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1 Introduction.

We consider the onedimensional motion of a compressible, viscous and heat con-
ductive gas driven by the self-gravitation in the $\mathrm{f}\mathrm{r}\mathrm{e}\triangleright$-boundary case. In addition to this
situation, we take into account the energy producing process inside the medium, that
is, the gas consists of a reacting mixture and the combustion process is current at the
high temperature stage.

The motion mentioned above is described by the following four equations in the Eu-
lerian coordinate system corresponding to the conservation laws of mass, momentum
and energy, and an equation of reaction-diffusion type:

$\{$

$\rho_{t}+v\rho_{y}=$ $-\rho v_{y}$ ,

$\rho(v_{t}+vv_{y})$ $=$ $(-p+\mu v_{y})_{y}+\rho f$ ,

$\rho(e_{t}+ve_{y})$ $=$ $(\kappa\theta_{y})_{y}+(-p+\mu v_{y})v_{y}+\lambda\rho\phi z$ ,

$\rho(z_{t}+vz_{y})$ $=$ $(d\rho z_{y})_{y}-p\phi z$

(1.1)

in $\bigcup_{t>0}(\Omega_{t}\cross\{t\})$ , where $\Omega_{t}:=\{y\in \mathrm{R}|y_{1}(t)<y<y_{2}(t)\}$ and $y:(\cdot)$ for $i=1,2$ are
fluctuating boundary functions. Here the density $\rho=\rho(y,t)$ , the velocity $v=v(y,t)$ ,
the absolute temperature $\theta=\theta(y,t)$ and the mass fraction of the reactant $z=z(y,t)$
are the unknown functions, and positive constants $\mu,$

$d$ and A are the coefficients of
viscosity, the species diffusion and the difference in heat between the reactant and the
product.

The external force per unit mass $f=f(y, t)$ is given by the potential $U$ due to
the self-gravitation, $f=-U_{y}$ . It is well known that $U$ satisfies the boundary value
problem

$\{$

$U_{yy}=G\rho$ in $\bigcup_{t>0}(\Omega_{t}\cross\{t\})$ ,

$U|_{y=\mathrm{y}_{1}(t)}=U|_{y=y_{2}(t)}=0$ for $t>0$ .
(1.2)

Here $G$ is the Newtonian gravitational constant. The rate function $\phi=\phi(\theta)$ is defined
by the Arrhenius law

$\phi(\theta)=\theta^{\beta}\mathrm{e}^{-T}4$ , (1.3)
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where $A$ is the activation energy (a positive constant) and $\beta$ is a non-negative number.
At high tempereture regimes, pressure $p=p(\rho, \theta)$ and internal energy $e=e(\rho, \theta)$ are
given by $p=p_{G}+p_{R}$ and

$e=C_{\mathrm{v}} \theta+a\frac{\theta^{4}}{\rho}$

with the specific heat at constant volume (positive constant) $C_{\mathrm{v}}$ , the Stefan-Boltzmann
constant $a>0$ , respectively. Here $p_{G}=p_{G}(\rho, \theta)$ is the gaseous (elastic and thermal)
pressure and $p_{R}=p_{R}(\rho,\theta)$ is the radiative pressure given by Stefan law

$p_{R}= \frac{a}{3}\theta^{4}$ .

For technical reason, we assume the gas is ideal, that is, $p_{G}=R\phi$ with the perfect
gas constant $R$. We also assume the conductivity $\kappa=\kappa(\rho, \theta)$ has the following form
(see for example, [1,6]):

$\kappa=\kappa_{1}+\kappa_{2^{\frac{\theta^{q}}{\rho}}}$

where $\kappa_{1},$ $\kappa_{2}$ and $q$ are positive constants.
We impose the dynamical and kinematic boundary conditions for $i=1,2$

$\{$

$(-p+\mu v_{x})|_{y=\nu:(t)}=-p_{e}$ for $t>0$ ,

$\frac{\mathrm{d}y_{1}(t)}{\mathrm{d}t}=v(y:(t),t)$ for $t>0$ ,

where the positive constant $p_{e}$ is the external pressure, and the thermal and chemical
boundary conditions for $i=1,2$

$\{$

$\kappa\theta_{y}|_{\mathrm{r}=\nu \mathrm{s}(t)}=0$ for $t>0$ ,

$d\rho z_{y}|_{y=y_{*}(t)}.=0$ for $t>0$ ,

and the imitial conditon
$(\rho,v, \theta,z)|_{t=0}=(\rho_{0}(y),v_{0}(y),\theta_{0}(y),$ $z_{0}(y))$ for $y\in\overline{\Omega_{0}}$.

We introduce the Lagrangian transformation. For arbitrary fixed point $(y,t)\in$

$\bigcup_{t>0}(\overline{\Omega_{t}}\cross\{t\})$ , we consider the solution curve $\mathrm{Y}_{y,t}(\tau)$ of the Cauchy problem

$\{\frac{\mathrm{d}\mathrm{Y}_{y,t}(\tau)}{\mathrm{Y}_{y,t}(t)=\mathrm{d}\tau}=y$

.

$v(\mathrm{Y}_{y,t}(\tau),\tau)$ for $0<\tau<t$ ,

The unique existence of such a solution curve is guaranteed from the fundamental
existence theorem of an ordinary differential equation as long as $v$ is suitably smooth.
Let $\mathrm{Y}_{y,t}(0)=\xi$ . Then this is uniquely solvable in $y$ ,

$y= \mathrm{Y}_{\xi,0}(t)=\xi+\int_{0}^{t}v(\mathrm{Y}_{\zeta,0}(\tau),\tau)\mathrm{d}\tau$.
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It is well known that the kinematic boundary condition implies that for each $t\geq 0$ this
mapping $(y,t)\vdasharrow(\xi,t)$ is $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}\triangleright \mathrm{o}\mathrm{n}\mathrm{e}$ from $\overline{\Omega_{t}}\cross\{t\}$ onto $\overline{\Omega_{0}}\cross\{t\}$ . We put $y_{1}(0)=0$

and $y_{2}(0)=L$ . Futhermore, we introduce the mass transformation

$\xirightarrow x=\int_{0}^{\xi}\rho_{0}(s)\mathrm{d}s$ .

Consequently, by putting $v(x,t):=1/\tilde{\rho}(x,t),$ $u(x,t):=\tilde{v}(x,t)$ (the tilde $u$ ““ means
transformed functions) and normalizing $M:= \int_{0}^{L}\rho_{0}(\xi)\mathrm{d}\xi=1$ our problem becomes

$\{u_{t}v_{t}e_{t}z_{t}====u_{x}(=’ p+\frac{\mu}{v}u_{x})_{x}-G(x-\frac{\int_{0}^{1}\eta v(\eta,t)\mathrm{d}\eta}{\int_{0}^{1}v(\eta,t)\mathrm{d}\eta},)(_{v}^{\kappa}\theta_{x})_{x}+(-p+\frac{\mu}{v}u_{x})u_{x}+\lambda\phi z(\frac{d}{v^{2}}z_{x})_{x}-\phi z$

’

(1.4)

in $(0,1)\cross(0, \infty)$ with the boundary conditions

$(-p+ \frac{\mu}{v}\mathrm{u}_{x},$ $\frac{\kappa}{v}\theta_{x},$ $\frac{d}{v^{2}}z_{x})|_{x=0,1}=(-p_{e}, 0,0)$ for $t>0$ , (1.5)

and the inlitial condition

$(v,u,\theta, z)|_{t=0}=(v_{0}(x),u_{0}(x),$ $\theta_{0}(x),$ $z_{0}(x))$ for $x\in[0,1]$ . (1.6)

One-dimensional problems have been vtudied under various conditions. For the
viscous polytropic ideal gas a pioneering work of global in time existence with large
initial data was due to Kazhikhov and Shelukhin [7] under Dirichlet boundary condition
with respect to the velocity. In the free-boundary case, Nagasawa [9] discussed the
global existence problem and the asymptotic behavior for the polytropic ideal gas with
the external pressure depending on time. Also Chen [2] studied a model equations
for a reacting mixture. All works mentioned above were not taken into account the
influence of an external force.

Ducomet [3-5] treated a one-dimensional self-gravitating gaeeous model as some
large-scale structure of the universe, called “pancakes” in the astrophysical literature
(see [11]). Following the spirit of [11], he adopted as the self-gravitational term

$\tilde{f}(x,t)=-G(x-\frac{1}{2}M)$

not the exact form in $(1.4)^{2}$ , and also assumed that the initial data and the solution
are symmetric.
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Now, by integration of $(1.4)^{2}$ with respect to $x$ over $[0,1]$ we get

$\frac{\mathrm{d}}{\mathrm{d}t}\int_{0}^{1}u\mathrm{d}x=-G(\frac{1}{2}-\frac{\int_{0}^{1}\eta v(\eta,t)\mathrm{d}\eta}{\int_{0}^{1}v(\eta,t)\mathrm{d}\eta})$ . (1.7)

Denoting $u- \int_{0}^{1}u\mathrm{d}x$ by $u$ again, we obtain the final form:

$\{$

$v_{t}$ $=u_{x}$ ,

$u_{t}$ $=$ $(-p+ \frac{\mu}{v}u_{x})_{x}-G(x-\frac{1}{2})$ ,

$e_{t}$ $=$ $( \frac{\kappa}{v}\theta_{x})_{x}+(-p+\frac{\mu}{v}u_{x})u_{x}+\lambda\phi z$ ,

$z_{t}$ $=$ $( \frac{d}{v^{2}}z_{x})_{x}-\phi z$

(1.8)

in $(0,1)\cross(0, \infty)$ with the same imitial-boundary conditions (1.5) and (1.6). For this
system it is natural that initial function $u_{0}$ (which corresponds to $u_{0}- \int_{0}^{1}u_{0}\mathrm{d}x$ for the
original system (1.4) $)$ satisfies

$\int_{0}^{1}u_{0}\mathrm{d}x=0$ . (1.9)

In this paper we construct the unique global classical solution of system (1.8), (1.5),
(1.6) with the equations of state

$p=R \frac{\theta}{v}+\frac{a}{3}\theta^{4}$ ,

and the conductivity

$e=C_{\mathrm{v}}\theta+av\theta^{4}$ (1.10)

$\kappa=\kappa_{1}+\kappa_{2}v\theta^{q}$ , (1.11)

without the symmetric assumption to the initial data and the solution. Rom (1.7)
it is easily seen that this solution leads to the one for the original problem $(1.4)-(1.6)$

describing the exact one-dimensional self-gravitating fluid model, not the approximated
one, “pancakes” which has been considered by Ducomet. The difficulty of our problem
is mainly caused by radiative components of equations of state and $\theta$-dependency of
the conductivity. We can solve the problem only for the case of some $q\geq 4$ , which is
physically valid [14]. Similar result obtained in [5], but the proof in it is not clear for
the authors.

Let $\Omega:=(0,1),$ $m$ a nonnegative integer, $0<\sigma<1,$ $T$ a positive constant and
$Q\tau:=\Omega\cross(\mathrm{O},T)$ . We denote

$|u|^{(0)}:= \sup_{(x,t)\in Q\tau}|u(x,t)|$

and use the famihar notations $C^{m+\sigma}(\Omega),$ $C_{x,t}^{\sigma,\sigma/2}(Q_{T}),$ $C_{x,t}^{2+\sigma,1+\sigma/2}(Q_{T})$ for the H\"older
spaces (see for example, [8]).

Our main result is
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Theorem 1 (Global Solution) Let $a\in(0,1),$ $4\leq q\leq 16$ and $0\leq\beta\leq 13/2$ .
Assume that

$(v_{0},u_{0},\theta_{0}, z_{0})\in C^{1+\alpha}(\Omega)\cross(C^{2+\alpha}(\Omega))^{3}$ (1.12)

satisfies the compatibility conditions, (1.9) and

$v_{0}(x),$ $\theta_{0}(x)>0$ , $0\leq z_{0}(x)\leq 1$ for $x \in\prod$ . (1.13)

Then there $e$ vis$ts$ a unique solution $(v,u,\theta, z)$ of the initial-boundary vdue problem
(1.8), (1.5), (1.6) with (1.3), (1.10), (1.11) such that for any $T>0$

$(v, v_{x},v_{t})\in(C_{x,t}^{\alpha,\alpha/2}(Q_{T}))^{3}$, $(u,\theta, z)\in(C_{x,t}^{2+\alpha,1+\alpha/2}(Q_{T}))^{3}$ , (1.14)

$v(x,t),$ $\theta(x,t)>0$ , $0\leq z(x,t)\leq 1$ for $(x,t)\in\overline{Q_{T}}$. (1.15)

Proof of Theorem 1 is based on the local existence theorem and a priori estimates.
The fundamental theorem about the existence and the uniqueness of the local in time
solution in three.dimensional case was firstly established by Tani [12] under sufficiently
general initial-boundary conditions. For a radiative fluid, Secchi [10] obtained the
corresponding result. We can easily obtain suitable unique local solution to our problem
in the same manner as these works. Therefore, to prove Theorem 1 it is sufficient to
establish the following a priori boundedness.

Proposition 1 (A Priori Estimates) Let $T$ be an arbitmry positive constant, $4\leq$

$q\leq 16$ and $0\leq\beta\leq 13/2$ . Assume that the initid data satish the hypotheses of
Theorem 1 and problem (1.8), (1.5), (1.6) with (1.3), (1.10), (1.11) has a solution
$(v,u,\theta,z)$ such that

$(v, v_{x},v_{t})\in(C_{x,t}^{\alpha,\alpha/2}(Q\tau))^{3}$, $(u,\theta,z)\in(C_{x,t}^{2+\alpha,1+a/2}(Q_{T}))^{3}$ (1.16)

Then there enists a positive constant $M$ depending on the initial data and $T$ such that

$|v,$ $v_{x},v_{t}|_{\alpha,\alpha/2},$ $|u,\theta,z|_{2+\alpha,1+\alpha/2}\leq M$, (1.17)

$v(x,t),$ $\theta(x,t)\geq 1/M$, $0\leq z(x,t)\leq 1$ for $(x,t)\in\overline{Q_{T}}$ . (1.18)

2 Key Lemmas for Proving Proposition 1.

In proving Proposition 1, we need several lemmas concerming the estimates of the
solution and its derivatives (see [13] for the details). We use $C$ as positive constants,
and $||\cdot||$ denotes usual $L^{2}$ norm. At ffist, we easily obtain the following lemma by the
standard energy method.
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Lemma 1 For any $t\in[0, T]$

$\int_{0}^{1}(\frac{1}{2}u^{2}+e+\lambda z+f(x)v)\mathrm{d}x$

$= \int_{0}^{1}(\frac{1}{2}u_{0^{2}}+e_{0}+\lambda z_{0}+f(x)v_{0})\mathrm{d}x:=E_{0}$ , (2.1)

$U(t)+ \int_{0}^{t}V(\tau)\mathrm{d}\tau\leq C$, (2.2)

$\int_{0}^{1}\frac{1}{2}z^{2}\mathrm{d}x+\int_{0}^{t}\int_{0}^{1}(\frac{d}{v^{2}}z_{x}^{2}+\phi z^{2})\mathrm{d}x\mathrm{d}\tau=\int_{0}^{1}\frac{1}{2}z_{0^{2}}\mathrm{d}x$ . (2.3)

Here $e_{0}:=C_{\mathrm{v}} \theta_{0}+av_{0}\theta_{0f}^{4}f(x):=p_{e}+\frac{1}{2}Gx(1-x)$ and

$\{$

$U(t\rangle$ $:= \int_{0}^{1}[C_{\mathrm{v}}(\theta-1-\log\theta)+R(v-1-\log v)]\mathrm{d}x$ ,

$V(t)$ $:= \int_{0}^{1}(\frac{\mu u_{x}2}{v\theta}+\frac{\kappa\theta_{x}^{2}}{v\theta^{2}}+\lambda\frac{\phi}{\theta}z)\mathrm{d}x$.

Kazhikhov and $\mathrm{S}\mathrm{h}\mathrm{e}\mathrm{l}\mathrm{u}\mathrm{k}\mathrm{h}\dot{\mathrm{i}}$ firstly derived the useful representation formula for $v$ . In
the present case, we can obtain the following similar form (see [7]).

Lemma 2 The identity

$v(x,t)= \frac{1}{B(x,t)\mathrm{Y}(x,t)D(x,t)}$

$\cross(v_{0}+\int_{0}^{t}\frac{R}{\mu}\theta(x, \tau)B(x,\tau)\mathrm{Y}(x,\tau)D(x,\tau)\mathrm{d}\tau)$ (2.4)

holds, where

$B(x,t):= \exp[\frac{1}{\mu}\int_{0}^{x}(u_{0}(\xi)-u(\xi,t))\mathrm{d}\xi]$ , $\mathrm{Y}(x,t):=\exp(\frac{1}{\mu}f(x)t)$ ,

$D(x,t):= \exp(-\frac{a}{3\mu}\int_{0}^{t}\theta(x,\tau)^{4}\mathrm{d}\tau)$ .

Rom this representation, we can obtain a priori bounds of $v$ .
Lemma 3 For any $(x,t)\in\overline{Q_{T}}$

$C^{-1}\leq v(x,t)\leq C$. (2.5)
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