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Bivariate Chebyshev maps
of C? and their dynamics
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Abstract
We study the properties of bivariate (two-dimensional) Chebyshev maps Ty(z,y)
from C? to C? and study the properties and dynamics of the maps.
(A) The properties of T,.
(1) Solutions of T,(z,y) = (0,0) are obtained.
(2) A critical set det(DT,) = 0 is written in a simple formula.
These properties are similar to those of Chebyshev maps of C.

(B) The dynamics of T;,.

(1) T, is strictly critically finite.

(2) Any periodic point of T, is repelling.

(3) The exact form of the invariant probability measure u of maximal
entropy associated with T, is obtained. '

(4) External rays for J5(T,,) and foliations of J;(T},) are studied.
These properties are also similar to those of Chebyshev maps of C.

1 Bivariate Chebyshev maps

The Chebyshev map is a typical chaotic map. Generalized Chebyshev maps are
studied by several researchers, Koornwinder [1974], Lidle [1975], Veselov [1987] and
Hoffman & Withers [1988].

In this paper, we study bivariate Chebyshev maps T, from C? to C%, n € Z.

Ta(z,y) = (gt"’ (z,9), 9™ (y, 7)).

This definition is due to [V]. Here g™ (z,y) is a generalized Chebyshev polynomial
defined by Lidle [L].
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Let
T=1t +ty+1ts, y=~1tils+titz+1ats, 1 =711tst3.
Then
g™ (z,y) =7 4+ 15 + 13
So

g™(y, ) = (1/0)" + (1/ta)" + (1/ta)" = ¢ (z, ).
For instance,
T2(xa y) = (732 - 2y1 y2 - 21“)’

Ty(z,y) = (z* — 3zy + 3,° — 32y + 3),
Ty(z,y) = (z* — 4oy + 2% + 4z, y* — 4z + 227 + 4y).

{g"™(z,y)} satisfy the following recurrence equation:

9™ (z,y) = 2g"V(z,y) - y9™ 2 (z,y) + "V (z,y).

First, we show a branch covering over C2.
The following diagram is commutative.

(©- {0} —=— (C-{op?
v ‘

02 Tn C2
where In(u,v) = (u™, V"),

and 11 1
(xay) = \Il(uv'v) = (U+U+%,E+;+uv)

The covering map
¥:C?-9v}(D)-C*-D

is a 6-sheated covering map. Branch locus D of ¥ is written as
r?y? — 423 — 49° + 182y — 27 = 0.

In the case n = 2, Ueda[Ue] showed this diagram.
T,(z, y) restricted on {z = 7} is a Chebyshev polynomial defined by Koornwinder
K]

1 . _ ‘
Pn’oz (Z, 2) = eﬂ_'w‘ + e—m'r + e:(m—_m).

Set
2(0,7) 1= €7 + e + €T = u +iv.

The mapping
z:(0,7) = (u,v)
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is a diffeomorphisam from R onto S. See Koornwinder [K].
Proposition 1. There are n? solutions of Tn(x,y) = (0,0). All solutions lie in
the closed domain S in {x = Y}. They are written in the (0,7) coordinate.

(1) (o,7) = (2(1 +?f'n+ h)7r, 2(1 +§i+ h)7r)

i=01,.,n—1,and h=0,1,..7]
_22+j54+h)m 22+25—-h)w
@) (o) = (CELEYT A2 IR,
i=0,1,..,n—-2,and h=0,1,..,7.

Proof. By definition,

Tn($7 y) = (g(n) (xa-y)’ g(N)(ya SC))

9™ (z,y) and ¢ (y, z) are polynomials of degree n with no common components.
We can find n? zeros on S. See Uchimura [Ucl]. O

We see that the zeros of T, and T,,; ”mutually separate each other”.
Next we consider critical set of T,,(z, y).

Cy := {(z,y) € C?: det(DT;,) = 0}.

Proposition 2. Let n € Z. Assume that

z=1t +ta+1l3, y=rtity+his+1ist3, titatz=1

Then
ALK RN N ) (R
Det(DT,) =n?1—2.1-3.2_3
(DT5) ti—ty ti—t3 to—ts

Proof.
Det(DT,) = Det(D(T, o ¥))/Det(D¥). m]

The similar result is holds for generalized Chebyshev maps from C" to C™.

Corollary 1. Any irreducible component of C,, is a rational curve of degree 2
or 4.
Proof. From Proposition 2, we have
k 1 iz
z=t4+e€et+ - E=en

k2 ’



= 4 — + €2
I} : + 7 +e€
When € = —1, the degree of the rational curve is 2. O

We see that C, and Cpy; "mutually separate each other”, and
Cn ns 7& ¢ (S = JZ(Tn))
Note that {T}, : m € Z} is a semigroup satisfying

Tm o Tp = Tipn.

2 Dynamics of Bivariate Maps

We study the dynamics of T,(z,y). Let
K(T,) := {(z,y) : {T"(z,y)}is bounded for any m}.

In our setting we have the following proposition.

Proposition 3.
KT)={lti|=|t2|=1} =S c {z =7}

Proof g
(t1,te) ——  (t1,%3)

v ¥
(z,y) —2— (g™, g(")
a

f is called critically finite if each irreducible component of the critical set of f is
periodic or preperiodic. Dihn and Sibony [DS] show that generalized Chebyshev
maps are critically finite. Here using proposition 2, we give a direct proof.

Proposition 4. T, is strictlly critically finite.

Proof.
Cr 2 T (Cr) 2 To(C)

(tet) () @, t7) O

Next we study the second Julia set Jp of Tp(z,y).

Proposition 5. All periodic points of Ty, lie on S and are equidistributed in S.
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Proof.  From [FS], we know that number of periodic points with period & equals n?

For the distribution of periodic points, see [Uc2]. O

Proposition 6. Any periodic point of T, is repelling.

To prove this proposition we consider the following function.
Sp:=T, | {z=7}:R?—> R?

eg. Su(2)=22—22: (u,v) ~ (u? — 2u — v?, 2uv + 2v).

Lemma 1. Let p be a periodic point of S,. Let o and 3 be eigen values of DS, (p).
Then

lal, [B]>1.

Proposition 7. Let
f(z,y) € Rlz,y].
T(z,y) = (f(z,9), f(y,2)) : C — C*,
t(z) :=T|{z=g}:R2_.>R2_
Then
U~1DT(2,2)U = Dt(z),

1( 144 =141
U=- :
2(1+11 1—4 )

From Lemma 1 and Proposition 7, Proposition 6 follows. O
Next we study the invariant measure y of maximal entropy for T,.

where

Proposition 8. Under the above notation,

supp u=3_S.
2

s

2 dzld:z:g
V—1272 + 4x3 + 47° — 18T + 27
(.’B =T+ i.’L‘g)

)

=
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This is an extension of invariant measure

1 dz
Pt et )B-2)

for Chebyshev maps in one variable on [-1, 3].

Proof. We prove this proposition in the following three steps.

(1) Briend and Duval [BD] shows that

1
let Yn = E’E Z Jy,
~(y)=yyrepelling

then
un — 4 (weak convergence).

(2) From Proposition 5, we see that the periodic points are repelling and equidis-
tributed in the triangle on the (s,t) plane (see [Uc2]).

(3) Pullback of Lebesgue measure under ¢. 0

Next we consider the properties of external rays of T,,(z,y). We use the definitions
of external rays by Bedford and Jonsson [BJ] . We extend the map

Tu(z,y): C* — C?

to Tu(z:y:z2):P?— P2
Let I1:=P2-C? be the line at infinity.

Then
To|T:(z:y:0)— (z":y":0).

Therefore
Jn={(z:y:0):|z|=|y|} =S
The stable set of J for T, is defined by

W*(Jn,T,) = {z € P?*: d(Tiz,Ju) —» 0, j— oo}.
Bedford and Jonsson [BJ] state that there exists a Bottcher coordinate ¥ such that

U WB(JH’fn) - Wa(JH’Tn)
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conjuating f, to T,,, where :
fa(z,y) = (=" 47).

They also show that W*(Jg,T},) is foliated by stable disks W,. They define a local
stable manifold Wj}, (a), (a € Jn) and then a stable disk W, D W (a) and an
external ray R(a,6). They show that Jy(T,) = J1(T,) is laminated by stable disks
W,.

Nakane [N] shows the following results on T3(z, y):

(1) The map W defined by Ueda is essentially the inverse of Béttcher coordmate 0.

U(u,0) = U(t,at), | t|> 1
(2) The stable disk W, is the set of points R(r, ¢, 8)

T = re~21r19+ 1 2m(0 @) +e2m¢
T

Y= ,,.621ri(¢—9) + _1_621ri9 + e—2m’¢’ a= e2m‘¢’ (7‘ > 1)
T .
An external ray is written as
R(¢,0) := {R(r,$,0) : r > 1}.

From this,
Jo =8 C{z =g}

(3) Each point 2 € S is the landing point of exactly 1, 3, or 6 external rays if z is a
cusp point on 95, z is non-cusp point on 9S or z € int(S) respectively.

We can show that Nakane’s results are also true for any T,(z,y), n #0.
Next we study the structure of foliations W, of

J(TR) = Wo(Jn, T,).

Proposition 9.  For any point z € int(S), there exist three stable disks W,
such that boundaries of these three disks intersect at z. At the point, two external
rays on each W, land from opposite directions.

Metaphorically speaking, three mouths (stable disks) eat a sandwich (the second
Julia set S).

‘Two external rays R(¢,0) and R(¢, ¢ — 6) lie on the stable disk

Wo  (a=e™9),



Two points R(r,$,60) and R(r,$,¢ — 0) are "symmetrical” about {z = g} in the
following sense.

(1) The midpoint of the segment R(r, ¢,0)R(r,$,¢ — 6) lies on the plane {z = §},
(2) The segment connecting two points is perpendicular to {z = g}

We comparé the external rays of Ty,(z,y) with those of Chebyshev map Ty (2) in one
variable. The external rays T,(2) is written as

R(r,¢): u=re™® + %62’"‘(“"’), (r > 1).
Clearly, ’
R(r,—¢) : v =re?i(=%) 4 %62”‘4’,
v = U.
It is Well-know_n that R(r,#) and R(r, —¢) are ”symmetrical” about the real axis.
Note that symmetric group S, acts on external rays of Tp,(z). On the other hand,

S acts on external rays of T,(z,y).
Using the notations in Sect. 1, we can write

1
WS(JH,Tn) = {‘I’(tl,tz) 2‘ t1 '= l—-t—z-—l > 1}

Then
Cn NW8(Jn, T) = ¢.

Lastly we consider periodic rays R(¢,8) of Tn(z,y).

Proposition 10. If one periodic ray lands at the point zy € S, all rays which
land at 2z are all periodic with the same period.
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