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1 Introduction

The Teichmiiller space T(R) of a Riemann surface R is the set of equivalence
classes [f] of quasiconformal homeomorphisms f on R. Here we say that two
quasiconformal homeomorphisms f; and f» on R are equivalent if there exists
a conformal homeomorphism h : fi(R) — f2(R) such that f; o ho fi is ho-
motopic to the identity. All homotopies are consider to be relative to the ideal
boundary at infinity. A distance between two points [fi] and [f2] in T'(R) is
defined by d([f1], [f2]) = (1/2) log K(f), where f is an extremal quasiconformal
homeomorphism in the sense that its maximal dilatation K(f) is minimal in
the homotopy class of f o f{':. Then d is a complete distance on T'(R) which
is called the Teichmiiller distance.

We assume that a Riemann surface R is of hyperbolic type. Namely, it is
represented by a quotient space H* /T" of the upper half-plane HY = {z € C |
Im z > 0} by a torsion free Fuchsian group I'. Let R’ = H™ /T’ be the complex
conjugate of R where H™ = {# € C | Imz < 0}, and B(R') the complex
Banach space of all bounded holomorphic quadratic differentials on R’ with the
hyperbolic supremum norm. Then the Teichmiiller space T'(R) is a complex
Banach manifold modeled on B(R’'). In fact, T'(R) is embedded in B(R') as a
bounded contractible domain. Hence it is equipped with the Kobayashi distance.
If R is a Riemann surface whose fundamental group is infinitely generated, then
the Teichmiiller space is infinite dimensional. For details, see [4] and [8]. It
was proved in [3] that the Teichmiiller distance and the Kobayashi distance are
coincident for all Riemann surfaces.

We consider a holomorphic map of T(R) into T'(R). Every quasiconformal
automorphism of a Riemann surface R induces a biholomorphic automorphism
of T(R). Then this is an isometry with respect to the Teichmiiller-Kobayashi
distance. Furthermore, the converse is also true, namely every biholomorphic
automorphism of T'(R) is induced by a quasiconformal automorphism of the



Riemann surface. This is a combination of results of [1] and [5]. In [2], we have
considered the dynamics of isometric automorphisms in general metric spaces
as well as that of biholomorphic automorphisms of the Teichmiiller space.

In this paper, we consider a Riemann surface R in which there exists a non-
injective unramified holomorphic self-covering f : R — R. Then the fundamen-
tal group of R is infinitely generated. For example, we can obtain such a surface
by a Fatou component of the complex dynamics on the Riemann sphere. The
holomorphic self-covering f is locally isometric with respect to the hyperbolic
metric on R, and it induces a holomorphic self-map

f*:T(R) > T(R).

Then f* is non-expanding with respect to the Teichmiiller-Kobayashi distance
d and not surjective. We investigate the dynamics of f* on T(R).

2 Dynamics of holomorphic self-maps

Definition 1 We define the full cluster set of f* by

C(f*) = Jim J (F)MT(R) = N (F)"(T(R)).
n==k n=1

The full cluster set C(f*) is the maximal closed and completely invariant
set under the action of f*.

Definition 2 For a point z € T(R), it is said that y € T'(R) is a w-limit point
of z for f* if there exists a sequence {n;} C Zy of positive integers such that
lEm; 00 d((f*)™(x),y) = 0. The set of all w-limit points of x for f* is called
the w-limit set of « for f* and is denoted by A(f*,z). It is said that z € T(R)
is a recurrent point for f* if x € A(f*,z). The set of all recurrent points for f*
is called the recurrent set for f* and is denoted by Rec(f*). The w-limit set for
f* is defined by A(f*) = UzET( r) A(f*,z). The set of all periodic points for f*
is denoted by Per(f*).

The following properties make the definitions for a non-expanding map sim-
ple.

Proposition 3 The recurrent set Rec(f*) is a subset of the full cluster set
C(f*), and the recurrent set Rec(f*) is coincident with the limit set A(f*).
Moreover Rec(f*) is closed, and so is A(f*).

However Rec(f*) is not coincident with C(f*). In fact, we have the following.

Theorem 4 (i) For every point z € C(f*), the orbit O(z) = {(f*)"(z) | n €
Z,} is not dense in C(f*). (ii) The following inclusion relations are proper;

C(f*) D Rec(f*) D Per(f*) D Per(f*) D Fix(f*).

(iii) The recurrent set Rec(f*) is nowhere dense in C(f*).
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3 Geometry of holomorphic self-map

Next, we consider the non-expanding property of f* more closely. The injective
holomorphic map f* induces an injective holomorphic map

f*: T(T(R)) = T(T(R))

of the holomorphic tangent bundle T(T(R)) of T'(R) such that f* sends (p,v)
to (£*(p), (df*)p(v)). Then we define the magnification of a tangent vector v at
p by |
' '(df* )P (U) l le* (0)(T(R))
r(p,v) == .
Wl ery)

If a covering f : R — R is amenable, then r(p,v) = 1 for every (p,v) €
T(T(R)) (see [6]). Namely, f* is an isometry on T(R). Thus hereafter we
assume that f is a non-amenable cover. In this case, we see that there are a lot
of tangent vectors in 7'(T'(R)) that are actually contracted by f*.

Theorem 5 The set {(p,v) € T(T(R)) | r(p,v) < 1} is dense in T(T(R)).

This theorem is also followed by [6] combined with the fact that the Reich-
Strebel functionals (tangent vectors) are dense in each tangent space T,(T'(R)).

However, we know that the magnification r(p,v) is not uniformly bounded,
for otherwise, the fixed point theorem says that the full cluster set C(f*) should
be a unique fixed point of f*.

Theorem 6 For every point (p,v) € T(T(R)), we have
lim r((f*)"(p,v)) = 1.
n—oo
Actually, there exists some tangent vector (p,v) such that r(p,v) = 1.

Theorem 7 (i) For every point p € Per(f*), there exists a tangent vector v €
T,(T(R)) such that r(p,v) = 1. (ii) For every point p € Rec(f*), we have

SUPyer,(r(r) TP ) = 1.

4 Dynamics on the base surface

We prove these theorems by the following structure theorem on the dynamics of
a holomorphic self-covering on a Riemann surface. A similar result was proved
also by McMullen and Sullivan [7]. '

Theorem 8 (Structure theorem I) Suppose that there exist a Riemann sur-
face R and a non-injective unramified holomorphic self-covering f : R — R.
Then there exist a Riemann surface S, a holomorphic coveringm : R — S and a
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biholomorphic automorphism g : S — S of infinite order such that the following
diagram commutes: '
R _f, R

wl lw
S———Q—+S

This theorem insists that the action of f* is very similar to the isometry g*.

Remark 9 The grand orbit of z € R under f is the set of points y € R such
that f*(x) = f™(y) for some n,m > 0. Furthermore, the small orbit of z € R
under f is the set of points y € R such that f*(z) = f*(y) for some n > 0.
We define R/f as the quotient space by the grand orbit relation, and R/(f) as
the quotient space by the small orbit relation. The Riemann surface S as in
Theorem 8 is coincident with R/(f) and the quotient surface S/(g) is coincident
with R/ f.

Finally we consider another application obtained by the structure theorem.

Definition 10 For a holomorphic self-covering f : R — R, we say that a subset
U C R is an absorbing domain if f(U) C U and if, for every point z € R, there
exists n € N such that f*(z) € U. If f is injective in the absorbing domain
- U, then we call U simple. Furthermore we say that the absorbing domain U is
escaping if, for every compact subset K C R, the number of integers n satisfying
M(U)N K # 0 is finite.

Theorem 11 For every non-injective holomorphic self-covering f : R — R,
there exists a simple, escaping, absorbing domain.

Corollary 12 (Denjoy-Wolff type theorem) For a non-injective holomor-
phic self-covering f : R — R, there ezists a unique topological end e of R such
that f™*(z) — e for every z € R.

In fact, there exists a unique analytical end which is determined by a fixed
point of a lift of g to H.

On the last of this section, we mention the existence of holomorphic self-
coverings.

Theorem 13 (Structure theorem II) For every Riemann surface S and for
every biholomorphic automorphism g : S — S of infinite order, there exist a
holomorphic covering m : R — S and a holomorphic self-covering f : R — R
such that mo f =gom.
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