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ON INVERSES FOR DIFFERENTIAL OPERATORS

BERNARD GAVEAU AND PETER GREINER

ABSTRACT. We propose geometrically invariant formulas for fundamen-
tal solutions and heat kernels of subelliptic partial differential operators.

1. The fundamental solution
The differential operator

1
(1.1) Ay= (X + X3) - §i>\[X1,X2],

N =

with

X, = 2% 2k— 26

Xy = 3;; 2Ky |z[*~ 23%,

and (2|2 = 22+ 22, [X1, X2) = X1 X2 — X2 X1 is not elliptic since it is the sum
of squares of only 2 linearly independent vector fields in 3 dimensions, but
consecutive Lie brackets of X; and X3 do generate the full tangent space at
every point of R3, so A, is subelliptic. The fundamental solution K 3 is the

distribution solution of
(1.3) MK (2,420, u@) = §(z — 2@)d(u — @),

parametrized by (z(®,u©)) € R3 x R3. We set

: . n(0) ,.(0)
0 0y = [ @y w7 (0) . (0)
(1.4) K)(z,u;z",u'") /]Rg(:c,u;w(o),u(o),f) E(z,u; 2%, w% 7)dr,

where g is a solution of the Hamilton-Jacobi equation
P
(L5) 2 4 2 (X19)" + 2 (Xag) =0,
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g is given by a modified action integral of a complex Hamiltonian problem.

The associated energy

is the first invariant of the motion, and the volume element v) is the solution

of a second order transport equation. Let
1 1
(1.7) H=3E+ 2kzo|z|*~29)% + 5E - 2k |z|**~29)?
denote the Hamiltonian where £;, & and 6 represent the momenta of z1,

zo, and u, respectively. The complex bicharacteristics are solutions of the

Hamiltonian system of differential equations

(1.8) &= Hy,, &=-Hy j=12,
u = Hea 0= ‘-Hu

with the somewhat unusual boundary condition

(1'9) .’El(O) = :I,'g ), :1:1(7’) =T,
2(0) = 2, @a(r) =z,
(1.10) u(T) = u,
(1.11) 8(0) = —i.
Then the energy F is
1. 1.
E = -2-.’13% + '2"117%,

and the modified action g is given by

g = —1u(0 / [ZQ 8)&;(s) + 6(s)u(s) — H(z(s),u(s),{(s),@(s))]ds.

j=1
We note that the “missing direction” u must be treated separately.

The volume element v}, is the solution of the following second order “trans-
port” equation:

8
(1.12) (T+A)‘g)-§—:l + EAyvy =0,

see [1], p. 92, where

(1.13) = = +Z(X3g j
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is differentiation along the bicharacteristic. Formula (1.4) has a simple geo-
metric interpretation. The operator Ay has a characteristic variety in T*R3
given by H = 0. Over every point (z,u) € R3, H = 0 is a line parametrized

by 6 € (—o0,00),
(1.14) €1 = —2kzo|z|*720, & = 2kx|x|?*26.

Consequently, K may be thought of as the (action)™! summed over the
characteristic variety with measure Evy. We note that when A, is elliptic,
its characteristic variety is the zero section, so we do get simply (action) 3,
the Newton potential, as expected; 7g behaves like the square of a distance
function, even though it is complex.

K, has been worked out explicitly in [1]. Let (z(9,u(9) and (z,u) denote
2 arbitrary points of R3. We obtain 2 invariants of the motion, the energy

E and the angular momentum 2. Then

g=—iu—u®)+ (1 - —};)E’r

1 2
+ ﬂsgm‘[ﬁfﬂwp + W (|=|?)” - \/QEIw(O) 2+ W(]z(®2)2],
where we use the principal branch of the square roots, and

(1.15) W) =2ku* - Q, Q=0(,uz?,u®, 7).

Theorem 1.1. The fundamental solution Ky (z,u;z©,u®) has the follow-

ing tnvariant representation:

g+
(1.16) i KA = V\—— = —/ UA%,

where the second order transport equation for vy may be reduced to an Euler-
Poisson-Darbouz equation and solved explicitly as a function of E and €.
Namely,

va= 24 —9)7 T (Ao +9)7 F F(g0-),

with -
—e T

4miT (10 (42)

C) =
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1 . :
Ap=20x +gx, Q= lim Q, gp= lm g,

and
_ 2L/k () + 'ixg)(mgo) Fizy ))
== (A F )k
and F>(q+,q-) is a hypergeometric function of 2 variables

d3+d8 S+ 12 S— LEA
Fy(g+,9-) = T(EhT 1+A)/ 5.5 (1_s+) ? (1—3_) '

2
1/k

1-giq(s48-) s
(1 —ges/®)(1 — g sY*) (1 - (grg-Yrs4s-)

2. The heat kernel

Pi(z,u; 20, u®), t > 0, the heat kernel, is the solution of the following

initial value problem:

(21) ?6;’% — AP, =0, t>0,
(2.2) tlir% Pi(z,u; 29, u(oj) = 6(z — z@)o(u - u(),

We expect P; to have the form

e—f/t
(23) Pt = / t2 'lU)‘(—‘f-,-dT),
R -
where f = 7g and f, = 8f/07. So far (2.3) has been justified and worked

out explicitly only when k = 1; in that case

f = —iur + ]wlzTcoth(?r),

—27e™2TA

4m2f, sinh(27)’
see [2]. We do expect (2.3) to hold in general and to that end state and

Wy =

prove

Theorem 2.1. (2.3) is a solution of (2.1) if wy is a solution of
ow

(24) (T + Axg)# — frAzwy =0.

Furthermore, fr is a constant of motion.
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Proof. To work out

0
(A/\ - 5{)})%
we start with
- HNVF) Axfy -
M= (gt = )
Also,
2
Ax(e W) = Ax(e YW + 3 Xj(e X W + e iaw
j=1
—f/t 2
= Ax(e” ~fltaw,
and
ge_f/t_e—f/t(i a+1
ot tatl totl \ 2 - t )
Consequently,
' O\e ftW e fATH(VS) - f
(A)\ - 5}) fatl fotl [ 42 w
DW — (A )W — .
4 (et HW Af)t 7(Xg) - (XW) +AW]_
Using
of
(2.5) T"a; +H(Vf)=
one has
—f/t ~£/¢,.9f
(2.6) e /H(VS) - fIW = —e 7'5}-W
o
= 42 (o~ fIt
tr (e 1W,
and integrating by parts we obtain
0 ettt r—Z (W)
@n (A B &)P‘_‘/R totl [ t
4 @FDW — (AW — r(Xg) - (XW)
t
+ AAW:I dr
eIt —1TW + (a — A\f)W
- /R ] ; + AW ]ar.
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Next,
9g
(2.8) Tg=5;+(Xg)-(Xg)=—E+2E=E,

so from (2.5) and from TE = 0,

fr+1H(Vg) =g,

fr+TE=g
Tf'r +FE= Ea
2.9) Tf, =0,

and f, is an invariant of the motion. Also,
(2.10) Tf=g+7E.

Since W = — f.w,, one has

(-2

e f/™ fr (TTw,\ + (Axf — a)w,\)
=/R proms) [ ; +AW]d‘r

d 0 _
= / taL - 5o (TTws + (Aaf — cJwn) +e N
R

£/t
- /R %H [58; (rTwx + (Axf — @)wy) + Aa(—fvwx)] ar

after a second integration by parts. Next

Ax(=frwn) = ~(Bafr)ws — (XF) - (Xwy) — frArwy,
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S0,

—8%— (TTwx + (Axf — a)w,\) = Ax(frwy)
=Twy + T-;;(T’w,\) + (Axfr)wa + (Axf — a)%

or
— (Axfr)ws — (X fr) - (Xwy) — frArwy

_ (9w,\ 6&),\
= =t (Xg) - (Xwy) +7T—2= + 7(Xgr) - (Xw))
8w)‘

+ (Axf - a)—a-; — (X fr) - (Xwy) = frAywy

= TTQ%[TXQT +Xg—Xfr] (Xw,y)

15}
Faxf+1- )22 A,

or
ow ow
=1T52 + (Maf +1- )52 ~ frlws.

Setting o = 1, the integrand in

0
(a-5)7
vanishes if
ow,,

(T + A)‘f)T.a‘; — [rAywy =0

which yields (2.4) and we have derived Theorem 2.1. a

In the proof of Theorem 2.1 we assumed that the non-integrated terms
after the integrations-by-parts vanish at 7 = *too. These should be consid-
ered boundary conditions which may fix the required solution w) of (2.4)
uniquely. |

We note that (2.4) may be written in the following form:
_ ow
(2.11) T[(T + A,\g)—a—:'\ + EA,\’U)A] = gA w,.

In view of (1.13) one may try to find w) as a power series expansion in g
with first term v,.

We expect that formulas (1.4) and (2.3) apply to rather general subelliptic
differential operators. Note that for the operators discussed here 6(s) =

constant, which is not expected in general.
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