The dynamics on Teichmüller spaces induced by holomorphic self-coverings

Ege Fujikawa (Sophia University) 藤川 英華 (上智大学) Katsuhiko Matsuzaki (Okayama University) 松崎 克彦 (岡山大学) Masahiko Taniguchi (Nara Women's University) 谷口 雅彦 (奈良女子大学)

1 Introduction

The Teichmüller space T(R) of a Riemann surface R is the set of equivalence classes [f] of quasiconformal homeomorphisms f on R. Here we say that two quasiconformal homeomorphisms f_1 and f_2 on R are equivalent if there exists a conformal homeomorphism $h: f_1(R) \to f_2(R)$ such that $f_2^{-1} \circ h \circ f_1$ is homotopic to the identity. All homotopies are consider to be relative to the ideal boundary at infinity. A distance between two points $[f_1]$ and $[f_2]$ in T(R) is defined by $d([f_1], [f_2]) = (1/2) \log K(f)$, where f is an extremal quasiconformal homeomorphism in the sense that its maximal dilatation K(f) is minimal in the homotopy class of $f_2 \circ f_1^{-1}$. Then d is a complete distance on T(R) which is called the Teichmüller distance.

We assume that a Riemann surface R is of hyperbolic type. Namely, it is represented by a quotient space \mathbb{H}^+/Γ of the upper half-plane $\mathbb{H}^+ = \{z \in \mathbb{C} \mid$ Im $z > 0\}$ by a torsion free Fuchsian group Γ . Let $R' = \mathbb{H}^-/\Gamma$ be the complex conjugate of R where $\mathbb{H}^- = \{z \in \mathbb{C} \mid \text{Im } z < 0\}$, and B(R') the complex Banach space of all bounded holomorphic quadratic differentials on R' with the hyperbolic supremum norm. Then the Teichmüller space T(R) is a complex Banach manifold modeled on B(R'). In fact, T(R) is embedded in B(R') as a bounded contractible domain. Hence it is equipped with the Kobayashi distance. If R is a Riemann surface whose fundamental group is infinitely generated, then the Teichmüller space is infinite dimensional. For details, see [4] and [8]. It was proved in [3] that the Teichmüller distance and the Kobayashi distance are coincident for all Riemann surfaces.

We consider a holomorphic map of T(R) into T(R). Every quasiconformal automorphism of a Riemann surface R induces a biholomorphic automorphism of T(R). Then this is an isometry with respect to the Teichmüller-Kobayashi distance. Furthermore, the converse is also true, namely every biholomorphic automorphism of T(R) is induced by a quasiconformal automorphism of the Riemann surface. This is a combination of results of [1] and [5]. In [2], we have considered the dynamics of isometric automorphisms in general metric spaces as well as that of biholomorphic automorphisms of the Teichmüller space.

In this paper, we consider a Riemann surface R in which there exists a noninjective unramified holomorphic self-covering $f: R \to R$. Then the fundamental group of R is infinitely generated. For example, we can obtain such a surface by a Fatou component of the complex dynamics on the Riemann sphere. The holomorphic self-covering f is locally isometric with respect to the hyperbolic metric on R, and it induces a holomorphic self-map

$$f^*: T(R) \to T(R).$$

Then f^* is non-expanding with respect to the Teichmüller-Kobayashi distance d and not surjective. We investigate the dynamics of f^* on T(R).

2 Dynamics of holomorphic self-maps

Definition 1 We define the full cluster set of f^* by

$$C(f^*) = \lim_{k \to \infty} \overline{\bigcup_{n=k}^{\infty} (f^*)^n (T(R))} = \bigcap_{n=1}^{\infty} (f^*)^n (T(R)).$$

The full cluster set $C(f^*)$ is the maximal closed and completely invariant set under the action of f^* .

Definition 2 For a point $x \in T(R)$, it is said that $y \in T(R)$ is a ω -limit point of x for f^* if there exists a sequence $\{n_i\} \subset \mathbb{Z}_+$ of positive integers such that $\lim_{i\to\infty} d((f^*)^{n_i}(x), y) = 0$. The set of all ω -limit points of x for f^* is called the ω -limit set of x for f^* and is denoted by $\Lambda(f^*, x)$. It is said that $x \in T(R)$ is a recurrent point for f^* if $x \in \Lambda(f^*, x)$. The set of all recurrent points for f^* is called the recurrent set for f^* and is denoted by $\operatorname{Rec}(f^*)$. The ω -limit set for f^* is defined by $\Lambda(f^*) = \bigcup_{x \in T(R)} \Lambda(f^*, x)$. The set of all periodic points for f^* is denoted by $\operatorname{Per}(f^*)$.

The following properties make the definitions for a non-expanding map simple.

Proposition 3 The recurrent set $\operatorname{Rec}(f^*)$ is a subset of the full cluster set $C(f^*)$, and the recurrent set $\operatorname{Rec}(f^*)$ is coincident with the limit set $\Lambda(f^*)$. Moreover $\operatorname{Rec}(f^*)$ is closed, and so is $\Lambda(f^*)$.

However $\operatorname{Rec}(f^*)$ is not coincident with $C(f^*)$. In fact, we have the following.

Theorem 4 (i) For every point $x \in C(f^*)$, the orbit $O(x) = \{(f^*)^n(x) \mid n \in \mathbb{Z}_+\}$ is not dense in $C(f^*)$. (ii) The following inclusion relations are proper;

$$C(f^*) \supset \operatorname{Rec}(f^*) \supset \operatorname{Per}(f^*) \supset \operatorname{Per}(f^*) \supset \operatorname{Fix}(f^*).$$

(iii) The recurrent set $\operatorname{Rec}(f^*)$ is nowhere dense in $C(f^*)$.

3 Geometry of holomorphic self-map

Next, we consider the non-expanding property of f^* more closely. The injective holomorphic map f^* induces an injective holomorphic map

$$\hat{f^*}: T(T(R)) \to T(T(R))$$

of the holomorphic tangent bundle T(T(R)) of T(R) such that f^* sends (p, v) to $(f^*(p), (df^*)_p(v))$. Then we define the magnification of a tangent vector v at p by

$$r(p,v) := \frac{||(df^*)_p(v)||_{T_{f^*(p)}(T(R))}}{||v||_{T_p(T(R))}}.$$

If a covering $f : R \to R$ is amenable, then r(p, v) = 1 for every $(p, v) \in T(T(R))$ (see [6]). Namely, f^* is an isometry on T(R). Thus hereafter we assume that f is a non-amenable cover. In this case, we see that there are a lot of tangent vectors in T(T(R)) that are actually contracted by f^* .

Theorem 5 The set $\{(p,v) \in T(T(R)) \mid r(p,v) < 1\}$ is dense in T(T(R)).

This theorem is also followed by [6] combined with the fact that the Reich-Strebel functionals (tangent vectors) are dense in each tangent space $T_p(T(R))$.

However, we know that the magnification r(p, v) is not uniformly bounded, for otherwise, the fixed point theorem says that the full cluster set $C(f^*)$ should be a unique fixed point of f^* .

Theorem 6 For every point $(p, v) \in T(T(R))$, we have

$$\lim_{n \to \infty} r((\hat{f}^*)^n(p, v)) = 1.$$

Actually, there exists some tangent vector (p, v) such that r(p, v) = 1.

Theorem 7 (i) For every point $p \in Per(f^*)$, there exists a tangent vector $v \in T_p(T(R))$ such that r(p,v) = 1. (ii) For every point $p \in Rec(f^*)$, we have $\sup_{v \in T_p(T(R))} r(p,v) = 1$.

4 Dynamics on the base surface

We prove these theorems by the following structure theorem on the dynamics of a holomorphic self-covering on a Riemann surface. A similar result was proved also by McMullen and Sullivan [7].

Theorem 8 (Structure theorem I) Suppose that there exist a Riemann surface R and a non-injective unramified holomorphic self-covering $f : R \to R$. Then there exist a Riemann surface S, a holomorphic covering $\pi : R \to S$ and a

biholomorphic automorphism $g: S \to S$ of infinite order such that the following diagram commutes:

$$\begin{array}{ccc} R & \stackrel{f}{\longrightarrow} & R \\ \pi & & & \downarrow \pi \\ S & \stackrel{g}{\longrightarrow} & S \end{array}$$

This theorem insists that the action of f^* is very similar to the isometry g^* .

Remark 9 The grand orbit of $x \in R$ under f is the set of points $y \in R$ such that $f^n(x) = f^m(y)$ for some $n, m \ge 0$. Furthermore, the small orbit of $x \in R$ under f is the set of points $y \in R$ such that $f^n(x) = f^n(y)$ for some $n \ge 0$. We define R/f as the quotient space by the grand orbit relation, and R/(f) as the quotient space by the small orbit relation. The Riemann surface S as in Theorem 8 is coincident with R/(f) and the quotient surface $S/\langle g \rangle$ is coincident with R/f.

Finally we consider another application obtained by the structure theorem.

Definition 10 For a holomorphic self-covering $f: R \to R$, we say that a subset $U \subset R$ is an absorbing domain if $f(\overline{U}) \subset U$ and if, for every point $x \in R$, there exists $n \in \mathbb{N}$ such that $f^n(x) \in U$. If f is injective in the absorbing domain U, then we call U simple. Furthermore we say that the absorbing domain U is escaping if, for every compact subset $K \subset R$, the number of integers n satisfying $f^n(U) \cap K \neq \emptyset$ is finite.

Theorem 11 For every non-injective holomorphic self-covering $f : R \to R$, there exists a simple, escaping, absorbing domain.

Corollary 12 (Denjoy-Wolff type theorem) For a non-injective holomorphic self-covering $f : R \to R$, there exists a unique topological end e of R such that $f^n(x) \to e$ for every $x \in R$.

In fact, there exists a unique analytical end which is determined by a fixed point of a lift of g to \mathbb{H} .

On the last of this section, we mention the existence of holomorphic selfcoverings.

Theorem 13 (Structure theorem II) For every Riemann surface S and for every biholomorphic automorphism $g: S \to S$ of infinite order, there exist a holomorphic covering $\pi: R \to S$ and a holomorphic self-covering $f: R \to R$ such that $\pi \circ f = g \circ \pi$.

References

- C. J. Earle and F. P. Gardiner, Geometric isomorphisms between infinite dimensional Teichmüller spaces, Trans. Amer. Math. Soc. 348 (1996), 1163– 1190.
- [2] E. Fujikawa and K. Matsuzaki, Recurrent and periodic points for isometries of L^{∞} spaces, Indiana Univ. Math. J., to appear.
- [3] F. P. Gardiner, Approximation of infinite dimensional Teichmüller Spaces, Trans. Amer. Math. Soc. 282 (1984)
- [4] O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Text in Math. 109, Springer.
- [5] V. Markovic, Biholomorphic maps between Teichmüller spaces, Duke Math. J. 120 (2003), 405-431.
- [6] C. McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989), 95-127.
- [7] C. McMullen and D. Sullivan, Quasiconformal homeomorphisms and dynamics III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), 351-395.
- [8] S. Nag, The Complex Analytic Theory of Teichmüller Spaces, John Wiley & Sons 1988.