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Abstract
It is known that $J^{+}$ for complex H\’enon mappings is connected. We

give a sufficient condition so that $J^{+}$ is locally connected nowhere.

1 Introduction
In this paper we denote $z=(x,y)\in \mathbb{C}^{2}$ . Let $p_{j}(y)$ be monic polynomials of
$\deg g_{j}=d_{j}>1$ for $j=1,$ $\ldots,$

$m$ . We call $g_{j}(x, y)=(y,p_{j}(y)-\delta_{j}x)$ generalized
H\’enon mappings, where $\delta_{j}\neq 0$ . Moreover we define

$f=f_{m}\mathrm{o}\cdots \mathrm{o}f_{1)}$ $\delta=\delta_{1}\cdots\delta_{m}$ , $d=d_{1k}\ldots$ .
Riedland and Milnor [5] classified polynomial automorphisms of $\mathbb{C}^{2}$ into three
types: affine mapping, elementary mapping, composite of generalized H\’enon
mappings. The last one has complicated dynamical structures.

We define $K^{\pm}=$ { $z\in \mathbb{C}^{2}|\{f^{\pm n}(z)|n\in \mathrm{N}\}$ is bounded} $)$

$J^{\pm}=\partial K^{\pm}$ ,
$K=K^{+}\cap K^{-}$ and $J=J^{+}\cap J^{-}$ . They are closed invariant sets.

Let $d$.$( , )$ be the Euclidean distance in $\mathbb{C}^{2}$ . For $X\subset \mathbb{C}^{2}$ , define the sta-
ble set $W^{\partial}(X)$ and the unstable set $W^{u}(X)$ as foll$o\mathrm{w}\mathrm{s}:W^{\epsilon}(X)=\{z\in \mathbb{C}^{2}|$

$d(f^{n}(z), f^{n}(X))arrow 0(narrow\infty)\},$ $W^{u}(X)=\{z\in \mathbb{C}^{2}|d(f^{n}(z), f^{n}(X))arrow$

$0(narrow-\infty)\}$ .
Let $a$ be a periodic point with the period $l$ such that the eigenvalues of

$D(f^{l})(a)$ are $\lambda_{s}$ and $\lambda_{u}(|\lambda_{s}|<1< \mathrm{A}_{u}|)$ . Such a periodic point is called
a saddle point. Then we call $W^{\theta}(a)$ a stable manifold and $W^{u}(a)$ an unstable
manifold since there are non-singular bijective entire mappings $H_{s}$ : $\mathbb{C}arrow W^{s}(a)$

and $H_{u}$ : $\mathbb{C}arrow W^{u}(a)$ with $f\mathrm{o}H_{s}(t)=H_{s}(\lambda_{\epsilon}t)$ and $f\mathrm{o}H_{u}(t)=H_{u}(\lambda_{u}t)$ . See
[9] for example. Bedford and Smillie [2] showed $\overline{W^{s}(a)}=J^{+}$ and $W^{u}(a)=J^{-}$

We call $\tilde{K}^{\delta}=H_{s}^{-1}(K)$ a stable slice and $\overline{K}^{u}=H_{u}^{-1}(K)$ an unstable slice.
We say $\tilde{K}^{s}$ is stably connected if $\tilde{K}^{s}$ has no compact connected components [4].
We say $\tilde{K}^{s}$ is bridged if the connected component of $\tilde{K}^{s}$ containing the origin is
not a point [7]. An unstable connectivity and a bridgedness for $\tilde{K}^{u}$ are defined
similarly. Note that a stable (unstable) connectivity implies a bridgedness and
that the following are equivalent [7]:

$\bullet$

$\tilde{K}^{\delta}$ is bridged,
$\bullet$ the connected component of $\tilde{K}^{s}$ containing the origin is unbounded,
$\bullet$

$\tilde{K}^{\epsilon}$ has an unbounded connected component.

In particular $\tilde{K}^{s}$ is not bridged if and only if each component of $\overline{K}^{s}$ is compact.
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2 Main theorems
Theorem 2.1. If $\tilde{K}^{u}$ is not unstably connected and $\tilde{K}^{s}$ is not $b_{\Gamma\uparrow \text{ノ}}dged$ then $J^{+}$

is not locally connected anywhere.

Theorem 2.2. Assume $\overline{K}^{u}$ is not vnstably connected. Then there are at most
finitely many periodic points $p_{1},$ $\ldots,p_{n}$ such that $J^{+}$ is locally connected only at
the points.

Note that $\overline{W^{s}(a)}=J^{+}$ and hence $J^{+}$ is connected. It implies that Theorem
2.1 gives an example $\mathrm{o}\mathrm{f}\mathrm{a}\sim$ connected set which is not locally connected anywhere.

It was shown [7] if $K^{u}$ is bridged then the Yoccoz inequality holds. Therefore
if $\tilde{K}^{u}$ does not satisfy the inequality then it is not unstably connected, and if
$\tilde{K}^{\mathit{8}}$ does not then not bridged. Note that it is easy to give examples such that
either $\tilde{K}^{u}$ or $\tilde{K}^{\epsilon}$ do not satisfy the inequality. It implies many H\’enon mappings
satisfy the assumptions of Theorem 2.1.

3 Proofs of the main theorems

In this section we assume the unstable slice $\tilde{K}^{u}$ is not unstably connected. For
$X\subset \mathbb{C}^{2}$ we define $B(X, r)=\{z\in \mathbb{C}^{2}|d(z, X)<r\}$ . Recall that the Green
functions $G^{\pm}$ are defined [1] as:

$G^{\pm}(z)= \lim_{narrow\infty}\frac{1}{d^{n}}\log^{+}||f^{\pm n}(z)||$

and have the following properties:

$\bullet$

$G^{\pm}$ are nonnegative continuous plurisubharmonic functions,

$\bullet$ $G^{\pm}(z)=0$ if and only if $z\in K^{\pm}$ ,

$\bullet$ $G^{\perp}rightarrow|_{\mathrm{C}^{2}\backslash K\pm}$ are positive pluriharmonic functions,

$\bullet G^{\pm}\circ f=d^{\pm 1}\cdot G^{\pm}$ .

It is well-known [9] that in a neighborhood of saddle point $a,$
$f^{\iota}$ is conjugate to

$f(s, t)\sim=(\lambda_{s}s+st\alpha(s,t),$ $\lambda_{u}t+st\beta(s, t))$ , (3.1)

where $\alpha,$
$\beta$ are holomorphic functions defined in a bidisk $\tilde{\Delta}$

$\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}_{\sim^{\mathrm{e}\mathrm{d}}}$ at the
origin. We denote by $\Phi$ the conjugation mapping whose domain is $\Delta$ . Define
$\Delta=\Phi(\tilde{\Delta})$ .
Proposition 3.1. Assume $J^{+}$ is locally ($f$nnected at $z_{0}\in J^{+}$ . Then for any
$r>0,$ $H_{\epsilon}^{-1}(B(z_{0}, r))$ has an unbounded connected component. Moreover we
have $z_{0}\not\in W^{s}(a)$ .

Proof. The local connectivity implies there is an open $\mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}_{\sim^{\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{d}}}$
$V$ of $z_{0}$ in

$\mathbb{C}^{2}$ such that $V\cap J^{+}$ is connected and $V\subset\subset B(z_{0}, r)$ . Let $V^{\epsilon}$ be a component
of $H_{s}^{-1}(V)$ and $\tilde{B}^{\theta}$ the component of $H_{s}^{-1}(B(z_{0}, r))$ containing $\tilde{V}^{s}$ . We assume
$\tilde{B}^{s}$ is bounded and derive a contradiction.

We define $B^{s}=H_{s}(\tilde{B}^{\epsilon})$ . Choose $n\geq 0$ so that $f^{\mathrm{t}n}(B^{s})\subset \mathrm{c}\Phi(\{(s,0)\in\overline{\Delta}\})$

and deflne $B_{1}^{s}=f^{l}$“ $(B^{\delta}),\tilde{B}_{1}^{s}=\Phi^{-1}(B_{1}^{s})$ . Let $C$ be a simpk closed curve in
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$\tilde{\Delta}\cap\{t=0\}$ which surrounds $\tilde{B}_{1}^{s}$ and does not intersect with $\Phi^{-1}(f^{ln}(B(z_{0}, r)))$ .
Choose $\epsilon>0$ so small and decrease $r>0$ slightly if necessary so that $\hat{C}=$

$\{(s, t)\in\tilde{\Delta}|(s, \mathrm{O})\in C, |t|<\epsilon\}$ and $\Phi^{-1}(f^{\mathrm{I}n}(B(z_{0}, r)))$ do not intersect.
On the other hand, take a compact component $K_{1}^{u}$ of $H_{u}(\tilde{K}^{u})$ contained

in $\Phi(\{(0, t)\in\tilde{\Delta}\})$ and define $\overline{K}_{1}^{u}=\Phi^{-1}(K_{1}^{u})$ . Let $\Gamma$ be a closed curve in
$\tilde{\Delta}\cap\{s=0\}$ which surrounds $\tilde{K}_{1}^{u}$ and does not intersect with $\Phi^{-1}(H_{u}(\overline{K}^{u}))$

[7, section 6]. Choose $\delta>0$ so that $\hat{\Gamma}=\{(s, t)|(0, t)\in\Gamma, |s|<\delta\}$ does not
intersect with $\Phi^{-1}(\Delta\cap K^{+})$ . By properties of the Green function $G^{+}$ , for any
$s_{1}$ with $|s_{1}|<\delta,$ $\Phi^{-1}(K^{+})\cap\{s=s_{1}\}$ is not empty inside of $\hat{\Gamma}[4]$ .

By (3.1), $f^{\gamma}(\hat{C})$ approaches $\{t=0\}$ uniformly and expand along $\{t=0\}$

uniformly. Therefore if we take $k$ large, $\hat{\Gamma}$ goes through $f^{k}(\hat{C})\sim$ .
Let us return to the starting point. Then $f^{-l(n+k)}(\Phi(\hat{\Gamma}))$ goes through

$B(z_{0}, r)$ and $V$ if we take $k$ large if necessary. Since $K^{+}$ runs through inside of
$f^{-1(n+k)}(\Phi(\hat{\Gamma}))$ , we conclude that $V\cap J^{+}$ is not connected, which is a contra-
diction.

Let show the last statement of the theorem. Take $z_{0}\in W^{s}(a)$ . Since $W^{s}(a)$

is a 1-dimensional manifold, if we take $r>0$ small, the connected component
of $H_{s}^{-1}(B(z_{0}, r))$ containing $H_{s}^{-1}(z_{0})$ is bounded. But an arbitrary open neigh-
borhood $V$ of $z_{0}$ intersects with the component, which is a contradiction. $\square$

Proof of Theorem 2.1. By the assumption there is a closed curve 7 surrounding
the origin and not intersecting with $\tilde{K}^{s}$ [$7$ , section 6]. Since $f^{-n}$ diverges in
$\mathbb{C}^{2}\backslash K^{+}$ locally uniformly as $narrow+\infty,$ $f^{-n}(H_{s}(\gamma))=H_{s}(\lambda_{s}^{-n}\gamma)$ diverges
uniformly.

Assume $J^{+}$ is locally connected at $z_{0}\in J^{+}$ . Then some component of
$H_{s}^{-1}(B(z_{0}, r))$ is unbounded. But if we choose $n$ large, $f^{-n}(H_{s}(\gamma))$ is far from
$B(z_{0}, r)$ and $\lambda_{s}^{-n}\gamma$ intersects $H_{s}^{-1}(B(z_{0}, r))$ , which is a contradiction. $\square$

Let us proceed to prove Theorem 2.2. For $z_{0}\in J^{+}\backslash W^{s}(a)$ and $n\in \mathbb{Z}$ , we
define

$u(t)=\log d(H_{s}(t), z_{0})$ , $u_{n}(t)= \max\{0, u(b)+n\}$ .
For a nonnegative subharmonic function $v$ on $\mathbb{C}$ we define the order of $v$ as
follows:

ord $v= \lim_{rarrow}\sup_{\infty}\frac{\log\max_{|t|=r}v(t)}{\log r}$ .

Lemma 3.2. The fun,ctions $\mathrm{u}$ and $u_{n}$ are continuous subharmonic functions
and we have

$\rho=\mathrm{o}\mathrm{r}\mathrm{d}u_{n}=\frac{l\log d}{-\log|\lambda_{s}|}$ .

Proof. Since $\log||z||$ is plurisubharmonic, $u,$ $u_{n}$ are subharmonic functions.
If we set $(h_{1}, h_{2})=H_{s}$ , the orders of $h_{1},$ $h_{2}$ are [7]:

ord $h_{1}= \lim_{r-*}\sup_{\infty}\frac{\log\log\max_{|t|=r}|h_{1}(t)|}{\log r}=\frac{l\log d}{-\log|\lambda_{s}|}$ ,

ord $h_{2}= \lim_{farrow}\sup_{\infty}\frac{\log\log\max_{|t|=r}|h_{2}(t)|}{1\mathrm{o}gr}=\frac{l\log d}{-\log|\lambda_{s}|}$,

since the period of $a$ is $l$ and the degree of $f^{l}$ is $d^{1}$ . It is easy to compute the
order of $u_{n}$ using the above equations. $\square$
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Lemma 3.3. Let $v$ be a nonnegative bounded subharmon,$ic$ function in an un-
bounded open set $\Omega(\subset \mathbb{C})$ with an unbounded $bour|,dan/\cdot$ Let $c$ be a bounded
subset of $\partial\Omega$ . If $v\equiv 0$ on $\partial\Omega\backslash c_{f}$ then $v(t)$ converges $0unifo7\mathrm{v}nly|\mathrm{z}s|t|arrow\infty$

with $t\in\Omega$ .

Proof. We define

$w(\tau)=\{$
$u(1/\tau)$ if $1/\tau\in\Omega$ ,
$0$ if $1/\tau\not\in\Omega\cup\overline{c}$.

Then $w$ is a nonnegative bounded subharmonic function for $1/\tau\not\in\overline{c}$ . Moreover
since $w$ is bounded in a neighborhood of $\tau=0$ , Removable Singularity Theorem
[8, p. 53] implies $w$ is subharmonic around the origin.

We may assume $w$ is non-constant for any neighborhood of the origin. There-
fore we can apply Tsuji inequality [6, p. 548] to $w$ . In fact, for $e^{-1}<\kappa<1$ and
$0<r\leq\kappa^{2}R$, we have

$B(r) \leq C_{2}(\kappa)B(R)\exp\{-\int_{r/\kappa}^{\kappa R}\frac{\alpha(\rho)d\rho}{\rho}\}$ ,

where $B(r)= \max\{w(t)||t|=r\},$ $C_{2}(\kappa)=6(1-\kappa)^{-8/2}$ . In our case we can
set $\alpha(\rho)=1/2$ by the structure of St. We have

$B(r) \leq C_{2}(\kappa)B(R)\exp\{-\int_{r/\kappa}^{\kappa R}\frac{d\rho}{2\rho}\}\leq C_{2}(\kappa)B(R)\sqrt{\frac{r}{\kappa^{2}R}}$.

Therefore $B(r)arrow \mathrm{O}$ as $rarrow \mathrm{O}$ , i.e., $u(t)arrow \mathrm{O}$ as $|t|arrow\infty$ . $\square$

Proof of Theorem 2.2. Assume $J^{+}$ is locally connected at $z_{0}\in J^{+}$ . The above
proposition implies $z_{0}\not\in W^{\epsilon}(a)$ . In the following we will show that $z_{0}$ is an
asymptotic point of $H_{s}$ . Once we obtain the fact, since each holomorphic func-
tion of finite order [7] has at most finitely many asymptotic values, the proof is
completed.

In general, let $v$ be a nonnegative subharmonic function of complex one
variable. Each connected component of $\{s|v(s)>0\}$ is called tract. Then the
number of tracts of $v$ is at most $\max${ $1,2$ ord $v$}[$6$ , Chapter 8].

Therefore the number of tracts of $u_{n}$ is at most $\max\{1,2\rho\}$ . Take an ap-
propriate $n_{0}\in \mathbb{Z}$ such that the number of tracts of $u_{n_{0}}$ attains its maximum $q$ .
For each tract of $u_{n_{0}}$ choose an asymptotic path $\gamma_{j}$ : $[0, \infty)arrow \mathbb{C}(0\leq j\leq q)$

with $u_{n_{0}}(\gamma(\xi))>0$ and $u_{n_{0}}(\gamma(\xi))-\infty$ as $\xiarrow\infty$ . Take sufficiently large
$R>0$ and we may assume all paths $\gamma_{j}$ intersect with $\{|t|=R\}$ only at their
starting points. Then $\mathbb{C}\backslash$ $(\overline{D_{R}}\cup\gamma_{1}\cup\cdot - \cup\gamma_{q})$ consists of $q$-unbounded connected
components, where $D_{R}=\{|t|<R\}$ .

Choose $U$ which is one of the components such that the infimum of $u\mathrm{i}\mathrm{s}-\infty$

in the domain. Moreover choose large $N$ so that

$\min\{u_{N}(s)|t\in\overline{D_{R}}\cup\gamma_{1}\cup\cdots\cup\gamma_{q}\}>0$.

For each $j=1,2,$ $\ldots$ , the above proposition implies we can take a point
$s_{j}\in U$ such that the component of $\{s\in U|u(s)<-N-j\}$ containing $s_{j}$ is
unbounded.
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Let us show that we can draw a path joining $s_{1}$ and $s_{2}$ such that $u<-N$
on the path. By the construction, $s_{1}$ and $s_{2}$ are contained in the unbounded
components $U_{1}$ and $U_{2}$ of $\{s\in U|u(s)<-N-1\}$ , resp. Draw a smooth
curve $c_{0}$ in $U$ joining $s_{1}$ and $s_{2}$ . We may assume $\overline{U_{1}}\cap\overline{U_{2}}\neq\emptyset$ . Let us regard
$U\backslash (\overline{U_{2}}\cup\overline{U_{2}\cup \mathrm{q}_{1}})$ . Clearly the set is divided into two sides with respect to $c_{j}$ : one
can access $\partial U$ , another cannot. We choose the open set which cannot and name
it $\Omega$ . Then $\partial\Omega$ consists of a part of $\partial U_{1}$ and $\partial U_{2}$ and $c_{0}$ . Note that $u_{N+1}\equiv 0$

on $\partial U_{1}$ and $\partial U_{2}$ , and that $\Omega$ is unbounded and that $u_{N+1}$ is bounded in $\Omega$ . At
this point, we can apply the above lemma, and obtain that $u_{N+1}$ decrease to
$0$ uniformly as $|s|arrow\infty$ in $\Omega$ . Therefore we can draw a path $\Gamma_{1}$ : $[0,1]arrow U$

joining $s_{1}$ and $s_{2}$ such that $u<-N$ on $\Gamma_{1}$ .
Similarly we can draw paths $\Gamma_{j}$ : $[0,1]arrow U$ joining $s_{j}$ and $s_{j+1}$ such that

$u<-N-j+1$ on $\Gamma_{j}$ for $j=2,3,$ $\ldots$ . If we define

$\Gamma(\xi)=\Gamma_{j}(\xi-j+1)$ for $j-1\leq\xi<j$ ,

$\Gamma$ is an asymptotic path such that $u(\Gamma(\xi))arrow-\infty$ as $\xiarrow\infty$ , i.e., $H_{s}(\Gamma(\xi))arrow z_{0}$

as $\xiarrow\infty$ , which implies $z_{0}$ is an asymptotic point of $H_{\theta}$ . $\square$
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