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1 Introduction.

We consider the one-dimensional motion of a compressible, viscous and heat con-
ductive gas driven by the self-gravitation in the free-boundary case. In addition to this
situation, we take into account the energy producing process inside the medium, that
is, the gas consists of a reacting mixture and the combustion process is current at the
high temperature stage.

The motion mentioned above is described by the following four equations in the Eu-
lerian coordinate system corresponding to the conservation laws of mass, momentum
and energy, and an equation of reaction-diffusion type:

[ petvpy = —pyy,

p(ve +vvy) = (—p+ pvy)y +pf,

plec +vey) = (Kby)y + (—p + pvy)uy + Apdz,
\ p(z +vzy) = (dpzy)y — pdz

(1.1)

in U (€ x {t}), where @, := {y € R|pi(t) < y < wo(t)} and () for i = 1,2 are

>0
fluctuating boundary functions. Here the density p = p(y, t), the velocity v = v(y, t),

the absolute temperature 6 = 6(y,t) and the mass fraction of the reactant z = z(y, t)
are the unknown functions, and positive constants u, d and A are the coefficients of
viscosity, the species diffusion and the difference in heat between the reactant and the
product. _

The external force per unit mass f = f(y,t) is given by the potential U due to
the self-gravitation, f = —U,. It is well known that U satisfies the boundary value
problem

{ Uy, = Gp in tL>Jo (0 x {t}), 12

Uly=y1¢t) = Uly=gaty =0 for t > 0.

Here G is the Newtonian gravitational constant. The rate function ¢ = ¢(6) is defined
by the Arrhenius law

$(6) = e, (1.3)
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where A is the activation energy (a positive constant) and  is a non-negative number.
At high tempereture regimes, pressure p = p(p,#) and internal energy e = e(p, 6) are
given by p = pg + pg and

4
e=C’,,0+a?-
p

~with the specific heat at constant volume (positive constant) C,, the Stefan-Boltzmann
constant a > 0, respectively. Here pg = pg(p,0) is the gaseous (elastic and thermal)
pressure and pr = pr(p, 9) is the radiative pressure given by Stefan law

a
PR = 594

For technical reason, we assume the gas is ideal, that is, pc = Rpf with the perfect
gas constant R. We also assume the conductivity ¥ = k(p, ) has the following form
(see for example, [1,6]):

K=K+ Ky—
P
where K, k2 and g are positive constants.
We impose the dynamical and kinematic boundary conditions for ¢ = 1, 2
(—p+ pv2)ly=yiy = —pe  for t >0,

iy(;—fﬂ = v(yi(t),t) for ¢ >0,

where the positive constant p. is the external pressure, and the thermal and chemical
boundary conditions for i = 1,2

KOy ly=yi(ey =0 for t > 0,
{ dpzyly=yiy =0  for ¢ >0,
and the initial conditon
(5,0,0, Dlemo = (po(u), o), bo(v), 2(8)) for y € .

We introduce the Lagrangian transformation. For arbitrary fixed point (y,t) €
U (% x {t}), we consider the solution curve Y, ,(7) of the Cauchy problem
>0 .

{ E%fr(_ﬂ =v(Y(r),7) for 0<7<t,
Yy,t(t) =Y.

The unique existence of such a solution curve is guaranteed from the fundamental
existence theorem of an ordinary differential equation as long as v is suitably smooth.
Let Y, :(0) = £. Then this is uniquely solvable in y,

y=Yeo(t) =€+ /ot v(Yeo(7),7) dr.



It is well known that the kinematic boundar_z_ condition im_p_lies that for each t > 0 this
mapping (y,t) — (£,t) is one-to-one from £, x {t} onto §2y x {t}. We put 3;(0) =0
and y(0) = L. Futhermore, we introduce the mass transformation

3
§r—->z=/0 po(s)ds.

Consequently, by putting v(z,t) := 1/p(z,t), u(z,t) := (z,t) (the tilde “~” means
transformed functions) and normalizing M := foL po(€) d¢ = 1 our problem becomes

.
UV = Ug,

= (it o, oty
u = (p+vu’)x G(:c }olv(n,t)dﬂ),

] (1.4)
e = (%&,)z + (—p + %um) Uz + APz,
d
z = (1—)523) - ¢z
\ 4
in (0,1) x (0, 00) with the boundary conditions
u K d o
( D+ 5 e on, vzzz) c=0,1«( Pe, 0, 0) for t >0, (1.5)
and the initial condition
(v,%,8, 2)|t=0 = (vo(z), uo(z), bo(z), 20(z)) for z € [0,1]. (1.6)

One-dimensional problems have been studied under various conditions. For the
viscous polytropic ideal gas a pioneering work of global in time existence with large
initial data was due to Kazhikhov and Shelukhin [7] under Dirichlet boundary condition
with respect to the velocity. In the free-boundary case, Nagasawa [9] discussed the
global existence problem and the asymptotic behavior for the polytropic ideal gas with
the external pressure depending on time. Also Chen [2] studied a model equations
for a reacting mixture. All works mentioned above were not taken into account the
influence of an external force.

Ducomet [3-5] treated a one-dimensional self-gravitating gaseous model as some
large-scale structure of the universe, called “pancakes” in the astrophysical literature
(see [11]). Following the spirit of [11], he adopted as the self-gravitational term

f(z,t) = -G (zé--;- )

not the exact form in (1.4)%, and also assumed that the initial data and the solution
are symmetric.
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Now, by integration of (1.4)? with respect to x over [0, 1] we get
1 1
,t)d
g/ wdz = -G [ L o mmt)dn) )
dt Jo 2 [y v(nt)dn
Denoting u — fol udz by u again, we obtain the final form:

p
Ve = Ug,

- (oot a(e-)

e = (%Q,)E + (—p + %uz) Uy + APz,

2 = (-‘—é—zm) - ¢z
\ v T

in (0,1) x (0, 00) with the same initial-boundary conditions (1.5) and (1.6). For this
system it is natural that initial function ug (which corresponds to up — fol up dz for the
original system (1.4)) satisfies

(1.8)

1
/ ugdz = 0. (1.9)
0

In this paper we construct the unique global classical solution of system (1.8), (1.5),
(1.6) with the equations of state

p= R% + §04, e = C,0 + avd* (1.10)

and the conductivity
K= K1 + Kou8?, (1.11)

without the symmetric assumption to the initial data and the solution. From (1.7)
it is easily seen that this solution leads to the one for the original problem (1.4)-(1.6)
describing the exact one-dimensional self-gravitating fluid model, not the approximated
one, “pancakes” which has been considered by Ducomet. The difficulty of our problem
is mainly caused by radiative components of equations of state and §-dependency of
the conductivity. We can solve the problem only for the case of some q > 4, which is
physically valid [14]. Similar result obtained in [5], but the proof in it is not clear for
the authors.

Let Q := (0,1), m a nonnegative integer, 0 < ¢ < 1, T a positive constant and
Qr :=Q x (0,7). We denote

[u|@ = sup |u(z,1)|
(z9t)eQT
and use the familiar notations C™*7(Q2), C;’/ (Qr), cre *9/3(Qr) for the Holder
spaces (see for example, [8]).
Our main result is
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Theorem 1 (Global Solution) Let a € (0,1), 4 < ¢ < 16 and 0 < 8 < 13/2.
Assume that

3
(%o, o, B0, 20) € CM+2(Q) x (C”‘"(Q)) (1.12)
satisfies the compatibility conditions, (1.9) and

v9(z), 6p(z) >0, 0<2(z)<1 for z € (1.13)

Then there ezxists a unique solution (v,u,0,2) of the initial-boundary value problem
(1.8), (1.5), (1.6) with (1.3), (1.10), (1.11) such that for any T > 0

(v, vz, w) € (C2:(Qn))

3
)

(w0,2) € (™ ™2Qn)), (119

v(z,t), 6(z,t) >0, 0<z(z,t)<1 for (z,t) € Qr. (1.15)

Proof of Theorem 1 is based on the local existence theorem and a priori estimates.
The fundamental theorem about the existence and the uniqueness of the local in time
solution in three-dimensional case was firstly established by Tani [12] under sufficiently
general initial-boundary conditions. For a radiative fluid, Secchi [10] obtained the
corresponding result. We can easily obtain suitable unique local solution to our problem
in the same manner as these works. Therefore, to prove Theorem 1 it is sufficient to
establish the following a priori boundedness.

Proposition 1 (A Priori Estimates) Let T be an arbitrary positive constant, 4 <

q <16 and 0 < B < 13/2. Assume that the initial data satisfy the hypotheses of

Theorem 1 and problem (1.8), (1.5), (1.6) with (1.3), (1.10), (1.11) has a solution
(v,u,6,z) such that

3

(@ vsw) € (C@Qn), (w6,2) € (C2@Qn) . (L16)

Then there ezists a positive constant M depending on the initial data and T such that

3
’

|’U, Vg, Utld,a/% l'u'a oazl2+a,1+a/2 S M; (1-17)
v(z,t), 6(z,t) > 1/M, 0<Lz(z,t)<1 for (z,t) € Qr. (1.18)

2 Key Lemmas for Proving Proposition 1.

In proving Proposition 1, we need several lemmas concerning the estimates of the
solution and its derivatives (see [13] for the details). We use C as positive constants,
and || - || denotes usual L? norm. At first, we easily obtain the following lemma by the
standard energy method.
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Lemma 1 For anyt € [0,T]

/ 1 <1u2 tedrzt f(z)v) dz
o \2

= /01 (%wf +eo+ Az + f(:v)'vo) dz := Ey, (21)
Ut + / Virdr <o, (2.2)

/ol-zzd:c+// (—zm +¢z) dzdr—A 5% 2dz. (2.3)

Here e := Cy8, + avpbp*, f(z) := p. + §Gz(1 — 1) and
1
Ut) = / [cv(e— 1-1logh) + R(v—1 —log'u)] dz
0
1 2 2
— Hug K0, f
V) = /0 ( te 4 2 oz) dz.

Kazhikhov and Shelukhin firstly derived the useful representation formula for v. In
the present case, we can obtain the following similar form (see [7]).

Lemma 2 The identity

1
B(z,t)Y (z,t)D(z,t)

X (vo + /0 t %O(m, 7)B(z, 7)Y (z,7)D(z,7) dT) (2.4)

v(z,t) =

holds, where
Bt = e |5 [ (w© - ue0) de], Yot = e (Litar),
D(z,t) := exp (—i /ot 0(z,7)* d’r) .

From this representation, we can obtain a priori bounds of v.

Lemma 38 For any (z,t) € Qr

C!'<u(z,t)<C. (2.5)
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