On the deformation of A－branes in String theory

Takao Akahori
Department of Mathematics
School of Science，University of Hyogo
Himeji，Hyogo
akahorit＠sci．u－hyogo．ac．jp

1 A brief sketch

In this paper，we discuss the deformation theory of A－branes in String theory， from the point of view of CR structures and give an outline of our approach． The full paper will appear in another paper．Let W be a Kaehler manifold and let ω_{W} be its Kaehler form．Let M be a real hypersurface in W ．We assume that our M admits an A－brane structure．Namely，there is a real line bundle L on M ，and a connection ∇ on L ，satisfying；
［1］The curvature of the connection，F ，is an element of $\Gamma\left(M, \wedge^{2} \mathcal{F}^{*}\right)$ ，
［2］$J:=\omega_{W}^{-1} F$ determines a complex structure on \mathcal{F} ），where $\mathcal{F}:=\frac{T M}{\mathcal{L}}$ ， and \mathcal{L} is a characteristic foliation \mathcal{L} ，defined by：for $p \in M, \mathcal{L}_{p}=\left\{Y_{p}, Y_{p} \in\right.$ $\left.T_{p} W, \omega_{W}\left(Y_{p}, Y_{p}^{\prime}\right)=0, Y_{p}^{\prime} \in T_{p} M\right\}$ ．

In this paper，by using the notion of almost CR structures，we reformulate the notion of A－branes．Our J determines an almost CR structure（ $M, T_{J}^{\prime \prime}$ ）on M ．For this almost CR structure，we prove that $C \otimes \mathcal{L}+T_{J}^{\prime \prime}$ is integrable on M ．And show the deformation complex of A－branes（the Kapustin－Orlov com－ plex）（see（2．7））．This is a natural generalization of the case $M=W$（Kapustin－ Orlov consider the case；A－branes wrap the whole W ，and obtain the standard $\bar{\partial}$－complex as a deformation complex）．

Here we treat A－branes of the type hypersurfaces．Now for a given A－brane， we introduce the notion of family of A－branes，$\left\{\left(M, L, \nabla_{t}\right)\right\}_{t \in T}$ ．In this paper， we introduce the deformation complex of A－branes，and construct the Kodaira－ Spencer map for the given family of A－branes．On the parameter space，a complex structure is given．But，we are relying on the Hamilton deformation， so we can＇t discuss in the complex analytic category（so we have to use that $\left\{\left(M, L, \nabla_{t}\right)\right\}_{t \in T}$ depends on $\left.t, C^{\infty}-\mathrm{ly}\right)$ ．And because of this fact，we have to discuss in the category， $\bmod \left(t^{2}, \bar{t}\right)$ ．

The author would like to thank Prof．A．Kapustin for allowing me to use the name，the Kapustin－Orlov complex and valuable suggestions during the preparation of this paper（the author learned that Kapustin and his student Yi Li ，independently，obtained the integrability of $\left.C \otimes \mathcal{L}+T_{J}^{\prime \prime}\right)$ ．

2 The Kapustin-Orlov complex

In [Kap-Or], Kapustin-Orlov formulate the D-branes of A-type(in their language, A-branes), mathematically. We consider the deformation theory of Abranes in the case real hypersurfaces. For this, we recall the notion of A-branes. Let W be a Kaehler manifold. Let ω_{W} be its Kaehler metric. Let M be a real submanifold of W. Then, for this M, we have a characteristic foliation \mathcal{L}. This is defined by: for $p \in M$,

$$
\mathcal{L}_{p}=\left\{Y_{p}, Y_{p} \in T_{p} W, \omega_{W}\left(Y_{p}, Y_{p}^{\prime}\right)=0, Y_{p}^{\prime} \in T_{p} M\right\}
$$

By this definition, \mathcal{L} is a subbundle of $\left.T W\right|_{M}$ and the rank of \mathcal{L} is $2 n-\operatorname{dim}_{R} M$, because of ω_{W} being non-degenerate(here n is the complex dimension of W).
Definition 2.1. If for $p \in M, \mathcal{L}_{p} \subset T_{p} M$, then M is called coisotropic.
Henceforth we assume that our real submanifold is coisotropic. So, on M, we have a quotient bundle

$$
\mathcal{F}:=\frac{T M}{\mathcal{L}}
$$

Definition 2.2. (A-branes). Let M be a coisotropic submanifold. Then M admits the A-brane if and only if there is a real line bundle L and a connection ∇ of $L,(L, \nabla)$ which satisfies
[1] The curvature of the connection, F, is an element of $\Gamma\left(M, \wedge^{2} \mathcal{F}^{*}\right)$,
[2] $J:=\omega_{W}^{-1} F$ determines a "Tac" structure on M (this means that $: J^{2}=-1$ and this J is integrable modulo characteristic foliation).

Now for the submanifold M, a CR structure ($M,{ }^{0} T^{\prime \prime}$) is introduced by:

$$
{ }^{0} T^{\prime \prime}=C \otimes T M \cap T^{\prime \prime} W \mid M
$$

where $C \otimes T M$ means the complexfied tangent bundle of M. Let $D=\{Y: Y \in$ $\left.T M, Y=X+\bar{X}, X \in{ }^{0} T^{\prime \prime}\right\}$. Then, naturally,

$$
D \cong \mathcal{F}
$$

By this identification, J is defined on D, satisfying: $J^{2}=-1$. Hence J determines an almost CR structure on M. We study this structure. J is defined on D. We extend this J on $C \otimes D$, naturally. Set

$$
\begin{aligned}
& T_{J}^{\prime}=\{X: X \in C \otimes D, J X=\sqrt{-1} X\} \\
& T_{J}^{\prime \prime}=\left\{X^{\prime}: X^{\prime} \in C \otimes D, J X^{\prime}=-\sqrt{-1} X^{\prime}\right\}
\end{aligned}
$$

Then, as mentioned in [Kap-Or], we have

Proposition 2.1.

$$
\begin{align*}
& C \otimes D=T_{J}^{\prime}+T_{J}^{\prime \prime}, T_{J}^{\prime} \cap T_{J}^{\prime \prime}=0, \tag{2.1}\\
& {\left[\Gamma\left(M, T_{J}^{\prime}\right), \Gamma\left(M, T_{J}^{\prime}\right)\right] \subset \Gamma\left(M, T_{J}^{\prime}\right) \bmod \mathcal{L} .} \tag{2.2}
\end{align*}
$$

Proof. (0.1) is obvious. We see (0.2). By the definition, $d F=0, d \omega_{W}=0$, and

$$
\omega_{W}\left(X, J X^{\prime}\right)=F\left(X, X^{\prime}\right), X, X^{\prime} \in C \otimes D .
$$

With these, we compute : for $X_{1}, X_{2} \in \Gamma\left(M, T_{J}^{\prime}\right), X \in \Gamma(M, C \otimes T M)$,

$$
\begin{align*}
& d F\left(X_{1}, X_{2}, X\right)=0 \tag{2.3}\\
& d \omega_{W}\left(X_{1}, X_{2}, X\right)=0 \tag{2.4}
\end{align*}
$$

We compute (0.3). Then,

$$
\begin{aligned}
& X_{1} F\left(X_{2}, X\right)-X_{2} F\left(X_{1}, X\right)+X F\left(X_{1}, X_{2}\right) \\
& -F\left(\left[X_{1}, X_{2}\right], X\right)+F\left(\left[X_{1}, X\right], X_{2}\right)-F\left(\left[X_{2}, X\right], X_{1}\right)=0 .
\end{aligned}
$$

We rewrite this by using : $\omega_{W}\left(X, J X^{\prime}\right)=F\left(X, X^{\prime}\right), X, X^{\prime} \in C \otimes D$.

$$
\begin{aligned}
& X_{1} \omega_{W}\left(J X_{2}, X\right)-X_{2} \omega_{W}\left(J X_{1}, X\right)+X \omega_{W}\left(J X_{1}, X_{2}\right) \\
& -\omega_{W}\left(J\left[X_{1}, X_{2}\right], X\right)+\omega_{W}\left(\left[X_{1}, X\right], J X_{2}\right)-\omega_{W}\left(\left[X_{2}, X\right], J X_{1}\right)=0 .
\end{aligned}
$$

By $J X_{i}=\sqrt{-1} X_{i}, i=1,2$, this becomes

$$
\begin{aligned}
& X_{1} \omega_{W}\left(\sqrt{-1} X_{2}, X\right)-X_{2} \omega_{W}\left(\sqrt{-1} X_{1}, X\right)+X \omega_{W}\left(\sqrt{-1} X_{1}, X_{2}\right) \\
& -\omega_{W}\left(J\left[X_{1}, X_{2}\right], X\right)+\omega_{W}\left(\left[X_{1}, X\right], \sqrt{-1} X_{2}\right)-\omega_{W}\left(\left[X_{2}, X\right], \sqrt{-1} X_{1}\right)=0
\end{aligned}
$$

While, by (0.4),

$$
\begin{aligned}
& X_{1} \omega_{W}\left(X_{2}, X\right)-X_{2} \omega_{W}\left(X_{1}, X\right)+X \omega_{W}\left(X_{1}, X_{2}\right) \\
& -\omega_{W}\left(\left[X_{1}, X_{2}\right], X\right)+\omega_{W}\left(\left[X_{1}, X\right], X_{2}\right)-\omega_{W}\left(\left[X_{2}, X\right], X_{1}\right)=0 .
\end{aligned}
$$

Hence, we have

$$
\omega_{W}\left(J\left[X_{1}, X_{2}\right], X\right)=\omega_{W}\left(\sqrt{-1}\left[X_{1}, X_{2}\right], X\right) \text { for any } X \in C \otimes D
$$

This means that: $\left[X_{1}, X_{2}\right] \in T_{J}^{\prime}$ modulo \mathcal{L}.
The following proposition is also mentioned in [Kap-Or].

Proposition 2.2.

$$
\omega_{W}\left(X_{1}, X_{2}\right)=0 \text { for } X_{1} \in T_{J}^{\prime}, X_{2} \in T_{J}^{\prime \prime}
$$

So, J-structure is different from the CR structure, naturally, induced from W. Here for the convenience, we give a proof.

Proof. We use $\omega_{W}(X, J Y)=F(X, Y)$, for any $X, Y \in C \otimes T M$. For $X_{1} \in$ $T_{J}^{\prime}, X_{2} \in T_{J}^{\prime \prime}$,

$$
\omega_{W}\left(X_{1}, J X_{2}\right)=F\left(X_{1}, X_{2}\right)
$$

By $J X_{2}=-\sqrt{-1} X_{2}$,

$$
\omega_{W}\left(X_{1},-\sqrt{-1} X_{2}\right)=F\left(X_{1}, X_{2}\right)
$$

so,

$$
\omega_{W}\left(X_{1}, X_{2}\right)=\sqrt{-1} F\left(X_{1}, X_{2}\right)
$$

On the other hand,

$$
\omega_{W}\left(X_{2}, J X_{1}\right)=F\left(X_{2}, X_{1}\right) .
$$

So, by $J X_{1}=\sqrt{-1} X_{1}$,

$$
\omega\left(X_{2}, X_{1}\right)=-\sqrt{-1} F\left(X_{2}, X_{1}\right)
$$

Hence

$$
\omega\left(X_{1}, X_{2}\right)=-\sqrt{-1} F\left(X_{1}, X_{2}\right)
$$

This means that $\omega_{W}\left(X_{1}, X_{2}\right)=0$.
As is mentioned in [Kap-Or], the following corollary follows from this proposition.

Corollary 2.3.

$$
\operatorname{dim}_{C} T_{J}^{\prime}=e v e n .
$$

Now we set a C^{∞} vector bundle decomposition

$$
C \otimes T M=C \otimes \mathcal{L}+T_{J}^{\prime \prime}+T_{J}^{\prime}
$$

Here $C \otimes \mathcal{L}$ means the complexfied \mathcal{L}. While in our case, $\left(M, T_{J}^{\prime \prime}\right)$ may not be a CR structure (only integrable modulo \mathcal{L}). But,
Proposition 2.4. \mathcal{L} preserves J, namely,

$$
\left[\Gamma\left(M, T_{J}^{\prime}\right), \mathcal{L}\right] \subset \Gamma\left(M, T_{J}^{\prime}\right) \text { modulo } \mathcal{L}
$$

Proof. By the same ways as in Proposition 2, we see this proposition.
For $X \in T_{J}^{\prime}, Y \in T_{J}^{\prime \prime}, \zeta \in \mathcal{L}$, as F, ω_{W} are closed,

$$
\begin{aligned}
& d F(X, Y, \zeta)=0 \\
& d \omega_{W}(X, Y, \zeta)=0
\end{aligned}
$$

By the first equation,

$$
\begin{aligned}
& X F(Y, \zeta)-Y F(X, \zeta)+\zeta F(X, Y) \\
& -F([X, Y], \zeta)+F([X, \zeta], Y)-F([Y, \zeta], X)=0
\end{aligned}
$$

As \mathcal{L} is a characteristic foliation, this becomes

$$
\zeta F(X, Y)+F([X, \zeta], Y)-F([Y, \zeta], J X)=0
$$

With $\omega_{W}\left(X^{\prime}, J Y^{\prime}\right)=F\left(X^{\prime}, Y^{\prime}\right)$ for $X^{\prime}, Y^{\prime} \in C \otimes D$,

$$
\zeta \omega_{W}(J X, Y)+\omega_{W}([X, \zeta], J Y)-\omega_{W}([Y, \zeta], J Y)=0
$$

While, by Proposition 2,

$$
\begin{aligned}
\omega_{W}(J X, Y) & =\omega_{W}(\sqrt{-1} X, Y) \\
& =0 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\omega_{W}([X, \zeta],-\sqrt{-1} Y)-\omega([Y, \zeta], \sqrt{-1} X)=0 . \tag{2.5}
\end{equation*}
$$

While by the second equation,

$$
\begin{aligned}
& X \omega_{W}(Y, \zeta)-Y \omega_{W}(X, \zeta)+\zeta \omega_{W}(X, Y) \\
& -\omega_{W}([X, Y], \zeta)+\omega_{W}([X, \zeta], Y)-\omega_{W}([Y, \zeta], X)=0
\end{aligned}
$$

So, by the same way, this becomes

$$
\begin{equation*}
\omega_{W}([X, \zeta], Y)-\omega([Y, \zeta], X)=0 . \tag{2.6}
\end{equation*}
$$

With (0.5), (0.6), we have

$$
\omega_{W}([X, \zeta], Y)=0, \text { for } X \in T_{J}^{\prime} Y \in T_{J}^{\prime \prime}
$$

This means that: the $T_{J}^{\prime \prime}$ part of $[X, \zeta]$ vanishes because of ω_{W} being nondegenerate with Proposition 2.2. Hence

$$
[X, \zeta] \in \Gamma\left(M, T_{J}^{\prime}\right) \text { modulo } \mathcal{L} .
$$

Now we can state our theorem.
Theorem 2.5. We set $T^{\prime \prime}:=C \otimes \mathcal{L}+T_{J}^{\prime \prime}$. Then,

$$
\left[\Gamma\left(M, T^{\prime \prime}\right), \Gamma\left(M, T^{\prime \prime}\right)\right] \subset \Gamma\left(M, T^{\prime \prime}\right)
$$

By this theorem, we have the deformation complex of A-branes (KapustinOrlov complex). Namely, for $u \in \Gamma(M, C)$, we set $\bar{\partial} u$ of $\Gamma\left(M,\left(T^{\prime \prime}\right)^{*}\right)$ by;

$$
\bar{\partial} u(X)=X u, \text { for } X \in T^{\prime \prime}
$$

By the same way as for ordinary differntial forms, we can introduce $\bar{\partial}^{p}$ from $\Gamma\left(M, \wedge^{p}\left(T^{\prime \prime}\right)^{*}\right)$ to $\Gamma\left(M, \wedge^{p+1}\left(T^{\prime \prime}\right)^{*}\right)$.

$$
\bar{\partial}^{p}: \Gamma\left(M, \wedge^{p}\left(T^{\prime \prime}\right)^{*}\right) \rightarrow \Gamma\left(M, \wedge^{p+1}\left(T^{\prime \prime}\right)^{*}\right)
$$

Then, by the integrability theorem(Theorem 2.5),

$$
\bar{\partial}^{p+1} \bar{\partial}^{p}=0
$$

So, we have a deformation complex of A-branes(Kapustin-Orlov complex).

$$
\begin{equation*}
0 \rightarrow \Gamma(M, C) \xrightarrow{\bar{\theta}} \Gamma\left(M,\left(T^{\prime \prime}\right)^{*}\right) \xrightarrow{\bar{\sigma}^{1}} \Gamma\left(M, \wedge^{2}\left(T^{\prime \prime}\right)^{*}\right) \rightarrow \cdots \tag{2.7}
\end{equation*}
$$

Furthermore, by this theorem, we can introduce a sheaf, $\mathcal{O}_{T^{\prime \prime}}$, composed of $\bar{\partial}$-closed elements, which are holomorphic in the direction $T_{J}^{\prime \prime}$, and constant in the direction \mathcal{L}.

3 A family of deformations of A-branes

We introduce the notion of a family of deformations of A-branes,
Definition 3.1. A set of A-branes $\left\{\left(M, L, \nabla_{t}\right), i_{t}\right\}_{t \in T}$, where T is an analytic space with the origin o, is a family of deformations of A-branes if
(1) connections ∇_{t} depends on $t, \mathbf{C}^{\infty}-l y$, and $\nabla_{o}=\nabla$,
(2) embeddings i_{t} depends on $t, \mathbf{C}^{\infty}-l y$, and $i_{o}=i$.

Unlike CR structures, we rely on \mathbf{C}^{∞} category. Because, in the case symplectic structures, the Hamiltonian deformations play an essential part. We study a family of deformations of A-branes in the case real hypersurfaces. For the embedding i_{t}, we have the characteristic vector field, ξ_{t}. By using this vector field, the condition of $\left\{\left(M, L, \nabla_{t}\right), i_{t}\right\}$ being the A-brane is rewritten as follows.
$[1]_{t}$ The curvature of the connection ∇_{t}, F_{t}, is an element of $\Gamma\left(M, \wedge^{2} \mathcal{F}_{t}^{*}\right)$,
$[2]_{t}$ Let $J_{t}:=\left(i_{t}^{*} \omega_{W}\right)^{-1} F_{t}$. Then, $J_{t}^{2}=-1$ on \mathcal{F}_{t}, where

$$
\mathcal{F}_{t}:=\frac{T M}{\mathcal{L}_{t}}
$$

and \mathcal{L}_{t} is generated by ξ_{t}. While the inclusion map induces a bundle isomorphism map ρ_{t}; from D to $\frac{T M}{\mathcal{L}_{t}}$, induced by the inclusion map ; D to $T M$. The structure defined by J_{t} induces an almost CR structure on D by;

$$
J_{t}^{\prime}:=\rho_{t}^{-1} J_{t} \rho_{t}
$$

Henceforth, we use the same notation J_{t} for J_{t}^{\prime} and we regard J_{t} as an almost CR structure on D. Therefore $[1]_{t},[2]_{t}$ are written as
$[1]_{t}^{\prime}$ The curvature of the connection ∇_{t}, F_{t}, satisfies $F_{t}\left(\xi_{t}, Y\right)=0$ for $Y \in D$,
$[2]_{t}^{\prime}$ Let $J_{t}:=\left(i_{t}^{*} \omega_{W}\right)^{-1} F_{t}$. Then, $J_{t}^{2}=-1$ on D.
We see why we call this complex a deformation complex of A-branes.
Definition 3.2. The quartets of A-branes, $\{(M, L, \nabla), i\},\left\{\left(M, L^{\prime}, \nabla^{\prime}\right), i^{\prime}\right\}$ are equivalent if there is a gauge transform of the line bundle L (we write this bundle map by q), and there is a Hamiltonian diffeomorphism map of W, defined by a C^{∞} function g (we write it by V_{g}), satisfying;
(1) the composition of maps V_{g} and $i, V_{g} i=i^{\prime}$,
(2) $V_{g}^{*} q^{*} \nabla=\nabla^{\prime}$

Next we introduce an equivalence relation for a family of deformations of A-branes.
Definition 3.3. The family of deformations of A-branes, $\left\{\left(M, L, \nabla_{t}\right), i_{t}\right\}_{t \in T}$, $\left\{\left(M, L^{\prime}, \nabla_{s}^{\prime}\right), i_{s}^{\prime}\right\}_{s \in S}$ are equivalent if there is a local biholomorphic map h from T to S satisfying: $h(o)=0$, there is a gauge transform of the line bundle L (we write this bundle map by q), and there is a Hamiltonian diffeomorphism map of W, defined by a C^{∞} function g_{t} (we write it by $V_{g_{t}}$), satisfying;
(1) the composition of maps $V_{g_{t}}$ and $i_{t}, V_{g_{t}} i_{t}=i_{h(t)}^{\prime}$,
(2) $V_{g_{t}}^{*} q_{t}^{*} \nabla_{t}=\nabla_{h(t)}^{\prime}$

4 The infinitesimal case

For a family of deformations of A-branes, $\left\{\left(M, L, \nabla_{t}\right), i_{t}\right\}_{t \in T}$, we can introduce the Kodaira-Spencer map, like the case the deformation theory of complex structures.

Theorem 4.1.

$$
\left.\frac{\partial}{\partial t}\left\{\left(M, L, \nabla_{t}\right), i_{t}\right\}_{t \in T}\right|_{t=0}
$$

determines an element of Ker $\bar{\partial}^{(1)} / \operatorname{Im} \bar{\partial}$ (the first cohomology of the differential complex (2.7)).
Definition 4.1. Let W be a Kaehler manifold and $\{(M, L, \nabla)\}$ be an A-brane in W. Let $\left\{\nabla_{t}\right\}_{t \in T}$ be a family of connections of L, satisfying $L_{o}=L$. Let ξ_{t} of a section of $\Gamma\left(M,\left.T W\right|_{M}\right)$, satisfying that $; \xi_{o}=0$ and ξ_{t} can be extended to a neighborhood of M, and let i_{t} be the embedding map, induced by ξ_{t}. If the following holds, then $\left\{\left(M, L_{t}, \nabla_{t}\right)\right\}_{t \in T}$ is called an infnitesimal deformation of A-branes.
$[1]_{t}^{\prime}$ The curvature of the connection ∇_{t}, F_{t}, satisfies $F_{t}\left(\xi_{t}, Y\right) \equiv 0$ for $Y \in D, \bmod \left(t^{2}, \bar{t}\right)$
$[2]_{t}^{\prime}$ Let $J_{t}:=\left(i_{t}^{*} \omega_{W}\right)^{-1} F_{t}$. Then, $J_{t}^{2} \equiv-1 \bmod \left(t^{2}, \bar{t}\right)$ on D.
With this correspondence, we have
Theorem 4.2. For $\phi \in \Gamma\left(M,\left(C \otimes \mathcal{L}+T_{J}^{\prime \prime}\right)^{*}\right)$, satisfying ; $\bar{\partial}^{(1)} \phi=0$, on M, we can set a family of deformations of A-branes, infinitesimally.

In a forthcomming paper, the proof is given.

References

[AGL1] T. Akahori, P. M. Garfield, and J. M. Lee, Deformation theory of fivedimensional CR structures and the Rumin complex, 50 (2002), 517-549, Michigan Mathematical Journal.
[AGL2] T. Akahori, P. M. Garfield, and J. M. Lee, The bigraded Rumin complex on $C R$ manifolds, preprint.
[AG] T. Akahori,P. M. Garfield, On the ordinary double point from the point of view of CR structures, to appear in Michigan Mathematical Journal.
[Kap-Or] A. Kapustin,D. Orlov, Remarks on A-branes, mirror symmetry, and the Fukaya category, 48 (2003), 84-99, Journal of Geometry and Physics.
[OP] Y.-G.Oh and J.-S.Park, Deformations of coisotropic submanifolds and strongly homotopy Lie algebroid, preprint, math.SG/0305292

