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1. INTRODUCTION

The equations of one dimensional gas dynamics in Lagrangian coordinates are given
by
: Uy — Ug 0,

Ut + Pg 0, :
{ (e+3u),+ (pu): = 0, (z,t) € Rx Ry,
Here u is the velocity, p the pressure and v the specific volume satisfying v > 0;
the thermodynamic quantities satisfy the first and second law: de = ©dn — pdv (©:
temperature, e : internal energy). If the gas is ideal: pv = RO and polytropic: e = C\,0,
then 7 is expressed as n = Cy{logp + (1 + g;) logv} + const. Hence we have

(1)

i

e=2, p= v e mT (y=1+ &>1). (2)

If v = 1, (1) coincides with the equations of isothermal gas dynamics. We shall discuss
the existence of global in time solutions to the initial value problem (v,u,n)|i=0 =
(vo(z), uo(x), m0(z)). Following results are now theorem classics.

Theorem 1 (Nishida [8]) Suppose that v = 1. If the total variation of the initial
data TVvy, TVug, TVnq are finite, then there ezists a global solution.

Theorem 2 (Liu [6]) Suppose that 1 < v < 3. If (v — 1)TVwo, (v = 1)TVuo, (v -
)TVry are sufficiently small, then there ezisis a global solution.

The above authors have obtained global solutions by using the Glimm difference scheme
([5]). The aim of this article is to to give an alternative proof by using the wave-front
tracking scheme (Bressan {2, 3], Risebro [10]).

2. RIEMANN PROBLEM

-1 -1
Note that v = a%e’k’r"’p"}? and /—vp(p,n) = 'y‘%a%eﬁ?"p_%. Quantities p, u,n will
be independent variables. Since associated quasi-linear equatations are

p——=0, w+p:=0, =0,



we find by direct computation that the characteristic speeds are

MU) = - X(U) =

1
V=@, 1)’

and the corresponding characteristic fields are

= t(]_, \/_'Up(p’ 17),0), Rz(U) = t(ls - —vp(pa 7’)10)1
Ro(U) =(0,0,1).

Since the integral curves of R;(U) (j = 0,1,2) are expressed as

V —’Up(p,

R(U): u+ / v/ —Vpdp = const, 7 = const,
Ry(U) : p = const, u = const,
Ry(U): u-— / v/ —vpdp = const, 7 = const,

setting € = ’YT, we have rarefaction curves through Uj in the following form

i s
) _ RVALNIPS -~ Y
1-rarefaction curve: U — Uo —e® ™ (p7 —pg), (p £ po),

o

n—"o 0 L
T L < £
2-rarefaction curve: %~ U = 0@.@7% (p7 — pg); (p 2 po)-
n—m =

A self-similar jump discontinuities having the form

U_ for z < st,
Ula,t) = { U, for z > st.

is a weak solution, if and only if it satisfies the Rankine-Hugoniot condition:

{ e—ey+ 2(P+Po)(v“vo) =
(u —uo)® = —(p — po) (v —Uo)

The shock speed s is expressed as s* = _ZZ - i:o
— Vo

o = e )

(Y+Lp+(y—Dpo

is equivalent to

(v — ug)?

(3)

(4)

(5)

(6)

(8)

. For the polytropic gas, above condition

(9)
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In order to solve the Riemann problem, we define the forward 1-wave curve Wf (Up)
and the backward 2-wave curve W (Ug) as the following.

L s
— YL B (5 —p]) (p<pL)

R fe%(”_“)l 0> ),
W' (UL) pL’{(1+€)p+06pL}f <)
bspr
n-m = § R p\ fep+(1+€p)”
’ ﬂl"g[(ﬁ){(lﬂ)pﬂpi}] (P> pu),
(10)
L-e’”'"‘(m ~p}) (p < pr)
HouR = _weE Mg
- W;(Ur) : Y {(7+1)p+(7—1)pn}% o< o)
S Pr
n—n = R P ep+(1+6)p U
* 7w |(m) {-——(He),,ﬂ,:;} | &>p0

Each wave curve constitutes a C?-curve with Lipschitz continuous second derivative.
If (p,u,n) € WF (UL), then there is a l-rarefaction wave or shock wave connecting
(pr,uz, ) and (p,u,7). If, on the other hand, (p,u,n) € WE(Ug), then there is a
2-rarefaction waves or shock wave connecting (p, u,n) and (pR,uR, nr)- Let WF(UL)
and W2 (Ug), respectively the projection of WF (U) and WE(UR), respectively, onto
the pu plane. The Riemann problem is solved as the followmg way. Le_t (pr,vr,nL)
and (pg, ur, 7r) be given Riemann data. If two curves WY (Up) and Wy (Ug), have an
1ntersect1on point (Pm, um), then the state (pp, um, 7;,) € WF (UL) and (pm, um, 1) €

W2 (UL) are conected by an entropy wave. Noticing the sound speed is expressed as
71

c = /7pv =\/—av , we have

Theorem 3 Let c = \/ypv be the sound speed. If ug — ur, <z —2-(cL, + cg), then there
18 a unique solution to the Riemann problem.

2. WAVE-FRONT TRACKING SCHEME

Let h be a positive number. The approximate solutions are constructed in the following
way. First, approximate the initial data by a step function UP(x). Let z; < - < zp
be the points of discontinuity of UF(x). At each z,,, we solve the Riemann problem
setting Uy, = UP(zm — 0), Ur = UP(zm + 0). If the solution is composed only of
shock waves and entropy waves, we adopt this piecewise constant solution itself. If it
contains a centred rarefaction wave, we approximate it by several small fans consisting
of constant states and jump discontinuities separating them.

Approximate solutions are constructed until neighbouring jump discontinuities in-
teract. If they interact at ¢ = t1, we construct the approximate solution by solving the
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Riemann problems with initial data U”(z, t; —0). We can repeat the above construction
as long as the number of jump discontinuities does not diverge within a finite time.

To avoid the breakdown, we introduce a new approximate solution that is called
a simplified Riemann solver ([3] for details). At each interaction point, the amount
of waves generated by the interaction is estimated by the product of the strengths of
incoming waves |616,|. We choose a threshold p > 0 so that: if |#16;] > p, then the usual
approximate solution is constructed; if |6,0;| < p, then the new approximate solution
is constructed as the following. Suppose that a 2-shock wave 8 connects Uz and Uy,
and a 1-shock wave o connects Uy and Ug. Then we can find two states Uj,, Uk so
that Uy, and U), are connected by a 1-shock wave with strength |a|, and U}, and U
are connected by a 2-shock wave with strength |§|; the states Ug, Uy are separated
simply by a discontinuous front that propagates with a fixed speed 2 > max |A;]. This
discontinuous front is called the non-physical wave

3. BASIC LEMMAS

All lemmas and propositions in this section are proved in Liu [6]. We introduce the
Riemann invariants corresponding to 7, = miny(z)

1 L
a € € a‘y € [
w=1u-— —@eﬁ"‘(p? -1), z=u+ \/z em™(p7 — 1) (11)
and set . .
a="‘;"’=u, T:z;’”:\/zmefrv"—(p%_l). (12)

Strengths of shock waves and rarefaction waves will be measured by w and z. The

pressure is expressed as
X

€T €
p(r) = {1 + _T"—"} -
Ve efr™
Since w + z & e®v M ~™)(5 — w) = const along rarefaction curves, we find that

eRy(M-m) _ 1

z2—zp=—/——+—(w-—- : 1-rarefaction curve
0 o (1) | 1( w) )
eRy(Mo=ne) _ 1
w—wWy=-————(2—2): 2-rarefaction curve.
eRv (M=) | |
Ay (o-me) . . .
Not.e that i#o—_m‘ < 1. We always assume that all waves considered will be in the
region

0<p<p<p en-m)<K
Proposition 1 Suppose that

(Pz,uzﬂh) € §f‘(plauls771)7_ (pia Uy, 773) € ﬁf(pﬁh U3,173)
and (p3, us, ) € RS (D2, u2, Ma).
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Then there exists a constant D, such that 0 < D, <1 and

23 — 29 S D*(wl - ’le), (13)
where D, depends only on p,p and K.
We set
1 [3
a"e®™(p—p
9(10,7) = - P =) - (14)
po" {(1+€)p+epo}s
R p\ [ep+(1+e€)po }’]
h ) = —_1 - v N ? 1
(r0.7) 2 ¢ Kpo) {(1 +€)p+epo 18)

where p = p(7) and py = p(7y). By using these function, the Hugoniot curves through
(po; uo, 7o) are expressed as

0_00=:FQ(TO:T)7 77“")0=h(’fo;7')-

We can define the forward 1-shock curve and the backward 2-shock curves with
initial state Uy = (po, %o, Mo) denoted by SF (Up) and S7 (Uy), respectively. We consider
there projection onto pu plane, S (Up) and S2(Uj), respectively, using the Riemann
invariant coordinates.

Lemma 1 If0 < e < 3, then there exist functions z = z(w) and w = wo(2) such that
gf(UO) = {(’U),Z, 7’); = 21(’(U), n= "](T), w < 'U)o},
8 W) = {(w,2,m); w=w(2), n=mn(r), z> z}.

Moreover there exist constants 0 < Cy < 1 and C; > 0 such that

0 = 21(wo) = wa(wo) < 7 (w), wy(z) < Co, (16)
2 (w) < 0 < wy(2), (17)
0= 77'(7'0) < 17’(7') <. (18)

Recall that 0 < ¢ < % is equivalent to 1 < v < -g— This lemma follows from
Proposition 2 If 0 < € < 3, then it follows

grr(T,70) >0 for p> po. (19)
Lemma 2 Suppose that

(sz U2, 772) € “S\lF(ph U, T]O)1 (p41 U4, 773) € Sf(p% Us, 770)7 T3> T1
and u; — Uy = U3z — Uq. :

Then there exists a constant Cy such that

0<(r-m) - (m-m) < { Geebe T (20



This lemma follows from the observation that g, + g, < 0 and the constant C; is

defined by
919 + Grr
€

Cy = sup
0<e<1/3
p<p<p

Lemma 3 Suppose that

(plvulv 771)7 (p21u21 772) € gf(pO:UOaWO)j D2 > D1,
(p3,us,ms) € SF (p1,u1,m0), and T =73

Then there exists constants C, and C3 such that
0 < up —uz < Cae(my — 7o) (12 — 71),
0 < (2= m) — (m — o) < Cae(r1 — 7o) (72 — 1),
Since g, > 0, we have g,,, < 0. C; is defined by

C3 = sup Igr‘rol
0<e<1/3
p<p<p

Lemma 4 Suppose that

(p27 Ug, ”72) € glF(pla Ui, nl)’ (p41 U4, 7)4) € 8{(1’37 Us, 7]3):
and T, — Ty = T3 — T4

Then there exists constants Cy and Cs such that

(3 —m) — (na —m)| < 046(72 —11)|11 — T3l

|(ur — u2) — (ua — ua)| < Cse(rz — 1) (I — ms| + 11 — 7).

Moreover: if m = 13 and n, > 13, then
0 < (uy — ug) — (uz — ug) < Coe(mz — 71) (M — 73);
if instead us = ug and m > ns, then
0 <74 — 72 < Coe(z — 1) (h — 73)-
We observe that A, + b,y <0 and g,y > 0._Constants are defined By

Grne

oy + B
Cs= sup |——| and Csg= sup
0<e<1/3 € 0<e<1/3 €
p<p<pP p<p<p

(21)

(22)

(23)

(24)

(25)

(26)
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Lemma 5 Suppose that

(p1,u1,m), (P2, u2,m2) € SF (po, U0, M), P2 > P1s
(ps,us,m3) € ST(Pl,Ul,Th)a and uz = uy.

Then there exists a constant C; such that
M — M3 + Cre(Ty — o) (12 — 1) 2 0. (27)

If y=1, we have

T—T7

1 — 1o = sinh — (1 —m) (7 =alogp).

Hence we find by direct computation

T2 — To .
— sinh

a
2 13—7 2 0.

L —To . 1 T3~ T2
— sinh

sinh

Me—M + T3 — To

This lemma says that the quantity 7, — n3 is different from that in the case v = 1 by
O(1)e(m1 — 7o) (T2 — T1)-

4. INTERACTION OF TwO INCOMING WAVES

We denote by «, S, 6, &, 7, respectively, strengths of 1-shock wave, 2- shock wave, 1-
rarefaction wave, 2-rarefaction wave, respectively. They are defined as follows

a=wo—w if (p1,u1,m) € 8F (po, uo, M),
,3-'—",2-—20 if (plauhnl) ESzB(PO,UO,UO),
d=m—mno if (po, %o, M), (Po,vo;M0)
constitute an entropy wave,
f =W - W if (p17u1;n0) € 73’1(1’0’”0,770))
T=z—2 if (p1,u1,m) € Ra(po, uo; m)-

In order to measure the increase of the entropy across shock waves, we introduce the
quantities d,, 0z as follows

6,, =m-—"7 if (plaul’nl) € §f(P0,uo,no),
bg=m —mo if (p1,u1,m) € SF (Do, %o, M)

;From now on, we also denote by «, 3,6,§, 7, the corresponding waves themselves.
Suppose that Uy and Up, are connected by a 2-wave 6,(or an entropy wave), and Up,
and Ur a 1-wave 6;(or an entropy wave); these two waves are assumed to be incoming
and interact. There exists a unique solution to the Riemann problem connecting the
states U, and Ug. This solution is composed of a 1-wave @' connecting the states UL



and Uy, an entropy wave ¢’ connecting U, and Uj;, and 2-wave 0 connecting Uj; and
Ug, which are outgoing waves. This interaction is simply denoted by

6, + 60, — 8, + & + 6,

Note that
0 =6+ bu — 0o + 0pr — 5. (28)

Local interaction estimates are carried out in the same way as [6, 7]. For important
cases, we have

Lemma 6 There ezxist constants 0 < Dy < 1 and D > 0 such that the following
estimates hold

1) Bra—sd +8+p

o < a+eDafB, by 2> 0,—€Daf,
B < B+eDaB, dz 2 dg—eDaf,
| < eDap.
(2 E+a—-2d+0+4":
o < a-§, St > 0o — D(a— o) —eDak,
= 0

o E Dy(a— o) +€Da'§, O
0] < D(a-da')+eDak.

(3) a1+a2—)a'+6’+7r':

0oy + 00, — €DOE,

o < aptap dp 2
n £ Daag, dp 2> 0,
16"l < Deyas.
(4) 6+E6E2E+8+0 0= orm)
§ < €+eDEE,
[6'| < [8]+ eDéE,
¢ < eD)E.

Remark 1 It is worth noticing that the interaction estimates in the case: 8+ a —
o + 06" + B has the form simpler than those of isentropic gas dynamics (see Nishida-
Smoller [9]).

In the above cases, waves of quadratic amplitudes are called scattered waves generated
through the interaction. Note that they have the estimates eDo8,eDJ€ in (1) and (4),
and Dayas in (3). Since 8’ and &' in (2) are not scattered waves, these waves will be
studied in a different manner. Let M, be a small number such that Dy + DM, < 1.
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The strength of the entropy will be measured by Myd. Next section we will find that
e(a + &) will be so small that

Dy + {My+e(a+€)/My}D =D; < 1.
Hence we have for Case (2)
B+ Mo|§'| < Di(a — o). (29)
These estimates will be used in Section 6.

5. GLOBAL INTERACTION ESTIMATES -

For space-like curve J, we define the global interaction potential as the following way.

F() = L(J)+eQU),
L) = Y {(o— Moba) + (B~ Modg) + Mo|d]}
J

QU) = MM Y (a+B+E+m)d]
J

+M; ) (fa+EB+ma+mh)+ My Y (anon + e+ Bif).
J

J

Here ) ; denotes the summation of waves crossing J. Let P denote a point of interaction
of two waves 0;,0,. We simply define Q(P) = |6,0,|. As [6], we have

Lemma 7 Suppose that 0 < € < 31-, and €I'Vpy, €I'Vuy and €'V are sufficiently
small. Suppose also that constants My, My, My are chosen so that My << 1, MyM; =
4, M, >> 1. Then there exists a constant c such that that F(J') — F(J) < —ceQ(P) for
any space-like curves satisfying J < J' and UR(J),U*(J') are contained in the region
0<p<p<p e(n—n) <K

The above lemma implies the following important estimate

F(O)
c

€ QP) < (30)
P

showing that e times total amount of interaction is uniformly bounded.

6. DECOMPOSITION BY PATHS

Let us consider an approximate solution U"(z,t) for 0 < ¢t < T. A sequence of interac-
tion points Py, Py, ..., P, constitutes a main path, if Py € {t = 0} and each segment
P;_1P; is a shock front or an entropy wave that is not a scattered wave; this main path
is denoted by

' PP, P,
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As Temple-Young [13] (see also Asakura [1]), we define the indez (c;, k;) of each segment
P,_1P; in the following way: by setting k; =1

1, if P;_,P; is a l-shock wave
¢ = 2, if P;_,P; isa 2-shock wave,
0, if P;_;P; is an entropy wave

- kj_l, if Ci = Cj-1
J kj_l + 1, if Cj # Cj-1.

Each k; is called the generation order of the segment and the sequence (cy, k1), (2, k2),
..+, (cny kr) the index of the main path. We observe by Lemma 6 that once the index
becomes (0, k;), then it does not change.

In the same manner as [1], we define the strength of the path by using the property
(29) and denote by ar(t) the strength of I'™ at t. Each wave P;_1P;, that is different
from a scattered wave, is contained in a finite number of main paths and the amplitude
is the sum of the amplitudes of these paths. When a scattered shock wave or entropy
wave, denoted by Pj,_,P;,, is generated, a branch path starts from Pj,_;. The generation
number of the branch path is defined to be 1+ the maximum of those of incoming waves.
If a branch shock or entropy wave interacts with a wave, all generated waves whose
characteristic directions are different from those of incoming waves are considered to
be new scattered waves. Hence the index of the branch path does not change. A path
I" is considered to be a Lipschitz curve z = I'(t). A collection of a finite number of main
paths I'™ = {I'"} and that of I'* = {I'*} are defined in the approximate solution. The
generation order of I" at ¢ is denoted by kr(t). We have

Lemma 8 For every approzimate solution, we have a collection of a finite number
of main paths T™ = {T'"'} and branch paths T® = {I'%} such that

1. L™(t) = Yorermyurs or(t)

2. LetIT™: Py = Py — --- = P, be a main path, and (c;, k;), @; its index and
strength, respectively, of P;_1P;. Then there ezists 0 < x <1 and

kj+1 = kj = Oj41 < (1 + CGI,le)aj,
kivi=kji+1 = aju < Xxaj

3. LetT*: Pj, = Pjo11 = -+ = Py, be a branch path and o; its strength of P;_,P;.
Then the indices are constant and

ajr1 < (1+ CelBs]);.

In the both cases, B; denotes the interacting wave.
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Lemma 9 Let ' = I'™ be a main path. Assume that eF'(O) is sufficiently small.
Then there exists positive constant k depending only on x and satisfying 0 < kK < 1
such that
ar'(t) S 20![‘(0) Zf kr(t) = 1, 31
ar(t) < War(0) if kr(t)=j22. (81)

Using this lemma, we have

Yo ar@® <t Y ar(0)=#"1L(0).

rmikp(t)=j I'm:kp(t)=1

Denoting L7 (t) = Y pmy(t)=; @r(t), we obtain

Proposition 3  Assume that eF(O) is sufficiently small. Then there exists positive
constant k depending only on ¢ and satisfying 0 < k < 1 such that

LP(H) <2L7(0), IP(t) < #L7(0) (G 2 2). (32)

Let L3(t) = Yopopp(ey=; @r(t) be the total amount of scattered waves whose gener-
ation order is j and Q;(P) the amount of scattered waves whose generation order is j.
It follows from the estimate (30) that

YY) =Y er) <& f)- (33)

jz1 P

Hence denoting L} = 3 5 Q;(P), we have

Proposition 4  Assume that ¢F(O) is sufficiently small. Then there ezists positive
sequence {Lj} such that

Lit) <L and Y L <o (34)

J21

These propositions will provide estimates of the total amount of non-physical waves
generated by the interaction of waves whose generation orders are larger than k and
the threshold parameter will be chosen according to the above estimate.

6. STABILITY OF WAVE-FRONT TRACKING SCHEME

First we prove that the approximate solution is constructed for all 0 <t < co. Let us
assume the contrary. Suppose that there is a sequence of interaction time T}, such that
limy 00 Trn = Teo < 00. Since the estimates (30) is true for 0 < ¢t < T, there exists a
uniform constant C such that

Y. QPnm) <0 (35)

0<tm<Teo
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where t,, denotes the interaction time at P,, and the summation runs over the all
interaction points between ¢ = 0 and T. Let p be a threshold introduced in Section
2. The above estimate says that there are less than Cu/p interaction points such
that the strengths of incoming waves satisfy Q(P,,) > p: Since new physical fronts
are generated only at such points, the number of physical fronts is thus finite. A new
non-physical front is generated through the interaction of two physical fronts and any
two physical fronts can interact only once. Hence the number of non-physical fronts is
also finite. Consequently, we conclude that total number of fronts is finite; this is the
contradiction.

Let o be a main shock or entropy wave at ¢ containing several paths which can be
arranged so that

Fl(t)a F2(t)7 F3(t)v N A kl"z(t) < kl‘s(t) <) (36)

The generation order of « is defined by kr, (¢) and denoted by k, that accords with the
definition of Bressan [3]. Let V/(t) be the total amount of main shock or entropy waves
at t whose generation orders are larger than j. Then it follows that V() = 3, ; LT*(?)
and from Proposition 3

P (0)

11—k (37)

sup V™ () < L=(0 -1 =
up V7" (1) < ODI

125

In the same manner, we define V;’() = 3, ; L{(¢) that is the total amount of branch
shock or entropy waves at ¢ whose generation orders are larger than j. Setting p; =
> i>j L, we find that

- igng’(t) <uj—0 as j— oo . (38)

Now we shall carry out the estimates of non-physical waves. Note that only the
simplified Riemann solver generates a non-physical wave and non-physical waves do
not interact each other. Let ¢ denote an arbitrary non-physical wave. We have the
following estimates.

(1) lel < Dp, (2) Y lel < Cosup(V™(2) + V' (¥))- (39)
EENP £20
ke>j
The first estimate comes from Lemma 6. Since
Y lel < D(1 + CeF(0)) sup(V™(t) + V7' (1)),
€ENP 620
ke2j
we obtain (2). In the same way as [3], we have by the above inequalities

Proposition 5  For given h > 0, there ezists a threshold p > 0 so that the approzi-
mate solution constructed by the front tracking scheme satisfies

> lel<h (40)

€ENP
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Let Ny be the number of shock waves at ¢t = 0. Then there exists a certain polynomial
P(¢,n) such that

Yodel = Do del+ Y I

€eENP €eEN'P eENP
’CeS] ke 2]+1

= O(1)P(No,h™)p+ O() (Vi (8) + Vin(2)
= O()P(No,h™)p+O) (W + ).
Hence, we choose j such that O(1)(x? + pj+1) < —2’5 and then p so that (40) holds.
In this way, we have obtained a uniform bound of non-physical waves and hence

T.V.UR(x,t). The existence of a global solution is proved by the usual argument in (3]
and Smoller [11].

Theorem 4 Under the same assumption as Theorem 2, the wave-front tracking scheme
is stable and provides a global in time solution.

Remark 2 In Liu [7], global solutions are obtained provided the initial data satisfy
TVny = Hy < 00 and (y —1)TVuy, (7 — 1)TVuy, are sufficiently small (smallness de-
pends on Hy and equations). The above theorem does not cover this existence theorem.
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