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1 Introduction
The Teichm\"uller space $T(R)$ of a Riemann surface $R$ is the set of equivalence
classes $[f]$ of quasiconformal homeomorphisms $f$ on $R$ . Here we say that two
quasiconformal homeomorphisms $f_{1}$ and $f_{2}$ on $R$ are equivalent if there exists
a conformal homeomorphism $h$ : $f_{1}(R)arrow f_{2}(R)$ such that $f_{2}^{-1}\circ h\circ f_{1}$ is ho-
motopic to the identity. All homotopies are consider to be relative to the ideal
boundary at infinity. A distance between two points $[f_{1}]$ and $[f_{2}]$ in $T(R)$ is
defined by $d([f_{1}],$ $[f_{2}]\rangle=(1/2)\log K(f)$ , where $f$ is an extremal quasiconformal
homeomorphism in the sense that its maximal dilatation $K(f)$ is minimal in
the homotopy class of $f_{2}\circ f_{1}^{-1}$ . Then $d$ is a complete distance on $T(R)$ which
is called the Teichm\"uller distance.

We assume that a Riemann surface $R$ is of hyperbolic type. Namely, it is
represented by a quotient space $\mathbb{H}^{+}/\Gamma$ of the upper half-plane $\mathbb{H}^{+}=\{z\in \mathbb{C}|$

${\rm Im} z>0\}$ by a torsion free Fuchsian group $\Gamma$ . Let $R’=\mathbb{H}^{-}/\Gamma$ be the complex
conjugate of $R$ where $\mathbb{H}^{-}=\{z\in \mathbb{C}|{\rm Im} z<0\}$ , and $B(R’)$ the complex
Banach space of all bounded holomorphic quadratic differentials on $R’$ with the
hyperbolic supremum norm. Then the Teichm\"uller space $T(R)$ is a complex
Banach manifold modeled on $B(R’)$ . In fact, $T(R)$ is embedded in $B(R’)$ as a
bounded contractible domain. Hence it is equipped with the Kobayashi distance.
If $R$ is a Riemann surface whose fundamental group is infinitely generated, then
the Teichm\"uller space is infinite dimensional. For details, see [4] and [8]. It
was proved in [3] that the Teichm\"uller distance and the Kobayashi distance are
coincident for all Riemann surfaces.

We consider a holomorphic map of $T(R)$ into $T(R)$ . Every quasiconformal
automorphism of a Riemann surface $R$ induces a biholomorphic automorphism
of $T(R)$ . Then this is an isometry with respect to the Teichm\"uller-Kobayashi

distance. Furthermore, the converse is also true, namely every biholomorphic
automorphism of $T(R)$ is induced by a quasiconformal automorphism of the
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Riemann surface. This is a combination of results of [1] and [5]. In [2], we have
considered the dynamics of isometric automorphisms in general metric spaces
as well as that of biholomorphic automorphisms of the Teichm\"uller space.

In this paper, we consider a Riemann surface $R$ in which there exists a non-
injective unramified holomorphic self-covering $f$ : $Rarrow R$ . Then the fundamen-
tal group of $R$ is infinitely generated. For example, we can obtain such a surface
by a Fatou component of the complex dynamics on the Riemann sphere. The
holomorphic self-covering $f$ is locally isometric with respect to the hyperbolic
metric on $R$ , and it induces a holomorphic self-map

$f^{*}$ : $T(R)arrow T(R)$ .
Then $f^{*}$ is non-expanding with respect to the Teichm\"uller-Kobayashi distance
$d$ and not surjective. We investigate the dynamics of $f^{*}$ on $T(R)$ .

2 Dynamics of holomorphic self-maps
Deflnition 1 We define the full cluster set of $f^{*}$ by

$C(f^{*})= \lim_{karrow\infty}\bigcup_{n=k}^{\infty}(f^{*})^{n}(T(R))=\bigcap_{n=1}^{\infty}(f^{*})^{n}(T(R))$.

The full cluster set $C(f^{*})$ is the maximal closed and completely invariant
set under the action of $f^{*}$ .
Definition 2 For a point $x\in T(R)$ , it is said that $y\in T(R)$ is a $\omega$ -limit point
of $x$ for $f^{*}$ if there exists a sequence $\{n_{i}\}\subset \mathrm{Z}_{+}$ of positive integers such that
$\lim_{iarrow\infty}d((f^{*})^{n_{*}}(x), y)=0$. The set of all $\omega$-limit points of $x$ for $f^{*}$ is called
the $\omega$-limit set of $x$ for $f^{*}$ and is denoted by $\Lambda(f^{*}, x)$ . It is said that $x\in T(R)$

is a recument point for $f^{*}$ if $x\in\Lambda(f^{*},x)$ . The set of all recurrent points for $f^{*}$

is called the recurrent set for $f^{*}$ and is denoted by $\mathrm{R}\mathrm{e}\mathrm{c}(f^{*})$ . The $\omega$-limit set for
$f^{*}$ is defined by $\Lambda(f^{*})=\bigcup_{x\in T(R)}\Lambda(f^{*}, x)$. The set of all periodic points for $f^{*}$

is denoted by Per$(f^{*})$ .
The following properties make the definitions for a non-expanding map sim-

ple.

Proposition 3 The recurrent set $\mathrm{R}\mathrm{e}\mathrm{c}(f^{*})$ is a subset of the full cluster set
$C(f^{*})$ , and the recurrent set $\mathrm{R}\mathrm{e}\mathrm{c}(f^{*})$ is coincident with the limit set $\Lambda(f^{*})$ .
Moreover $\mathrm{R}\mathrm{e}\mathrm{c}(f^{*})$ is closed, and so is $\Lambda(f^{*})$ .

However $\mathrm{R}\epsilon \mathrm{c}(f^{*})$ is not coincident with $C(f^{*})$ . In fact, we have the following.

Theorem 4 (i) For every point $x\in C(f^{*})$ , the orbit $O(x)=\{(f^{*})^{n}(x)|n\in$

$\mathrm{Z}_{+}\}$ is not dense in $C(f^{*})$ . $(\mathrm{i}\mathrm{i})$ The following inclusion relations are proper;
$C(f^{*})\supset \mathrm{R}\mathrm{e}\mathrm{c}(f^{*})\supset\overline{\mathrm{P}\mathrm{e}\mathrm{r}(f^{*})}\supset \mathrm{P}\mathrm{e}\mathrm{r}(f^{*})\supset \mathrm{F}\mathrm{i}\mathrm{x}(f^{*})$ .

(iii) The recurrent set $\mathrm{R}\mathrm{e}\mathrm{c}(f^{*})$ is nowhere dense in $C(f^{*})$ .
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3Geometry of holomorphic self-map
Next, we consider the non-expanding property of $f^{*}$ more closely. The injective
holomorphic map $f^{*}$ induces an injective holomorphic map

$\hat{f}^{*}$ : $T(T(R))arrow T(T(R))$

of the holomorphic tangent bundle $T(T(R))$ of $T(R)$ such that $f^{*}$ sends $(p, v)$

to $(f^{*}(p), (df^{*})_{p}(v))$ . Then we define the magnification of a tangent vector $v$ at
$p$ by

$r(p,v):= \frac{||(df^{*})_{p}(v)||_{T_{f^{2}(p)}(T(R))}}{||v||_{T_{p}(T(R))}}$ .

If a covering $f$ : $Rarrow R$ is amenable, then $r(p,v)=1$ for every $(p, v)\in$

$T(T(R))$ (see [6]). Namely, $f^{*}$ is an isometry on $T(R)$ . Thus hereafter we
assume that $f$ is a non-amenable cover. In this case, we see that there are a lot
of tangent vectors in $T(T(R))$ that are actually contracted by $f^{*}$ .

Theorem 5 The set $\{(p, v)\in T(T(R))|r(p, v)<1\}$ is dense in $T(T(R))$ .
This theorem is also followed by [6] combined with the fact that the Reich-

Strebel functionals (tangent vectors) are dense in each tangent space $T_{p}(T(R))$ .
However, we know that the magnification $r(p, v)$ is not uniformly bounded,

for otherwise, the fixed point theorem says that the full cluster set $C(f^{*})$ should
be a unique fixed point of $f^{*}$ .

Theorem 6 For every point $(p, v)\in T(T(R))$ , we have

$\lim_{narrow\infty}r((\hat{f}^{\mathrm{r}})^{n}(p,v))=1$ .

Actually, there exists some tangent vector $(p, v)$ such that $r(p, v)=1$ .

Theorem 7 (i) For every point $p\in \mathrm{P}\mathrm{e}\mathrm{r}(f^{*})$ , there $e$ rzsts a tangent vector $v\in$

$T_{p}(T(R))$ such that $r(p, v)=1$ . (ii) For every point $p\in \mathrm{R}\mathrm{e}\mathrm{c}(f^{*})$ , we have
$\sup_{v\in T_{\mathrm{p}}(T(R))}r(p,v)=1$ .

4 Dynamics on the base surface
We prove these theorems by the following structure theorem on the dynamics of
a holomorphic self-covering on a Riemann surface. A similar result was proved
also by $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$ and Sullivan [7].

Theorem 8 (Structure theorem I) Suppose that there exist a Riemann sur-
face $R$ and a non-injective unramified holomorphic self-covering $f$ : $Rarrow R$ .
Then there exist a Riemann surface $S$, a holomorphic covering $\pi$ : $Rarrow S$ and a
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biholomorphic automorphism $g:Sarrow S$ of infinite order such that the following
diagram commutes:

$Rarrow fR$

$\pi\downarrow$ $\downarrow\pi$

$Sarrow gS$

This theorem insists that the action of $f^{*}$ is very similar to the isometry $g^{*}$ .

Remark 9 The grand orbit of $x\in R$ under $f$ is the set of points $y\in R$ such
that $f^{n}(x)=f^{m}(y)$ for some $n,m\geq 0$ . lturthermore, the small orbit of $x\in R$

under $f$ is the set of points $y\in R$ such that $f^{n}(x)=f^{n}(y)$ for some $n\geq 0$ .
We define $R/f$ as the quotient space by the grand orbit relation, and $R/(f)$ as
the quotient space by the small orbit relation. The Riemann surface $S$ as in
Theorem 8 is coincident with $R/(f)$ and the quotient surface $S/\langle g\rangle$ is coincident
with $R/f$ .

Finally we consider another application obtained by the structure theorem.

Deflnition 10 For a holomorphic self-covering $f$ : $Rarrow R$ , we say that a subset
$U\subset R$ is an absorbing domain if $f(\overline{U})\subset U$ and if, for every point $x\in R$ , there
exists $n\in \mathrm{N}$ such that $f^{n}(x)\in U$ . If $f$ is injective in the absorbing domain
$U$ , then we call $U$ simple. Furthermore we say that the absorbing domain $U$ is
escaping if, for every compact subset $K\subset R$ , the number of integers $n$ satisfying
$f^{n}(U)\cap K\neq\emptyset$ is finite.

Theorem 11 For every non-injective holomorphic self-covering $f$ : $Rarrow R$,
there exists a simple, escaping, absorbing domain.

Corollary 12 (Denjoy-Wolff type theorem) For a non-injective holomor-
phic self-covering $f$ : $Rarrow R$, there $e$ zists a unique topological end $e$ of $R$ such
that $f^{n}(x)arrow e$ for every $x\in R$ .

In fact, there exists a unique analytical end which is determined by a fixed
point of a lift of $g$ to IHI.

On the last of this section, we mention the existence of holomorphic self-
coverings.

Theorem 13 (Structure theorem II) For every Riemann surface $S$ and for
$eve\eta$ biholomorphic automorphism $g$ : $Sarrow S$ of infinite order, there exist a
$hol_{omo7}phic$ cove$r\dot{\tau}ng\pi$ : $Rarrow S$ and a holomorphic self-covering $f$ : $Rarrow R$

such that $\pi \mathrm{o}f=g\mathrm{o}\pi$ .
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