0000000000
1502 0 2006 0 192-203 192

CR immersions from S%**1to S4ntl

Sung Ho Wang

Introduction

Elie Cartan’s contribution to CR. geometry is well known. In his fundamental pa-
pers, he solved the problem of equivalence for a piece of real hypersurface in C2 up to
biholomorphism [Cal]. It was Chern and Moser, among others, who vastly generalized
this work to higher dimensions [ChM].

Recently, Huang and Ji gave a classification of the proper holomorphic maps from
the unit ball B"*! C C*+! to B! n > 2, [HJ]. We wish to show in this note that the

corresponding local CR analogue is true. Let us denote I" = §B™*! = §2n+1,

Theorem. Let f : X" < X*" be a C3, local CR immersion, n > 2. Then up
to automorphisms of the spheres, either f is linear, or f is locally equivalent to the

boundary of Whitney map.

When the codimension is small, CR Gau8§ equation puts the second fundamental form
of a CR immersion into a simple normal form. Our idea is to explore the successive
derivatives of this relation.

The computation involved is reminiscent of Cartan’s local isometric embedding of
Hyperbolic space H” in Euclidean space E?"~! via exteriorly orthogonal symmetric bi-
linear forms [Ca2]. Overdetermined nature of CR geometry forces the structure equation
to close up rather than become involutive.

Local CR immersions X! <+ X2 have been classified by Faran [Fa]. In contrast to

n > 2 cases, there exist four inequivalent such immersions.



Corollary [HJ]. Let F : B"*' — B™*! be a proper holomorphic map which is C3
up to the boundary, n > 2. Then up to automorphisms of the unit balls, either F' is

linear, or F' is equivalent to Whitney map.
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1 CR immersion

We first set up the basic structure equations for CR immersions in sphefes. For general
reference in CR geometry, [ChM][EHZ].
Let CN+L! be the complex vector space with coordinates z = (20, 24, 2NV11), 1 <

A < N, and a Hermitian scalar product
(2,2) =22 24 +1 (22N - V¥ 20).

Let TV be the set of equivalence classes up to scale of null vectors with respect to this
product. Let SU(N +1,1) be the group of unimodular linear transformations that leave
the form (z, Z) invariant. Then SU(N + 1,1) acts transitively on £V, and

p: SUWN+1,1) » =¥ = SUWN +1,1)/P

for an appropriate subgroup P [ChM].
Explicitly, consider an element Z = (2o, Z4, Zn+1) € SU(N +1,1) as an ordered
set of (N + 2)-column vectors in CN*L! such that det(Z) =1, and that

(Z4, Z) = 6B, {20, Zns1)=—(ZN+1, Do) =}, (1)

while all other scalar products are zero. We define p(Z) = [Z;], where [Zy] is the
equivalence class of null vectors represented by Z,. The left invariant Maurer-Cartan

form 7 of SU(V +1,1) is defined by the equation

dZ =27Zm,
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which is in coordinates

0 0 0
o T4 TN
d( ZO: Za, ZN+1) = (ZO1 ZB: ZN+1) WOB WE 771%_@.1 : (2)
N+1 __N+1 _N+1
o Ty TN+1

Coefficients of 7 are subject to the relations obtained from differentiating (1) which are

=N

N+1 __ =N+1 0 _ =0
Mo =T » TNyl = TNy
N+l _ _:=A A __ -0
T8 +78 =0
trm =0,
and 7 satisfies the structure equation
—dr=7mAT. _ (3)

It is well known that the SU(N + 1,1)-invariant CR structure on LV ¢ CP¥+!
as a real hypersurface is biholomorphically equivalent to the standard CR structure on
SN+l = BN, where BY*! C CN*! is the unit ball. The structure equation (2) shows
that for any local section s : £V — SU(N + 1,1), this CR. structure is defined by the
hyperplane fields (s*rg t!)* = # and the set of (1,0)-forms {s*#}.

Definition. Let M be a CR manifold of hypersurface type with CR hyperplane
fields #™ equipped with a complex structure. An immersion f: M < XN isa CR

immersion if f.:HM — H is complex linear.

Consider f*SU(N +1,1) — M. From the definition, we may arrange so that 78 = 0

for n+1 < a < m= N —n on this bundle. Differentiating this, we get

TEATY+mh g AT = 0.
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By Cartan’s lemma,

a
T

hgm)  mod gt (4)

for coefficients hf; = h%. h{; represents the second fundamental form of f [EHZ).

Example [Whitney - immersion]. Let & = (&,8,&6), u =
(u°, i, pnti 1) 1 < i < n, be the coordinates of C**1!, and C?**1! respec-
tively. Whitney immersion I, : £* — X2 is induced from the quadratic map

T, : Cril 5 €271 defined as

/J:o =9 ED fﬂ"}‘l,
B = ()2 (0)2,
U= £ (180 + £,
W = g (180 4 €7D,
T (u, B) =2(080 + 01§11y (¢, £), and the induced map Ty, is well defined.
It is easy to check I', is CR-equivalent to the boundary map 0W,, : SZ+1 — Gintl
of the following Whitney map W, : B"' — B?"*!, Here (2° 2') is a coordinate of
Ccrtl,

Wal2®, 7)) = ((2°)%, 2° 2, 7). (5)

This equivalence is via the isomorphism " ~ §2*+1 given in coordinates

o_ ifo + ETI.+1
- _i€0 +€n+1
g

T 10 4 gntl
Set T2 = {[¢] € Z"| & =0, Vi} and 7 = {[¢] € " |i&" + ¢ =0}. Then Iy
is an immersion which is 1 to 1 on " — X7, 2 to 1 on X, and the second fundamental

form vanishes along X7.



2  Proof of theorem

Our proof of Theorem is based on the following algebraic Lemma due to Iwatani on the
asymptotic subspace of the second fundamental form of a Bochner-Kahler submanifold
[Iw][Br]. Let V =C", W = C" with the standard Hermitian scalar product. Let {z¢}
be a unitary (1,0)-basis for V*, and {w,} be a unitary basis for W. Let SP4 denote
the space of polynomials of type (p,q) on V.

Lemma [Iw]. Suppose H = h$; z* 25 @ w, € S*° @ W satisfies

Y(H,H) = h& R 7 7 @ 2 2 = (*7*) h e 522, he Y,

or simply ~y(H, H) is Bochner-flat [Br]. Then the asymptotic vectors {v € V | H(v,v) =
0} form a subspace of V of codimension at most one.

Up to a unitary transformation on V, we may thus arrange

he = B &jn + B2 Gin,

for coefficients h{. Set v; = hfw, € W. A computation shows y(H, H) is Bochner-flat

when (v;, v;) = 0 for i # 7, and (v;, 1) = (v, v;) for all 4, 5. Up to a unitary

transformation of W, we may set
Vi = rwj,

for some r > 0. .

Let f: X" < £2" be a local CR immersion. Let A be the CR hyperplane fields on
£2". Since I is CR flat, after identifying V = f,TS"NH ~Cland W =V ~C" C
#, the second fundamental form of f is Bochner-flat [EHZ]. From (4) and the argument

above, we may write

n+i n 2n+1
Mg ' =T 0iq mod m"™", forg < n,

= (14 6p) 7 mod a2t
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Assume f is not linear, H # 0, and we may scale r = 1 using the group action by
Ren). We obtain the following normalized structure equation for a nonlinear local CR

immersion f:Z" «— N2

ot = §w” + himptt! for g < m, ” (6)

7t = (1 + 6;p) W' + hipmet,

for coefficients Aj.

Theorem is now obtained by successive application of Maurer-Cartan equation (3)
to this structure equation. We assume n > 3 for simplicity for the rest of this section,
as n = 2 case can be treated in a similar way. We shall agree on the index range

2n+1

1<pgqst<n-—1 and denote p = n+p, n' = n+n. We denote 8 = n;"" ",

—dfd=inf A 7t = iw mod 6, and 7} = w' for the sake of notation.
Step 1. Differentiating 77 = A6 mod 6, we get
iktw= (% — 2™ Aw" + 731 A (—i@°)  mod 6.
Since n — 1 > 2, this implies A} = 0, and by Cartan’s lemma

7l — 277 2¢, u w™
mod 8

T v 0/ \-iw
for coefficients c,, u.
Step 2. Differentiating 7t = ht8 mod 6 for t # s, we get
ihtw = (nf —7t) Awt — P AWt + 7k A (—i0°) mod 6.
Since n — 1 > 3, this implies hf =0 for ¢ # s, and by Cartan’s lemma

7t — 7t 0 b, —ib, w™

t mod 6

|
3
3
1l
&
o
®
€



for coefficients b.s, e. Since 7% — 7! is skew Hermitian, it cannot have any w"-term.
Step 8. Differentiating nf =w"+1ht@ mod 6 and collecting terms, we get
o= (rf — 7t + 7 —7") Aw™ + (bpw" —ie@’) Aw® + (—biwt + b @) AwW"
mod 6. Since n —1 > 2, this implies Al = e, and

.t t 0 n
Ay =my — 7wy +my —

=aw" —ied" + (bt — bt +Z by w? — A6
P

for coeflicients a;, A;.

Step 4.+ From Step 2, we may use the group action by Tone1 tO translate e = 0,
which we assume from now on. We also translate hf = 0 by mf,.,. Differentiating

7 =w! mod @ with these relations, we get

0=b () w A &) + (26 — 3B )" A" + (@ +2iT)w" Aw!  mod 6.
14

Thus by =¢,=0, a; = —2i%.
Step 5. Differentiating 7% = 2w™ + k%0 mod 6 and collecting terms, we get
ihfw =2l — a4+ 7 — 1) Aw™ + iuw? AP — iuw®AG®  mod 6.
This implies Al = u, and
Ap =70 — 7l + 70 — 77
=a,w" — iud" - A, 0

for coefficients a,, A,. But A;— A, is purely imaginary, and comparing with Step 3,
a, = —3id.
Step 6. Now by considering f-terms in Step 1, 2, 8, 4, 5 and the fact 7% A w' +

T3n+1 A @ = 0, we obtain the following simple structure equations. We omit the details

of computations.
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I

”gln+1 0
Thoy1 = (A — iuB)w' + B, 6
Mony1 = Aw" + By 0
Step 7. Differentiating 7t — 7t =0, t # s, 7% = 0, we get first B, =0, B =0, and

A-A=i(ua-1). (M

Step 8. Differentiating 7% = 2w" + 46 and 75, ., = uw",

du=u (T — 7l + At — 7)) + 2(A - An) " — 2uA6. (8)
Step 9. Differentiating 7% = —iu@® using (8) and collecting terms in 6 A &°,
A, =2A— A

Step 10. Differentiating 7%, ., = (A —i)wt, 75,,; = Aw", we get
dA = A(m2tl — ) + 70,y +2(ud”™ — Gw") + (ud — A%) 9. (9)

We normalize A = ia for a real number o using group action by 73,,. Since mi+7 =0,

A+ Ay = 7§ + 79, and (9) is now reduced to

do =2i(a+1) (@w" — ua") ' (10)



When u # 0, we may also rotate u to be a positive number, in which case it is determined

by (7)

2a+1=ui

(11)

- At this stage, note that the only independent coeflicients in the structure equations

are a, u, and that the expression for their derivatives does not involve any new coefli-

cients. The structure equations for local CR immersion f : X" < ¥2* thus close up as

follows.
(A A T T w?
™ 0 2w+ uf
Ty =27\ [0 w w"
7r§,'l e - u 0 —-i@®

"gn+1 0
Tony1 = Aw"
A= -2iaw" - A6

Ap=-3iaw" — iuw™ — A, 0

du=u (mintl — 70+ 7 — 7%) + 2(A — Ap) W™ — 2uA b,
da=2i(a+1)(@uw" —ua")

(12)

where A = io, A, = 3iq, and a, u satisfy the relation (11). Moreover, a long but

direct computation shows that this structure equation is compatible, i.e., d> = 0 is a

formal identity of the structure equation.
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Remark. The structure equation closes up at order 3. This implies a C2, nonlinear

CR immersion f: " — £2" is real analytic.

The remaining step in the proof of Theorem consists of identifying this as the
structure equation of Whitney immersion. We make one useful observation. Let ¥* =
" — ¥ which is a connected set. Note also the structure equation (12) implies that
the set of points where u = 0, or equivalently a = —%, cannot have any interior on X*.
‘We claim the invariant o takes any value > —% on *.

Suppose oy = sups. @ > —% is finite. Applying the existence part of Cartan’s
generalization of Lie’s third fundamental theorem on closed structure equations, [Br3],
‘there exists for any py € L™ a neighborhood U C Z" of p; and a CR immersion
g: U = I with invariant al,, = o, hence necessarily u,, = v/2ag + 1. From (12),
dalp, # 0 and let p_ € U be a point with —% < a|,_ < a4. Then by uniqueness part
of Cartan’s theorem, there exists a neighborhood U’ C U of p_ on which g agrees with
Whitney immersion I', up to automorphisms of ™ and £?". Since g and T, satisfy
the closed set of structure equations, they are real analytic. Thus g is a part of I'5. But
dolp, # 0, and there exists a point p, € U C £* such that alp, > a4, a contradiction.
By similar argument, infy. o = —%, and the claim follows for * is connected.

Proof of Theorem. Since the set of points o = —-;- cannot have any interior, let p €
be a point with a|, > —%. From the results above and the uniqueness part of aforemen-
tioned Cartan’s theorem, f = I', on a neighborhood U of p up to automorphisms of
the spheres. The theorem follows for both f and TI', are real analytic. O

Proof of Corollary. By the regularity theorem [HJX], F is real analytic up to JF.
Since the CR structure on S?**! = " is definite, the set of points where OF has
holomorphic rank n is a dense open subset. Assume F'is not linear. There exists a
point p € "™ where the second fundamental form does not vanish either. By Theorem,

OF agrees with Whitney immersion I', in a neighborhood of p up to automorphisms of
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the spheres. The real analyticity then implies 0F =T, on £", and hence F = W, on
B O

We may apply the existence part of Cartan’s generalization of Lie’s third funda-
mental theorem and show that Whitney immersion gives an example of a deformable
CR-submanifold. Take a point p € L", and an analytic one parameter faniily of real
numbers o; > —1, and set u; = v/20; + 1. Then by the existence part of Cartan’s the-
orem, there exists a neighborhood U of p and a one parameter family of CR immersions
ft + U — £ with the induced structure equations (12) such that the invariants o, u
have the prescribed values oy, u; at p. This deformation of course is tangential and
does not actually deform the subma.nifqld. It is due to an intrinsic CR symmetry of £»

that cannot be extended to a symmetry of the ambient £2" along Whitney immersion.
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