstable slice． We say \widetilde{K}^{s} is stably connected if \widetilde{K}^{s} has no compact connected components［4］． We say \widetilde{K}^{s} is bridged if the connected component of \widetilde{K}^{s} containing the origin is not a point［7］．An unstable connectivity and a bridgedness for \widetilde{K}^{u} are defined similarly．Note that a stable（unstable）connectivity implies a bridgedness and that the following are equivalent［7］：
－\widetilde{K}^{s} is bridged，
－the connected component of \widetilde{K}^{s} containing the origin is unbounded，
－\tilde{K}^{s} has an unbounded connected component．
In particular \widetilde{K}^{s} is not bridged if and only if each component of \widetilde{K}^{s} is compact．

2 Main theorems

Theorem 2.1. If \tilde{K}^{u} is not unstably connected and \widetilde{K}^{s} is not bridged then J^{+} is not locally connected anywhere.
Theorem 2.2. Assume \widetilde{K}^{u} is not unstably connected. Then there are at most finitely many periodic points p_{1}, \ldots, p_{n} such that J^{+}is locally connected only at the points.

Note that $\overline{W^{s}(a)}=J^{+}$and hence J^{+}is connected. It implies that Theorem 2.1 gives an example of a connected set which is not locally connected anywhere.

It was shown [7] if \widetilde{K}^{u} is bridged then the Yoccoz inequality holds. Therefore if \widetilde{K}^{u} does not satisfy the inequality then it is not unstably connected, and if \widetilde{K}^{s} does not then not bridged. Note that it is easy to give examples such that either \widetilde{K}^{u} or \widetilde{K}^{s} do not satisfy the inequality. It implies many Hénon mappings satisfy the assumptions of Theorem 2.1.

3 Proofs of the main theorems

In this section we assume the unstable slice \widetilde{K}^{u} is not unstably connected. For $X \subset \mathbb{C}^{2}$ we define $B(X, r)=\left\{z \in \mathbb{C}^{2} \mid d(z, X)<r\right\}$. Recall that the Green functions $G^{ \pm}$are defined [1] as:

$$
G^{ \pm}(z)=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log ^{+}\left\|f^{ \pm n}(z)\right\|
$$

and have the following properties:

- $G^{ \pm}$are nonnegative continuous plurisubharmonic functions,
- $G^{ \pm}(z)=0$ if and only if $z \in K^{ \pm}$,
- $\left.G^{ \pm}\right|_{C^{2} \backslash K^{ \pm}}$are positive pluriharmonic functions,
- $G^{ \pm} \circ f=d^{ \pm 1} \cdot G^{ \pm}$.

It is well-known [9] that in a neighborhood of saddle point a, f^{l} is conjugate to

$$
\begin{equation*}
\tilde{f}(s, t)=\left(\lambda_{s} s+s t \alpha(s, t), \lambda_{u} t+s t \beta(s, t)\right) \tag{3.1}
\end{equation*}
$$

where α, β are holomorphic functions defined in a bidisk $\tilde{\Delta}$ centered at the origin. We denote by Φ the conjugation mapping whose domain is $\widetilde{\Delta}$. Define $\Delta=\Phi(\widetilde{\Delta})$.
Proposition 3.1. Assume J^{+}is locally connected at $z_{0} \in J^{+}$. Then for any $r>0, H_{s}^{-1}\left(B\left(z_{0}, r\right)\right)$ has an unbounded connected component. Moreover we have $z_{0} \notin W^{s}(a)$.

Proof. The local connectivity implies there is an open neighborhood V of z_{0} in \mathbb{C}^{2} such that $V \cap J^{+}$is connected and $V \Subset B\left(z_{0}, r\right)$. Let \tilde{V}^{s} be a component of $H_{s}^{-1}(V)$ and \widetilde{B}^{s} the component of $H_{s}^{-1}\left(B\left(z_{0}, r\right)\right)$ containing \tilde{V}^{s}. We assume \widetilde{B}^{s} is bounded and derive a contradiction.

We define $B^{s}=H_{s}\left(\widetilde{B}^{s}\right)$. Choose $n \geq 0$ so that $f^{\ln }\left(B^{s}\right) \Subset \Phi(\{(s, 0) \in \tilde{\Delta}\})$ and define $B_{1}^{s}=f^{l n}\left(B^{s}\right), \widetilde{B}_{1}^{s}=\Phi^{-1}\left(B_{1}^{s}\right)$. Let C be a simple closed curve in
$\widetilde{\Delta} \cap\{t=0\}$ which surrounds \widetilde{B}_{1}^{s} and does not intersect with $\Phi^{-1}\left(f^{\ln }\left(B\left(z_{0}, r\right)\right)\right)$. Choose $\varepsilon>0$ so small and decrease $r>0$ slightly if necessary so that $\hat{C}=$ $\left\{(s, t) \in \widetilde{\Delta}|(s, 0) \in C,|t|<\varepsilon\}\right.$ and $\Phi^{-1}\left(f^{l n}\left(B\left(z_{0}, r\right)\right)\right)$ do not intersect.

On the other hand, take a compact component K_{1}^{u} of $H_{u}\left(\widetilde{K}^{u}\right)$ contained in $\Phi(\{(0, t) \in \widetilde{\Delta}\})$ and define $\widetilde{K}_{1}^{u}=\Phi^{-1}\left(K_{1}^{u}\right)$. Let Γ be a closed curve in $\widetilde{\Delta} \cap\{s=0\}$ which surrounds \widetilde{K}_{1}^{u} and does not intersect with $\Phi^{-1}\left(H_{u}\left(\widetilde{K}^{u}\right)\right)$ [7, section 6]. Choose $\delta>0$ so that $\hat{\Gamma}=\{(s, t)|(0, t) \in \Gamma,|s|<\delta\}$ does not intersect with $\Phi^{-1}\left(\Delta \cap K^{+}\right)$. By properties of the Green function G^{+}, for any s_{1} with $\left|s_{1}\right|<\delta, \Phi^{-1}\left(K^{+}\right) \cap\left\{s=s_{1}\right\}$ is not empty inside of $\hat{\Gamma}$ [4].

By (3.1), $\tilde{f}^{k}(\hat{C})$ approaches $\{t=0\}$ uniformly and expand along $\{t=0\}$ uniformly. Therefore if we take k large, $\hat{\Gamma}$ goes through $\tilde{f}^{k}(\hat{C})$.

Let us return to the starting point. Then $f^{-l(n+k)}(\Phi(\hat{\Gamma}))$ goes through $B\left(z_{0}, r\right)$ and V if we take k large if necessary. Since K^{+}runs through inside of $f^{-l(n+k)}(\Phi(\hat{\Gamma}))$, we conclude that $V \cap J^{+}$is not connected, which is a contradiction.

Let show the last statement of the theorem. Take $z_{0} \in W^{s}(a)$. Since $W^{s}(a)$ is a 1 -dimensional manifold, if we take $r>0$ small, the connected component of $H_{s}^{-1}\left(B\left(z_{0}, r\right)\right)$ containing $H_{s}^{-1}\left(z_{0}\right)$ is bounded. But an arbitrary open neighborhood V of z_{0} intersects with the component, which is a contradiction.

Proof of Theorem 2.1. By the assumption there is a closed curve γ surrounding the origin and not intersecting with $\widetilde{K}^{s}[7$, section 6$]$. Since f^{-n} diverges in $\mathbb{C}^{2} \backslash K^{+}$locally uniformly as $n \rightarrow+\infty, f^{-n}\left(H_{s}(\gamma)\right)=H_{s}\left(\lambda_{s}^{-n} \gamma\right)$ diverges uniformly.

Assume J^{+}is locally connected at $z_{0} \in J^{+}$. Then some component of $H_{s}^{-1}\left(B\left(z_{0}, r\right)\right)$ is unbounded. But if we choose n large, $f^{-n}\left(H_{s}(\gamma)\right)$ is far from $B\left(z_{0}, r\right)$ and $\lambda_{s}^{-n} \gamma$ intersects $H_{s}^{-1}\left(B\left(z_{0}, r\right)\right)$, which is a contradiction.

Let us proceed to prove Theorem 2.2. For $z_{0} \in J^{+} \backslash W^{s}(a)$ and $n \in \mathbb{Z}$, we define

$$
u(t)=\log d\left(H_{s}(t), z_{0}\right), \quad u_{n}(t)=\max \{0, u(t)+n\}
$$

For a nonnegative subharmonic function v on \mathbb{C} we define the order of v as follows:

$$
\operatorname{ord} v=\limsup _{r \rightarrow \infty} \frac{\log \max _{|t|=r} v(t)}{\log r}
$$

Lemma 3.2. The functions u and u_{n} are continuous subharmonic functions and we have

$$
\rho=\operatorname{ord} u_{n}=\frac{l \log d}{-\log \left|\lambda_{s}\right|}
$$

Proof. Since $\log \|z\|$ is plurisubharmonic, u, u_{n} are subharmonic functions.
If we set $\left(h_{1}, h_{2}\right)=H_{s}$, the orders of h_{1}, h_{2} are [7]:

$$
\begin{aligned}
& \operatorname{ord} h_{1}=\limsup _{r \rightarrow \infty} \frac{\log \log \max _{|t|=r}\left|h_{1}(t)\right|}{\log r}=\frac{l \log d}{-\log \left|\lambda_{s}\right|}, \\
& \operatorname{ord} h_{2}=\limsup _{r \rightarrow \infty} \frac{\log \log \max _{|t|=r}\left|h_{2}(t)\right|}{\log r}=\frac{l \log d}{-\log \left|\lambda_{s}\right|}
\end{aligned}
$$

since the period of a is l and the degree of f^{l} is d^{l}. It is easy to compute the order of u_{n} using the above equations.

Lemma 3.3. Let v be a nonnegative bounded subharmonic function in an unbounded open set $\Omega(\subset \mathbb{C})$ with an unbounded boundary. Let c be a bounded subset of $\partial \Omega$. If $v \equiv 0$ on $\partial \Omega \backslash c$, then $v(t)$ converges 0 uniformly as $|t| \rightarrow \infty$ with $t \in \Omega$.

Proof. We define

$$
w(\tau)= \begin{cases}u(1 / \tau) & \text { if } 1 / \tau \in \Omega \\ 0 & \text { if } 1 / \tau \notin \Omega \cup \bar{c}\end{cases}
$$

Then w is a nonnegative bounded subharmonic function for $1 / \tau \notin \bar{c}$. Moreover since w is bounded in a neighborhood of $\tau=0$, Removable Singularity Theorem [8, p. 53] implies w is subharmonic around the origin.

We may assume w is non-constant for any neighborhood of the origin. Therefore we can apply Tsuji inequality [6, p. 548] to w. In fact, for $e^{-1}<\kappa<1$ and $0<r \leq \kappa^{2} R$, we have

$$
B(r) \leq C_{2}(\kappa) B(R) \exp \left\{-\int_{r / \kappa}^{\kappa R} \frac{\alpha(\rho) d \rho}{\rho}\right\}
$$

where $B(r)=\max \{w(t)| | t \mid=r\}, C_{2}(\kappa)=6(1-\kappa)^{-3 / 2}$. In our case we can set $\alpha(\rho)=1 / 2$ by the structure of Ω. We have

$$
B(r) \leq C_{2}(\kappa) B(R) \exp \left\{-\int_{r / \kappa}^{\kappa R} \frac{d \rho}{2 \rho}\right\} \leq C_{2}(\kappa) B(R) \sqrt{\frac{r}{\kappa^{2} R}}
$$

Therefore $B(r) \rightarrow 0$ as $r \rightarrow 0$, i.e., $u(t) \rightarrow 0$ as $|t| \rightarrow \infty$.
Proof of Theorem 2.2. Assume J^{+}is locally connected at $z_{0} \in J^{+}$. The above proposition implies $z_{0} \notin W^{s}(a)$. In the following we will show that z_{0} is an asymptotic point of H_{s}. Once we obtain the fact, since each holomorphic function of finite order [7] has at most finitely many asymptotic values, the proof is completed.

In general, let v be a nonnegative subharmonic function of complex one variable. Each connected component of $\{s \mid v(s)>0\}$ is called tract. Then the number of tracts of v is at most $\max \{1,2 \operatorname{ord} v\}$ [6, Chapter 8].

Therefore the number of tracts of u_{n} is at most $\max \{1,2 \rho\}$. Take an appropriate $n_{0} \in \mathbb{Z}$ such that the number of tracts of $u_{n_{0}}$ attains its maximum q. For each tract of $u_{n_{0}}$ choose an asymptotic path $\gamma_{j}:[0, \infty) \rightarrow \mathbb{C}(0 \leq j \leq q)$ with $u_{n_{0}}(\gamma(\xi))>0$ and $u_{n_{0}}(\gamma(\xi)) \rightarrow \infty$ as $\xi \rightarrow \infty$. Take sufficiently large $R>0$ and we may assume all paths γ_{j} intersect with $\{|t|=R\}$ only at their starting points. Then $\mathbb{C} \backslash\left(\overline{D_{R}} \cup \gamma_{1} \cup \cdots \cup \gamma_{q}\right)$ consists of q-unbounded connected components, where $D_{R}=\{|t|<R\}$.

Choose U which is one of the components such that the infimum of u is $-\infty$ in the domain. Moreover choose large N so that

$$
\min \left\{u_{N}(s) \mid t \in \overline{D_{R}} \cup \gamma_{1} \cup \cdots \cup \gamma_{q}\right\}>0
$$

For each $j=1,2, \ldots$, the above proposition implies we can take a point $s_{j} \in U$ such that the component of $\{s \in U \mid u(s)<-N-j\}$ containing s_{j} is unbounded.

Let us show that we can draw a path joining s_{1} and s_{2} such that $u<-N$ on the path. By the construction, s_{1} and s_{2} are contained in the unbounded components U_{1} and U_{2} of $\{s \in U \mid u(s)<-N-1\}$, resp. Draw a smooth curve c_{0} in U joining s_{1} and s_{2}. We may assume $\overline{U_{1}} \cap \overline{U_{2}} \neq \emptyset$. Let us regard $U \backslash\left(\overline{U_{2}} \cup \overline{U_{2} \cup c_{0}}\right)$. Clearly the set is divided into two sides with respect to c_{j} : one can access ∂U, another cannot. We choose the open set which cannot and name it Ω. Then $\partial \Omega$ consists of a part of ∂U_{1} and ∂U_{2} and c_{0}. Note that $u_{N+1} \equiv 0$ on ∂U_{1} and ∂U_{2}, and that Ω is unbounded and that u_{N+1} is bounded in Ω. At this point, we can apply the above lemma, and obtain that u_{N+1} decrease to 0 uniformly as $|s| \rightarrow \infty$ in Ω. Therefore we can draw a path $\Gamma_{1}:[0,1] \rightarrow U$ joining s_{1} and s_{2} such that $u<-N$ on Γ_{1}.

Similarly we can draw paths $\Gamma_{j}:[0,1] \rightarrow U$ joining s_{j} and s_{j+1} such that $u<-N-j+1$ on Γ_{j} for $j=2,3, \ldots$. If we define

$$
\Gamma(\xi)=\Gamma_{j}(\xi-j+1) \quad \text { for } j-1 \leq \xi<j
$$

Γ is an asymptotic path such that $u(\Gamma(\xi)) \rightarrow-\infty$ as $\xi \rightarrow \infty$, i.e., $H_{s}(\Gamma(\xi)) \rightarrow z_{0}$ as $\xi \rightarrow \infty$, which implies z_{0} is an asymptotic point of H_{s}.

References

[1] E. Bedford, J. Smillie, Polynomial diffeomorphisms of \mathbb{C}^{2} : currents, equilibrium measure and hyperbolicity, Invent. math. 103 (1991), 69-99.
[2] E. Bedford, J. Smillie, Polynomial diffeomorphisms of \mathbb{C}^{2}. II. Stable manifolds and recurrence, J. Amer. Math. Soc. 4 (1991), 657-679.
[3] E. Bedford, J. Smillie, Fatou-Bieberbach domains arising from polynomial automorphisms, Indiana Univ. Math. J. 40 (1991), 789-792.
[4] E. Bedford, J. Smillie, Polynomial diffeomorphisms of \mathbb{C}^{2}. VI. Connectivity of J, Ann. of Math. 148 (1998), 695-735.
[5] S. Friedland, J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems 9 (1989), 67-99.
[6] W. K. Hayman, Subharmonic Functions. Vol. 2, Academic Press, Inc., 1989.
[7] T. Jin, Unstable manifolds and the Yoccoz inequality for complex Hénon mappings. Indiana Univ. Math. J. 52 (2003), 727-751.
[8] M. Klimek, Pluripotential Theory. Oxford Science Publications, 1991.
[9] S. Morosawa, Y. Nishimura, M. Taniguchi, T. Ueda, Holomorphic dynamics., Cambridge University Press, 2000.
[10] T. Nishino, Function theory in several complex variables, American Mathematical Society, 2001.
[11] M. Tsuji, Potential theory in modern function theory, Maruzen Co., Ltd., 1959.

