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ABSTRACT. As was shown recently by P. Nurowski, to any rank 2 maximally non-
holonomic vector distribution on a 5-dimensional manifold $M$ one can assign the
canonical conformal structure of signature $(3, 2)$ . His construction is based on the
properties of the special 12-dimensional coframe bundle over $M$ , which was distin-
guished by E. Cartan during his famous construction of the canonical coframe for
this type of distributions on some 14–dimensional principal bundle over $M$. The nat-
ural question is how “ to see” the Nurowski conformal structure of a $(2, 5)$-distribution
purely geometrically without the preliminary construction of the canonical frame. We
give rather simple answer to this question. using the notion of abnormal extremals of
$(2, 5)$-distributions and the classical notion of the osculating quadric for curves in the
projective plane. Our method is a particular case of a general procedure for construc-
tion of algebra-geometric structures for a wide class of distributions, which will be
described elsewhere. We also relate the fundamental invariant of $(2, 5)$-distribution,
the Cartan covariant binary biquadratic form, to the classical Wilczynski invariant
of curves in the projective plane.

1. INTRODUCTION

1.1. Statement of the problem. The following rather surprising fact was discovered
by P. Nurowski recently in [8]: any rank 2 maximally nonholonomic vector distribution
on a 5-dimensional manifold $\Lambda f$ possesses the canonical conformal structure of signature
$(3, 2)$ . His construction is based on the Cartan famous paper [4], where the canonical
coframe for this type of distributions on some 1-dimensional principal bundle $P$ over
A $f$ was constructed. In the modern terminology Cartan constructed the Cartan normal
connection, valued on the split real form $\tilde{G}_{2}$ of the exceptional Lie algebra $G_{2}$ , which
is the algebra of infinitesimal symmetries of the most symmetric distribution of the
considered type. It is well-known that the algebra $\tilde{G}_{2}$ can be naturally imbedded into
the algebra so$(4,3)$ , which in turn is isomorphic to the conformal algebra of signature
$(3, 2)$ . Motivated by this fact, P. Nurowski noticed that a simple quadratic expression,
involving only the 1-forms from the mentioned canonical coframe, which annihilate
the fibers of $P$ , is transformed conformally along the fibers of $P$ and therefore defines
the canonical conformal structure on M. In his construction he uses actually not the
bundle $P$ but the special 12-dimensional cofranie bundle, to which E. Cartan reduces
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the bundle of all coframes in the first step of his reduction-prolongation procedure
(see also section 4 below). Note that this reduction is highly nontrivial and purely
algebraic in nature. We asked ourselves, how “to see” the field of cones, defining
the Nurowski conformal structure of a $(2, 5)$ -distribution, purely geometrically without
exploiting the Cartan equivalence method, the bundles of so high (with compare to
$M)$ dimensions and the properties of the group of symmetries of the most symmetric
model? We give quite elementary answer to this question, using the dynamics of so-
called abnormal extremals (or singular curves) of $(2, 5)$-distributions, living in some
-dimensional bundle over $M$ (so that the fibers are just one-dimensional), and the

classical notion of the osculating quadratic cones for curves in the projective plane.

1.2. The main constructions. We start our construction with the description of
characteristic curves of $(2, 5)$ -distribution $D$ . Let $D^{l}$ be the t-th power of the distribu-
tion $D$ , i.e., $D^{l}=D^{l-1}+[D, D^{l-1}],$ $D^{1}=D$ . The tuple $(\dim D(q), \dim D^{2}(q),$ $\dim D^{3}(q),$ $\ldots)$

is called the small growth vector of $D$ at $q$ . Throughout this paper we will con-
sider $(2, 5)$-distributions with the small growth vector (2, 3, 5) at any point. Let
$\pi$ : $T^{*}Mrightarrow M$ be the canonical projection. For any A $\in T_{q}^{*}\Lambda,I,$ $q\in M$ , let $\sigma_{\lambda}(\cdot)=\lambda(\pi_{*}\cdot)$

be the canonical Liouville form and $\sigma=d\sigma$ be the standard symplectic structure on
$T^{*}M$ . Denote by $(D^{1})^{\perp}\subset T^{*}M$ the annihilator of the Zth power $D^{l}$ , narnely

(1.1) $(D^{l})^{\perp}=\{\lambda\in T^{*}M:\langle\lambda, v\rangle=0\forall v\in D^{\mathrm{t}}(\pi(\lambda))\}$ .

Since the submanifold $(D^{2})^{\perp}$ has odd codimension in $T$“ $M$ , the kernels of the restric-
tion $\sigma|_{(D^{2})^{\perp}}$ of $\sigma$ on $(D^{2})^{\perp}$ are not trivial. Moreover for the points of $(D^{2})^{\perp}\backslash (D^{3})^{\perp}$

these kernels are one-dimensional. They form the characteristic line distribution of the
distribution $D$ on $(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ . The integral curves of this line distribution define a
characteristic 1-foliation of $D$ on $(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ . In Control Theory the leaves of this
1-foliation are also called regular abnormal extremals of $D$ .

Now let us define the same objects on the projectivization of $(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ . First
note that in the considered case $(D^{3})^{\perp}$ coincides with the zero section of $T^{*}M$ . So the
projectivization of $(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ is just $\mathrm{P}(D^{2})^{\perp}$ . Further note that the homotheties of
tbe fibers of $(D^{2})^{\perp}$ preserve the characteristic line distribution. Therefore thc projec-
tivization induces on $\mathrm{P}(D^{2})^{\perp}$ in a natural way the characteristic line distribution, and
the characteristic 1-foliation, which will be denoted by by $C$ and $\overline{C}$ respectively. The
leaves of the 1-foliation $\overline{C}$ will be called the abnormal extremals of the distribution $D$

(on $\mathrm{P}(D^{2})^{\perp}$ ). The distribution $C$ can be defined equivalently in the following way: take
the corank 1 distribution on $(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ , given by the Pfaffian equation $\sigma|_{(D^{2})^{\perp}}=0$

and push forward it under projectivization to $\mathrm{P}(D^{2})^{\perp}$ . In this way we obtain a corank
1 distribution on $\mathrm{P}(D^{2})^{\perp}$ , which will be denoted by $\Delta$ . The distribution $\Delta$ defines the
quasi-contact structure on the even dimensional manifold $\mathrm{P}(D^{2})^{\perp}$ and $C$ is exactly the
characteristic distribution of this quasi-contact structure.

For the coordinate-free construction it is more convenient to work with the projec-
tivization $\mathrm{P}(D^{2})^{\perp}$ rather than with $(D^{2})^{\perp}$ . For simplicity, the canonical projection
from $\mathrm{P}(D^{2})^{\perp}$ to $M$ will be denoted by $\pi$ , as in the case of the cotangent bundle $T$“ $M$ .
Given a segment $\gamma$ of abnormal extremal on $\mathrm{P}(D^{2})^{\perp}$ one can construct two special
(unpararneterized) curves in three and two-dimensional projective spaces respectively.
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For this for any $\lambda\in \mathrm{P}(D^{2})^{\perp}$ denote by $V_{\lambda}$ the following subspace of $T_{\lambda}\mathrm{P}(D^{2})^{\perp}$

(1.2) $V_{\lambda}=T_{\lambda}(\mathrm{P}T_{\pi(\lambda)}^{*}\Lambda f)\cap T_{\lambda}\mathrm{P}(D^{2})^{\perp}$ .
In other words, $V_{\lambda}$ is the tangent space to the fiber of $\mathrm{P}(D^{2})^{\perp}$ at the point $\lambda$ . Note
that by constructions $\dim V_{\lambda}=1$ . Let $O_{\gamma}$ be a neighborhood of 7 in $\mathrm{P}(D^{2})^{\perp}$ such that
$N=O_{\gamma}/(\overline{C}|_{\mathit{0}_{\gamma}})$ is a well-defined smooth manifold. Let $\phi$ : $O_{\gamma}arrow N$ be the canonical
projection on the factor.

First note that $\tilde{\Delta}def=\phi_{*}\Delta$ is well defined corank 1 distribution on $N$ . Also the
distribution $\overline{\Delta}$ is contact distribution. Second let
(1.3) $\mathcal{E}_{\gamma}(\lambda)=\phi_{*}(V_{\lambda})$ , $\forall\lambda\in\gamma$ .
The curve $\{\mathcal{E}_{\gamma}(\lambda), \lambda\in\gamma\}$ is a curve in the three-dimensional projective space $\mathrm{P}\tilde{\Delta}(\gamma)$ .
Remark 1.1. The curve $E_{\gamma}$ is closely related to the so-called Jacobi curve $J_{\gamma}$ of the

abnormal extremal $\gamma$ ,

(1.4) $J_{\gamma}(\lambda)=\phi_{*}(\{v\in T_{\lambda}\mathrm{P}(D^{2})^{\perp} : \pi" v\in D(\pi(\lambda))\})$,

which was intensively used in our previous papers [1], [10],[11], and [7] for construction
of differential invariants and canonical hames of rank 2 distributions. The curve $J_{\gamma}$ is
the curve of 2-dimensional subspaces in the 4-dimensional space $\overline{\Delta}(\gamma)$ . Besides, since
the distribution $\overline{\Delta}$ is contact, the space $\overline{D}(\gamma)$ is endowed with the symplectic structure,
defined up to a constant factor. The curve $J_{\gamma}$ is the curve of Lagrangian subspaces
w.r.t. this symplectic form. Finally, the relation between the curves $J_{\gamma}$ and $\mathcal{E}_{\gamma}$ is given
by the formula

(1.5) $J_{\gamma}( \lambda)=\pi.([C, V]_{\lambda}\})=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\mathcal{E}_{\gamma}(\lambda), \frac{d}{dt}\mathcal{E}_{\gamma}(\Gamma(t))|_{t=0}\}$ ,

where $[C, V]_{\lambda}=$ { $[h,$ $v](\lambda)$ : $h\in C,$ $v\in V$ are vector fields} and $\Gamma(\cdot)$ is a parameteriza-
tion of 7 such that $\Gamma(0)=0$ . So, by (1.5) the Jacobi curve can be uniquely recovered
from the curve $\mathcal{E}_{\gamma}$ . $\square$

Hhrther fix some point $\lambda\in\gamma$ and denote by $\Pi_{\lambda}$ : $\tilde{\Delta}(\gamma)rightarrow\tilde{\Delta}(\gamma)/\mathcal{E}_{\gamma}(\lambda)$ the canonical
projection to the factor-space. Let $L_{\lambda}(\overline{\lambda})=\Pi_{\lambda}(\mathcal{E}_{\gamma}(\overline{\lambda}))$ for any $\overline{\lambda}\in\gamma\backslash \{\lambda\}$ . It is easy to
show (see formula (2.4) below) that one can define $L_{\lambda}(\overline{\lambda})$ also for $\overline{\lambda}=\lambda$ such that for
some neighborhood $I$ of $\lambda$ on $\gamma$ the curve $\{L_{\lambda}(\overline{\lambda}),\overline{\lambda}\in I\}$ will be a smooth curve in
the projective plane $\mathrm{P}(\overline{\Delta}(\gamma)/\mathcal{E}_{\gamma}(\lambda))$ . Moreover, it is easy to see (using, for instance,
Remark 1.1 above and Propositions 3.5 $\mathrm{h}\mathrm{o}\mathrm{m}[10])$ that this curve has no inflection
points (or, equivalently, it is regular curve in the terminology of section 2 below). In
general, let $\mathrm{Y}$ be a three-dimensional linear space and (be a smooth curve without
inflection points in its projectivization. It is well known (see, for example, [5], p. 53
there) that for any point $y\in\xi$ there exists the unique quadric in $\mathrm{P}\mathrm{Y}$ , which has
contact of order four with $\xi$ at, $y$ , i.e. it has the same forth jet at $y$ as $\xi$ . This quadric
is called the osculating quadric of $\xi$ at $y$ . The two-dimensional quadratic cone in $\mathrm{Y}$ ,
corresponding to this quadric, is called the osculating cone of $\xi$ at $y$ .

By construction, there is the natural identification:
(1.6) $T_{\gamma}N\sim T_{\lambda}\mathrm{P}(D^{2})^{\perp}/C_{\lambda}$,
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which in turn implies that $T_{\gamma}N/\mathcal{E}_{\gamma}(\lambda)$ is naturally identified with $T_{\lambda}\mathrm{P}(D^{2})^{\perp}/\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{C_{\lambda}, V_{\lambda}\}$ .

On the other hand, since $V_{\lambda}$ is the tangent space at $\lambda$ to the fiber of $\mathrm{P}(D^{2})^{\perp}$ , the latter
space is naturally identified with $T_{\pi(\lambda)}M/\pi_{*}C_{\lambda}$ . So, finally one has the following natural
identification

(1.7) $T_{\gamma}N/\mathcal{E}_{\gamma}(\lambda)\sim T_{\pi(\lambda)}M/\pi_{*}C_{\lambda}$.

Then under the identification (1.7) one has

(1.8) $\tilde{\Delta}(\gamma)/\mathcal{E}_{\gamma}(\lambda)\sim\lambda^{\perp}/\pi_{*}C_{\lambda}$,

where $\lambda^{\perp}=\{v\in T_{q}M:\langle\lambda, v)=0\}$ .
Now fix some point $q\in M$ . For any subspace $W$ of $T_{q}M$ denote by $\mathrm{p}\mathrm{r}_{W}$ : $T_{q}Mrightarrow$

$T_{q}M/W$ the canonical projection and by $\mathrm{P}(D^{2})^{\perp}(q)$ the fiber of $\mathrm{P}(D^{2})^{\perp}$ over $q$ . For
any $\lambda\in \mathrm{P}(D^{2})^{\perp}(q)$ take the osculating cone of the curve $\{L_{\lambda}(\overline{\lambda}) : \overline{\lambda}\in\gamma_{\lambda}\}$ at the point
$\lambda$ , where $\gamma_{\lambda}$ is the abnormal extremal of $D$ , passing through $\lambda$ . Under the identification
(1.8) this osculating cone is the quadratic cone in the three-dimensional linear space
$\lambda^{\perp}/\pi_{*}C_{\lambda}$ . Let $\mathrm{C}\mathrm{o}\mathrm{n}(\lambda)$ be the preimage of this cone under $\mathrm{p}\mathrm{r}_{\pi.C_{\lambda}}$ . The set $\mathrm{C}\mathrm{o}\mathrm{n}(\lambda)$ is
the degenerated 3-dimensional quadratic cone in the four-dimensional linear subspace
$\lambda^{\perp}$ of $T_{q}M$ . Finally, $1\mathrm{e}\mathrm{t}---q$ be the union of the cones $\mathrm{C}\mathrm{o}\mathrm{n}(\lambda)$ for all $\lambda$ from the fiber
$\mathrm{P}(D^{2})^{\perp}(q)$ ,

(1.9)
$—q= \bigcup_{\lambda\in \mathrm{P}(D^{2})^{\perp}(q)}\mathrm{C}\mathrm{o}\mathrm{n}(\lambda)$

.

The $\mathrm{s}\mathrm{e}\mathrm{t}--q-$ is a four-dimensional cone in $T_{q}M$ , associated intrinsically with our distri-
bution. What is the structure of this set? First of all it is easy to see that $\underline{=}_{q}$ is an
algcbraic variety. Indeed, in t,he appropriate coordinat,es the vector fields, which span
the line distributions $C$ and $V_{\lambda}$ , have the components, which are polynomials on each
fiber of $\mathrm{P}(D^{2})^{\perp}$ . Therefore for any natural $k$ the mapping from a fiber $\mathrm{P}(D^{2})^{\perp}(q)$ to the
space of $k$-jets of the curves in the projective plane, which assigns to any $\lambda\in \mathrm{P}(D^{2})^{\perp}(q)$

the $k$-jet of the curve $\{L_{\lambda}(\overline{\lambda}) : \overline{\lambda}\in\gamma\}$ , is a rational mapping. It implies without difficul-
ties that the quadratic cones $\mathrm{C}\mathrm{o}\mathrm{n}(\lambda)$ are zero levels of quadratic forns with coefficient,
which are polynomials on the fiber $\mathrm{P}(D^{2})^{\perp}(q)$ . $\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{c}e--q-$ is an algebraic variety. The
main results of the present paper are the following two theorems

Theorem 1. The $set—q$ is a quadratic cone of signature $(3, 2)$ for any $q\in M$ .

Theorem 2. The conformal structure, defined by the field of cones $\{_{-q}^{-}-\}_{q\in M}$ , coincides
urith the Nurowski conformal structure.

Theorem 1 and 2 are proved in sections 2 and 4 respectively. In section 3, as a prepa-
ration to the proof of Theorem 2, we obtain the explicit formula for the constructed
conformal structure in terms of the structural functions of any frame naturally adapted
to the distribution. This formula is useful by itself.

1.3. The Cartan form of $(2,5)$-distributions and the Wylczynski invariant
of curves in the projective plane. Both the discovery of the canonical conformal
structure for $(2, 5)$-distribution in [8] and the variational approach to the equivalence
problem of distributions via abnormal extremals and Jacobi curves, developed in [1]
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and [10], gave the new geometric interpretations of the fundamental invariant of $(2, 5)-$

distribution, the Cartan covariant binary biquadratic form (an invariant homogeneous
polynomial of degree 4 on each plane $D(q))$ . On one hand, it can be obtained from
the Weyl tensor of the canonical conformal structure. On the other hand, it can be
constructed from the special degree four differential on the Jacobi curves, which are
curves in Lagrange Grassmannians ([11]). Using the constructions above, one can
obtain one more, totally elementary interpretation of the Cartan form of a $(2, 5)-$

distribution in terms of the classical Wilczynski invariant ([9]) of the curves { $L_{\lambda}(\overline{\lambda})$ :
$\overline{\lambda}\in\gamma_{\lambda}\}$ , which are curves in the projective plane. Let us briefly describe how to do
it, referring to the Appendix for the facts from the theory of curves in the projective
spaces. Actually by our method we can construct more than just quadratic cone in
the tangent space $T_{q_{\sim}}M$ of any point $q$ . For this take the union of the preimages of
the curves $\{L_{\lambda}(\overline{\lambda}) : \lambda\in\gamma_{\lambda}\}$ under the projection $\mathrm{p}\mathrm{r}_{\pi_{*}C_{\lambda}}$ , wher$e\lambda$ runs over the fiber
$\mathrm{P}(D^{2})^{\perp}(q)$ , naniely, let

(1.10)
$\Omega_{q}=\bigcup_{\lambda\in \mathrm{P}(D^{2})^{\perp}(q)}\mathrm{p}\mathrm{r}_{\pi_{*}C_{\lambda}}^{-1}.(\{L_{\lambda}(\overline{\lambda}) : \overline{\lambda}\in\gamma_{\lambda}\})$ .

The set $\Omega_{q}$ is a conic hypersurface in $T_{q}M$ . In order to get the value of the Cartan
form at some vector $v\in D(q)$ one can proceed as follows: First note that there exists
exactly one point $\lambda$ on the fiber of $\mathrm{P}(D^{2})^{\perp}$ over the point $q$ such that the projection
to the $\mathrm{b}\mathrm{a}s\mathrm{e}$ manifold $\Lambda f$ of the abnormal extremal $\gamma_{\lambda}$ , passing through $\lambda$ , is tangent to
$v$ . IFhrom (1.10) it follows that the intersection of the set $\Omega_{q}$ with the hyperplane $\lambda^{\perp}is$

the hypersurface in $\lambda^{\perp}$ , which is exactly the preimage of the curve $\{L_{\lambda}(\overline{\lambda}) : \overline{\lambda}\in\gamma_{\lambda}\}$

under $pr_{v}$ . Further recall that for any regular curve in the projective plane one can
construct the invariant degree 3 differential, i.e. a degree 3 homogeneous polynomial
on the tangent line to the curve at any point (the (first) Wilczinsky invariant in the
terminology of the Appendix below). Applying Proposition 5.1 from the Appendix to
the curve $\{L_{\lambda}(\overline{\lambda}) : \overline{\lambda}\in\gamma_{\lambda}\}$ we get that for this curve this degree 3 differential is equal
to zero at the point $\lambda$ . Therefore the derivative of this differential at $\lambda$ is well-defined
degree 4 homogeneous polynomial on the tangent space to the curve $\{L_{\lambda}(\overline{\lambda}):\overline{\lambda}\in\gamma_{\lambda}\}$

at $\lambda$ . Take a parameter $t$ on $\gamma_{\lambda}$ such that $\gamma_{\lambda}(0)=\lambda$ and $\pi_{*}\dot{\gamma}_{\lambda}(0)=v$ . It turns out the
value of the Cartan form at $v$ is equal, up to the constant $\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}-\frac{1}{5}$ , to the value of
the mention degree 4 homogeneous polynomial at $\frac{d}{dt}L_{\lambda}(\gamma_{\lambda}(t))|_{t=0}$ . The last statement
can be obtained immediately if one combines Remark 1.1, Proposition 5.1 and Remark
5.1 from the Appendix with Theorem 2 from [11]. It also shows that the fundamental
invariant of $(2, 5)$-distribution at a point $q$ can be obtained as an invariant of the germ
of the set $\Omega_{q}$ at $0$ .

1.4. Other types of distributions. Now we say several words about similar con-
structions for other types of distributions. First note that shortly after Nurowski’s
discovery, R. Bryant gave a construction of the canonical conformal structure of signa-
ture $(3, 3)$ for maximally nonholonomic $(3, 6)$-distributions ([3]), exploiting again the
Cartan method of equivalence. What are the analogs of the Nurowski and Bryant
conformal structures for other classes of distributions? It turns out that the method of
osculating cones in the projective plane given in the present paper is a particular case
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of rather general procedure, which allows to assign natural algebra-geometric struc-
tures to vector distributions from very wide class. Let us describe this procedure very
briefly. First, similarly to above one can define the 1-foliation of abnormal extremals
of a distribution $D$ in some submanifold $S$ of the cotangent bundle, where $S=D^{\perp}$ in
the case of odd rank and $S$ is a codimension one subbundle of $D^{\perp}$ with algebraic fibers
in the case of even rank $($ in the case of rank 2 distributions $S=(D^{2})^{\perp})^{1}$ Second,
studying the dynamics of the fibers of $S$ along the foliation of abnormal extremals,
for any $q\in M$ one gets an algebraic variety $\mathrm{R}_{q}$ on the linear space $T_{q}M\oplus D^{\perp}(q)$ . In
the case of maximally nonholonomic $(2, 5)$ and $(3, 6)$ distributions the projection of
this variety to $T_{q}M$ gives the quadratic cone there, which defines the Nurowski and
the Bryant conformal structure respectively. Moreover, the variety $R_{q}$ can be recon-
structed from this projection. In general case, the variety $R_{q}$ can not be recovered bom
its projection to $T_{q}M$ (for example, in many cases this projection is the whole $T_{q}M$).
However the constructed varieties $\mathrm{A}_{q}$ , $q\in M$ in the vector bundle $TM\oplus D^{\perp}$ contain
the fundamental information about the distribution. The details of these constructions
will be given in our forthcoming paper [2].

2. PROOF OF THEOREM 1

2.1. Preliminaries. We start with several simple auxiliary facts from geometry of
curves in projective spaces. Let $Z$ be an $k$-dimensional linear space and $\zeta$ be a smooth
curve in the projective space $\mathrm{P}Z$ or, equival$e\mathrm{n}\mathrm{t}\mathrm{l}\underline{\mathrm{y}}$ , a smooth curve of straight lines
in $Z$ . Take some parameter $t\in\tilde{I}$ on $\zeta$ , wher$e$ $I$ is some segment in R. The curve
$\epsilon$ : $\tilde{I}-\rangle$ $Z$ such that $\epsilon(t)\in\xi(t)$ for all $t\in\tilde{I}$ will be called a representative of the curve
$\xi$ , corresponding to the parameter $t$ . A smooth curve $\zeta$ in the projective space $\mathrm{P}Z$ is
called regular, if some (and therefore any) its representative $\epsilon$ : $\tilde{I}rightarrow Z$ satisfies

(2.1) $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\epsilon^{(:)}(t)\}_{i=0}^{k-1}=Z$ , $\forall t\in\tilde{I}$ ,

Assume that $\zeta$ is a regular curve and $t$ is som$e$ parameter on it. It is well-known
that there exists the unique, up to the multiplication on a constant, representative $\epsilon$ ,
corresponding to the paranieter $t$ such that

(2.2) $\epsilon^{(k)}(t)=\sum_{i=0}^{k-2}B:(t)\epsilon^{(i)}(t)$ ,

i.e. the coefficients near $\epsilon^{(k-1)}(t)$ in the linear decomposition of $\epsilon^{(k)}(t)$ w.r.t. the basis
(2.1) vanishes. Such representative of $\xi$ will be called canonical $w.r.t$. the parameter $t$ .

Remark 2.1. If in addition $\dim Z=k$ is even, $k=2m$ , the space $Z$ is endowed with
the symplectic form $\overline{\sigma}$ , and the $m$-dimensional subspace $\mathrm{s}\mathrm{p}\mathrm{t}\{\epsilon^{(i)}(t)\}_{1=0}^{m-1}$ is Lagrangian
for any $t\in\tilde{I}$ , then the representative $trightarrow\epsilon(t)$ is canonical if and only if

(2.3) a $(\epsilon^{(m)}(t), \epsilon^{(m-1)}(t))\equiv \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ .
Also in this case $B_{2m-3}(t)=B_{2m-2}’(t)$ and more general for any $0\leq j\leq m-2$

the coeffici$e\mathrm{n}\mathrm{t}B_{2j-1}$ is equal to some polynomial expression w.r.t. the tuple of the

1If rank of a distribution is even and not 2, then the abnormal extremals may not exist. However
the procedure can be extended also to this case after the complexification of the fibers of $T$“ $M$ .
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coefficients $\{B_{2l}\}_{l=j}^{m}$ and their derivatives. All statements in this remark can be easily
checked (see also [12]). $\square$

Further, fix some point $\ell\in\zeta,$ $\ell=\zeta(t_{0})$ . Note that $\ell$ is a straight line in $Z$ . Let
$\Pi_{\ell}$ : $Zrightarrow Z/l$ be the canonical projection to the factor-space. If $\epsilon$ is a representative
of $\zeta$ , corresponding to the parameter $t$ , then the germ at $t_{0}$ of the following map

(2.4) $\tilde{\epsilon}(t)=\{\Pi_{\ell}\mathrm{I}\mathrm{I}_{\ell\{}$

$\epsilon(t))$ $t\neq t_{0}$

$\epsilon’(t_{0}))$ $t=t_{0}$

is the representative of the smooth curve in $(k-2)$-dimensional projective space $\mathrm{P}(Z/\ell)$ .
This curve will be called the reduction of the curve (by the point $\ell$ . The point $y=$
$\mathbb{R}\Pi_{t}(\epsilon’(t_{0}))$ will be called the point of the reduction, corresponding to $\ell$ .

Remark 2.2. Note also that if the curve $\zeta$ is regular then its reduction by $\ell$ is regular
in a neighborhood of the point of the reduction, corresponding to $\ell$ . $\square$

Now let $\mathrm{Y}$ be a three-dimensional linear space, $\xi$ be a regular curve in the projective
plane $\mathrm{P}Y$ , and $y$ be a point on $\xi$ . In the following lemma we give an explicit formula for
the osculating quadric to $\xi$ at $y$ in some coordinates under normalization assumptions:

Lemma 2.1. Suppose that $(y_{1}, y_{2})$ is a coordinate system in $\mathrm{P}Y$ such that $y=(0,0)$
and $\tilde{\epsilon}$ is a representative of $\xi$ such that $\tilde{\epsilon}(0)=y,\tilde{\epsilon}(t)=(\alpha_{1}(t), \alpha_{2}(t))$ in the chosen
coordinates, and

(2.5) $\dot{\alpha}_{1}(0)=\frac{1}{2},\dot{\alpha}_{2}(0)=\ddot{\alpha}_{1}(0)=0,\ddot{\alpha}_{2}(0)=\frac{1}{3}$ .

Then the osculating quadric to $\xi$ at $y$ has the following equation

(2.6) $\frac{2}{3}y_{1}^{2}+2\alpha_{2}^{(3)}(0)y_{1}y_{2}-(4\alpha_{1}^{(3)}(0)+6(\alpha_{2}^{(3)}(\mathrm{O}))^{2}-\frac{3}{2}\alpha_{2}^{(4)}(0))y_{2}^{2}-y_{2}=0$ .

The proof of Lemma 2.1 consists of straightforward computations. The normalization
assumptions (2.5) are convenient when one makes a reduction. Indeed, suppose that
$\dim Z=4,$ $Y=Z/\ell$ and the curve $\xi$ is the reduction of the curve $\zeta$ by a point $l$ . Let $\epsilon$

be a representative of $\zeta$ such that $\epsilon(0)=P,\tilde{\epsilon}$ be the representative of 4, satisfying (2.4)
and $y=\tilde{\epsilon}(0)$ . As a basis in $Y$ take the tuple $(\Pi(\epsilon’(0)),$ $\Pi(\epsilon’’(0)),$ $\Pi(\epsilon^{(3)}(0)))$ . Let
$(\mathrm{Y}_{0}, \mathrm{Y}_{1}., Y_{2})$ be the coordinates in $Y$ w.r.t. this basis. Then $(y_{1}, y_{2})=(Y_{1}/\mathrm{Y}_{0}, Y_{2}/Y_{0})$ are
coordinates in a neighborhood of $y$ in $\mathrm{P}Y$ . If $\tilde{\epsilon}(t)=(\alpha_{1}(t), \alpha_{2}(t))$ in this coordinates,
then by direct check the functions $\alpha_{1}$ and $\alpha_{2}$ satisfy (2.5). Besides, if $\epsilon$ is the canonical
representative of the curve $\zeta$ , satisfying (2.2), where $k=4$ , then by simple computations

$\alpha_{1}^{(3)}(0)=\frac{B_{2}(0)}{4}$ , $\alpha_{2}^{(3)}(0)=0$ , $\alpha_{2}^{(4)}(0)=\frac{B_{2}(0)}{5}$ .

Then from Lemma 2.1 it follows that the osculating cone of $\xi$ at $y$ in $Y$ w.r.t. the
chosen coordinates $(\mathrm{Y}_{0}, Y_{1}, Y_{2})$ has the following equation

(2.7) $\frac{2}{3}Y_{1}^{2}-\frac{7}{10}B_{2}(0)Y_{2}^{2}-Y_{0}\mathrm{Y}_{2}=0$.
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Remark 2.3. Comparing decomposition (2.2) and formula (4.2) from [10], we get that
the function $B_{2}$ coincides, up to a constant factor, with the so-called Ricci curvature
$\rho$ of the parameterized curve $t\mapsto \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\epsilon(t), \epsilon’(t)\}$ in the Grassmannian $G_{2}(Z)$ of half-
dimensional subspaces of the space $Z$ . More precisely, $B_{2}=- \frac{15}{2}\rho$ . The definition of
the Ricci curvature of the curves in Grassmannians of half-dimensional subspaces of
an even-dimensional space can be found, for example, in subsection 2.3 of [10]. $\square$

2.2. Algebraic structure of the set $–q-$ . Note that the curve $\mathcal{E}_{\gamma}$ , constructed in
the subsection 1.2 for a segment $\gamma$ of any abnormal extremal, is a regular curve in
the corresponding three.dimensional projective space (this fact follows, for example,
$\mathrm{h}\mathrm{o}\mathrm{m}$ Remark 1.1 above and Proposition 3.5 from [10] $)$ . The curve $L_{\lambda}$ , defined in the
subsection 1.2 as well, is exactly the reduction of $\mathcal{E}_{\gamma}$ by $\mathcal{E}_{\gamma}(\lambda)$ . Hence, by Remark 2.2
the curve $L_{\lambda}$ is a regular curve in the corresponding projective plane. Now we will use
Lemma 2.1 for the explicit calculation of the set $–q-$ in appropriate coordinates. For
this it is more convenient to work with $(D^{2})^{\perp}$ rather then with its projectivization. To
begin with given two vector fields $X_{1},$ $X_{2}$ , constituting a local basis of distribution $D$ ,
one can construct a special vector field $\tilde{h}_{x_{1},x_{2}}$ tangent to the characteristic l-foliation
of $D$ on $(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ . For this suppose that

(2.8) $X_{3}=[X_{1}, X_{2}]$ mod $D,$ $X_{4}=[X_{1}, [X_{1}, X_{2}]]=[X_{1}, X_{3}]$ mod $D^{2}$ ,
$X_{5}=[X_{2}, [X_{1}, X_{2}]]=[X_{2}, X_{3}]$ mod $D^{2}$

The tuple $\{X_{\mathrm{t}}\}_{\mathfrak{i}=1}^{5}$ is called the adapted frame of the distribution $D$ . Let us in-
troduce “quasi-impulses” $u$, : $T” Mrightarrow \mathbb{R},$ $1\leq i\leq 5$ , by the following formula:
$u_{1}(\tilde{\lambda})=\langle\tilde{\lambda},x_{:}(q)\rangle$ . For given function $G:T” M\mapsto \mathbb{R}$ denote by $\vec{G}$ the corresponding
Hamiltonian vector fi$e1\mathrm{d}$ defined by the relation $\sigma(\vec{G}, \cdot)=-dG(\cdot)$ . Then it is easy to
show (see, for example [13]) that the following vector field

(2.9) $\tilde{h}_{x_{1},x_{2}}=u_{4}\tilde{u}_{2}-u_{5}\tilde{u}_{1}$

is tangent to the characteristic 1-foliation. In $\mathrm{t}\mathrm{H}\mathrm{e}$ sequel we will work with the fixed
local basis $(X_{1}, X_{2})$ , therefore we will write $\vec{h}$ instead of $\vec{h}_{\mathrm{x}_{1},x_{2}}$ .

Further denote by $P:T” Mrightarrow \mathrm{P}T" M$ the canonical project\’ion. Let $e\sim$ be the Euler
field, i.e., the infinitesimal generator of homotheties on the fibers of $T^{*}M$ . Take a
point $\tilde{\lambda}\in(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ and let $\tilde{\gamma}$ be a segment of the abnormal extremal of $D$ in
$(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ , passing through $\tilde{\lambda}$ . Let $\lambda=P(\tilde{\lambda})$ and $\gamma=\mathcal{P}(\tilde{\gamma})$ . Then, combining t,he

identification (1.6) and the identification $T_{\lambda}\mathrm{P}(D^{2})^{\perp}\sim T_{\tilde{\lambda}}(D^{2})^{\perp}/\mathbb{R}^{arrow}e(\tilde{\lambda})$, we get

(2.10) $T_{\gamma}N\sim T_{\overline{\lambda}}(D^{2})^{\perp}/\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\vec{h}(\tilde{\lambda}), e(arrow\tilde{\lambda})\}$.

By analogy with (1.2) let $\overline{V}_{\overline{\lambda}}$ be the tangent to the fiber of $(D^{2})^{\perp}$ at $\overline{\lambda}\in(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ ,
namely,

(2.11) $\tilde{V}_{\overline{\lambda}}=T_{\overline{\lambda}}(T_{\pi(\overline{\lambda})}^{*}M)\cap T_{\overline{\lambda}}(D^{2})^{\perp}$ .

Then it is not hard to see that under identification (2.10) one has

(2.12) $\mathcal{E}_{\gamma}(\mathcal{P}(e^{tH}\tilde{\lambda}))=(e^{-t\tilde{h}})_{*}(\tilde{V}(e^{t\vec{h}}\tilde{\lambda}))/\mathrm{s}\mathrm{p}\mathrm{t}\{\vec{h}(\tilde{\lambda}), e(arrow\tilde{\lambda})\}$
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where $e^{t\vec{h}}$ is the flow generated by the vector field $\vec{h}$ . The pair of functions $(u_{4}, u_{5})$

defines the coordinates on any fiber of $(D^{2})^{\perp}$ . Consider the following vector field on
$(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ , tangent to the fibers of $(D^{2})^{\perp}:$

(2.13) $\epsilon_{1}(\overline{\lambda})=\gamma_{4}(\overline{\lambda})\partial_{u_{4}}+\gamma_{5}(\overline{\lambda})\partial_{u_{5}}$ ,
where
(2.14) $\gamma_{4}(\overline{\lambda})u_{5}-\gamma_{5}(\overline{\lambda})u_{4}\equiv \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ .
Let
(2.15) $v_{\overline{\lambda}}(t)=(e^{-t\tilde{h}})_{*}\epsilon_{1}(e^{t\vec{h}}(\tilde{\lambda}))$ .
Without introducing additional notations, we will look on $v_{\overline{\lambda}}(t)$ both as the element
of $T_{\overline{\lambda}}(D^{2})^{\perp}$ and the element of the factor-space $T_{\overline{\lambda}}(D^{2})^{\perp}/\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\vec{h}(\tilde{\lambda}), e^{\sim}(\tilde{\lambda})\}$, i.e., the
image of $v_{\overline{\lambda}}(t)$ under this factorization. Combining Remarks 1.1, 2.1, and the proof
of Proposition 4.4 in [10], we obtain that under the identification (2.12) the curve
$t\mapsto v_{\overline{\lambda}}(t)$ is the canonical representative of the curve $\mathcal{E}_{\gamma}$ w.r.t. the parameterization
$t\mapsto \mathcal{E}_{\gamma}(P(e^{tH}\tilde{\lambda}))$ . Note that from (2.15) and the well known property of Lie brackets
it follows that
(2.16) $v_{\tilde{\lambda}}^{(:)}(0)=(\mathrm{a}\mathrm{d}\vec{h})^{:}\epsilon_{1}(\tilde{\lambda})$

(here, as usual, $(\mathrm{a}\mathrm{d})\tilde{h}\mathcal{X}=[\tilde{h},$
$\mathcal{X}]$ for a vector field $\mathcal{X}$ ). Rom (2.16) and the definition of

the canonical representative (see (2.2)) it follows that there exists the tuple of functions
$\{B_{1}(\tilde{\lambda})\}_{=0}^{2}.\cdot$ on $(D^{2})^{\perp}\backslash (D^{3})^{\perp}$ such that

(2.17) $($ad $\vec{h})^{4}\epsilon_{1}(\tilde{\lambda})=\sum_{\=0}^{2}B_{i}(\tilde{\lambda})(\mathrm{a}\mathrm{d}\vec{h})^{i}\epsilon_{1}(\tilde{\lambda})$

(compare also with formula (4.10) in [10]). Rom the last formula and (2.7) it fol-
lows that the set $\mathrm{C}\mathrm{o}\mathrm{n}(\mathcal{P}\tilde{\lambda})$ defined in subsection 1.2 has the following description: If
$(s, Y_{0}, Y_{1}, Y_{2})$ are the coordinates in $(P\tilde{\lambda})^{\perp}$ w.r.t. the basis

(2.18) $(\pi_{*}(\vec{h}(\tilde{\lambda})),$ $\pi_{*}([\tilde{h}, \epsilon_{1}](\tilde{\lambda})),$ $\pi_{*}((\mathrm{a}\mathrm{d}\tilde{h})^{2}\epsilon_{1}(\tilde{\lambda})),$ $\pi_{*}((\mathrm{a}\mathrm{d}\vec{h})^{3}\epsilon_{1}(\tilde{\lambda})))$ ,

then the set $\mathrm{C}\mathrm{o}\mathrm{n}(P\tilde{\lambda})$ has the following equation in these coordinates:

(2.19) $\frac{2}{3}Y_{1}^{2}-\frac{7}{10}B_{2}(\tilde{\lambda})Y_{2}^{2}-\mathrm{Y}_{0}Y_{2}=0$ .

For simplicity take $\gamma_{4}=\frac{1}{u\mathrm{s}}$ and $\gamma_{5}\equiv 0$ . Then by direct calculations (one can use also
formulas (4.24), (4.35) and Lemmas 4.2 and 4.3 of [11] $)$ it is not difficult to show that

$\pi_{*}([\tilde{h}, \epsilon_{1}])=-\frac{1}{u_{5}}X_{2}$ $\mathrm{m}\mathrm{o}\mathrm{d}\{\mathbb{R}\pi_{*}\tilde{h}\}$,

(2.20) $\pi"((\mathrm{a}\mathrm{d}\tilde{h})^{2}\epsilon_{1})=\frac{l_{1}}{u_{5}}X_{2}+X_{3}$ $\mathrm{m}\mathrm{o}\mathrm{d}\{\mathbb{R}\pi"\vec{h}\}$ ,

$\pi_{*}((\mathrm{a}\mathrm{d}h)^{3}\epsilon_{1})\neg=\frac{Q}{u_{5}}X_{2}+l_{2}X_{3}+u_{4}X_{5}-u_{5}X_{4}$ $\mathrm{m}\mathrm{o}\mathrm{d} \{\mathbb{R}\pi_{*}\vec{h}\}$ ,

where the functions $l_{1}$ and $l_{2}$ are linear and the function $Q$ is a quadratic form on each
fiber of $(D^{2})^{\perp}$ (in section 3 below we give the explicit formulas for this functions in
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terms of the structural functions of an adapted frame $\{X_{i}\}_{i=1}^{5}$ , see formulas $(3.5)-(3.7))$ .

Besides, from the proof of Theorem 3 in [10] it follows that the function $B_{2}$ , appearing
in the equation (2.19), is a quadratic form on each fiber of $(D^{2})^{\perp}(q)$ (see also explicit
formula (3.8) in section 3 below).

Now fixing the point $q\in M$ , we will look at the functions $l_{1},$ $Q$ , and $B_{2}$ as at the
functions of $(u_{4}, u_{5})$ (which constitute coordinates on the fiber $(D^{2})^{\perp}(q)$ ) and we will
write $l_{i}(u_{4}, u_{5}),$ $Q(u_{4}, u_{5})$ , and $B_{2}(u_{4}, u_{5})$ correspondingly. Then, running over the fiber
$(D^{2})^{\perp}(q)$ and using (2.19) and (2.20), one can obtain by straightforward calculations
that if $(x_{1}, \ldots \dagger x_{5})$ are coordinates in $T_{q}M$ w.r.t. the basis $(X_{1}(q), \ldots,X_{5}(q))$ then the
$\mathrm{s}\mathrm{e}\mathrm{t}---q$

’ defined in (1.9), has the following equation in these coordinates:

$x_{1}x_{5}-x_{2}x_{4}+ \frac{2}{3}(x_{3}-l_{2}(x_{5}, -x_{4})-\frac{3}{4}l_{1}(x_{5}, -x_{4}))^{2}-$

(2.21)
$( \frac{7}{10}B_{2}(x_{5}, -x_{4})+Q(x_{5}, -x_{4})+\frac{3}{8}(l_{1}(x_{5}, -x_{4}))^{2})=0$ .

TalCing into account the algebraic structure of the functions $l_{1},$ $Q$ , and $B_{2}$ , we get that
$—q$ is a quadratic cone. Besides, it is easy to see that the quadratic form in the left
handside of (2.21) has signature $(3, 2)$ . The proof of Theorem 1 is completed.

The conformal structure, defined by the field of cones $\{_{-q}^{-}-\}_{q\in M}$ will be called the
canonical conformal structure, associated with the distribution $D$ .

3. THE CANONICAL CONFORMAL STRUCTURE IN TERMS OF THE STRUCTURAL
FUNCTIONS OF AN ADAPTED FRAME

Let, as before, $\{X_{i}\}_{i=1}^{5}$ , be an adapted frame of the $(2, 5)$-distribution $D$ and $u_{1}$ ,
$1\leq i\leq 5$ , be the corresponding quasi-impulses. Denote by $c_{ji}^{k}$ the structural functions
of the frame $\{X_{t}\}_{i=1}^{5}$ , i.e., the functions, satisfying

[X,, $X_{j}$] $= \sum_{k=1}^{5}c_{ji}^{k}X_{k}$ .

We are going to express the quadratic cone $—q’ q\in M$ , in terms of the structural
functions $c_{j^{1}}^{k}$ . For this we slightly modify the computations produced in section 4 of
[11]. As in [11], denot$e$

(3.1) $b(u_{4}, u_{5})= \frac{1}{3}((c_{42}^{4}+c_{52}^{5})u_{4}-(c_{41}^{4}+c_{51}^{5})u_{5})$ ,

(3.2) $b_{1}(u_{4}, u_{5})=c_{32}^{3}u_{4}-c_{31}^{3}u_{5}$ ,

(3.3) $\alpha_{3}(u_{4}, u_{5})=c_{52}^{3}u_{4}^{2}-(c_{42}^{3}+c_{51}^{3})u_{4}u_{5}+c_{41}^{3}u_{5}^{2}$ ,

(3.4) $\Pi(u_{4}, u_{5})=(c_{32}^{1}+c_{53}^{4})u_{4}^{2}+(c_{32}^{2}-c_{31}^{1}-\mathrm{c}_{43}^{4}+\mathrm{c}_{53}^{5})u_{4}u_{5}-(c_{31}^{2}+c_{43}^{5})u_{5}^{2}$ .

Then from formulas (4.3) and (4.36) of [11] it is not hard to get that the function $l_{1}$ ,
introduced in (2.20), satisfies

(3.5) $l_{1}=b_{1}+3b$
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(note that $\epsilon_{1}$ here is the same as $6\epsilon_{1}$ in [11]). bom formulas (4.3), (4.31)-(4.37), and
(4.44) of [11] one can obtain by direct computations that the functions $l_{2}$ and $Q$ from
(2.20) satisfy:

(3.6) $l_{2}=-3b$ ,

(3.7) $Q=6\tilde{h}(b)+\tilde{h}(b_{1})+\Pi-\alpha_{3}-b_{1}^{2}-3bb_{1}-9b^{2}$ .

Besides, combining Remark 2.3 with formula (4.56) from [11], we have

(3.8) $B_{2}=2\alpha_{3}-\Pi-\vec{h}(b_{1})-9\vec{h}(b)+b_{1}^{2}+9b^{2}$ .

Finally, substituting expressions $(3.5)-(3.8)$ into (2.21) we get easily that if $(x_{1}, \ldots, x_{5})$

are coordinates in $T_{q}M$ w.r.t. the basis $(X_{1}(q), \ldots., X_{5}(q))$ then the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}---q$ has the
following equation in these coordinates

$x_{1}x_{5}-x_{2}x_{4}+ \frac{2}{3}(x_{3}-\frac{3}{4}(b_{1}-b)(x_{5}, -x_{4}))^{2}-$

(3.9)
$\frac{3}{10}(\Pi+\frac{4}{3}\alpha_{3}+\vec{h}(b_{1}-b)+\frac{1}{4}(b_{1}-b)(b_{1}+9b))(x_{5}, -x_{4})=0$ .

In the last formula for shortness, instead of writing the arguments $(x_{5}, -x_{4})$ after each
function $b,$ $b_{1},$

$\alpha_{3}$ and $\Pi$ , we write them after the polynomial expressions, involving
these functions. So, for exanple, $(b_{1}-b)(x_{5}, -x_{4})$ means $b_{1}(x_{5}, -x_{4})-b(x_{5}, -x_{4})$ .
Note that from $(3.1)\sim(3.4)$ and (2.9) it follows that $b$ and $b_{1}$ are linear forms in $u_{4}$ and
$u_{5}$ , while $\alpha_{3},$

$\Pi,\vec{h}(b_{1}-b)$ are quadratic forms in $u_{4}$ and $u_{5}$ . Therefore the equation
(3.9) together with expressions $(3.1)-(3.4)$ and (2.9) gives the explicit formula for the
cone $—q$ it terms of the structural functions of the adapted frame $\{x_{:}\}_{=1}^{5}.$ .

4. PROOF OF THEOREM 2

We start with the brief description of the construction of the Nurowski conformal
structure, associated with the $(2, 5)$-distribution $D$ . His construction is $\mathrm{b}\mathrm{a}s$ed strongly
on the chapter VI of the E. Cartan paper [4], where the canonical cofranie for this type
of distributions on som$e1$ -dimensional principal bundle over $M$ was constructed. To
begin with let $\{\omega_{i}\}_{i=1}^{5}$ be a coframe on $M$ such that the rank 2 distribution $D$ is the
annihilator of the first three elements of this coframe, namely,

(4.1) $D(q)=\{v\in T_{q}M;\omega_{1}(v)=\omega_{2}(v)=\omega_{3}(v)=0\}$, $\forall q\in M$

Obviously the bundle of all cofranies satisfying (4.1) has 1-dimensional fibers. After
quite cumbersome algebraic manipulation, E. Cartan succeed to distinguish a special
12-dimensional subbundle $\mathcal{K}(M)$ of this coframe bundle (having 7-dimensional fibers),
which is characterized as follows: A coframe $\{\omega_{\mathfrak{i}}\}_{=1}^{5}\dot{.}$ belongs to the coframe bundle
$\mathcal{K}(M)$ if and only if it satisfies the following structural equations (formula (VI.5) in
[4] $)$ :
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$d\omega_{1}=\omega_{1}$ A $(2\overline{\omega}_{1}+\overline{\omega}_{4})+\omega_{2}\wedge\overline{\omega}_{2}+\omega_{3}$ A $\omega_{4}$

$d\omega_{2}=\omega_{1}$ A $\overline{\omega}_{3}+\omega_{2}$ A $(\overline{\omega}_{1}+2\overline{\omega}_{4})+\omega_{3}$ A $\omega_{5}$

(4.2) $d\omega_{3}=\omega_{1}\wedge\overline{\omega}_{5}+\omega_{2}\wedge\overline{\omega}_{6}+\omega_{3}\wedge(\overline{\omega}_{1}+\overline{\omega}_{4})+\omega_{4}\wedge\omega_{5}$

$d \omega_{4}=\omega_{1}\wedge\overline{\omega}_{7}+\frac{4}{3}\omega_{3}$ A $\overline{\omega}_{6}+\omega_{4}$ A $\overline{\omega}_{1}+\omega_{5}$ A $\overline{\omega}_{2}$

$d \omega_{5}=\omega_{2}\wedge\overline{\omega}_{7}-\frac{4}{3}\omega_{3}\wedge\overline{\omega}_{5}+\omega_{4}\wedge\overline{\omega}_{3}+\omega_{5}\wedge\overline{\omega}_{4}$ ,

where $\overline{\omega}_{j},$ $1\leq j\leq 7$ , ar$e$ new 1-forms. It turns out that a further “reduction” of
the coframe bundle $\mathcal{K}_{1}$ (Af) (i.e., a selection of an $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{n}8\mathrm{i}\mathrm{c}$ proper subbundle of it) is
impossible. Of course, it is only the first step in Cartan’s construction of the canonical
cohame, but this st$e\mathrm{p}$ is already enough for our purposes. The remarkable observation
of P. Nurowski was that the field of cones $\{N_{q}\}_{q\in M}$ , satisfying

(4.3) $N_{q}=\{X\in T_{q}M$ : $\omega_{1}(X)\omega_{5}(X)-\omega_{2}(X)\omega_{4}(X)+\frac{2}{3}(\omega_{3}(X))^{2}=0\}$ ,

does not depend on the choice of a coframe $\{\omega_{l}\}_{i=1}^{5}$ , satisfying (4.2).
Now we have all to $o1\mathrm{s}$ to prove that our $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{s}--q-$ coincides with the Nurowski cones

$N_{q}$ . Fix some coframe $\{\omega_{i}\}_{i=1}^{5}$ satisfying (4.2). Let $\{\tilde{X}_{k}\}_{k=1}^{5}$ , be the frame on $M$ dual
to the coframe $\{\omega_{i}\}_{=1}^{5}.\cdot$ , namely, $\omega_{i}(\overline{X}_{k})=\delta_{i,k}$ . Denote by

(4.4) $X_{k}=\tilde{X}_{6-k}$ , $1\leq k\leq 5$ .

Any frame $\{x_{:}\}_{1=1}^{5}$. obtained in such way will be called the Cartan frame of the distri-
bution $D$ . IFYom (4.2) it is not difficult to show that any Cartan frame is adapted hame
of the distribution $D$ and to find its structural functions (see formulas $(5.5)-(5.13)$ in
[11] $)$ . Moreover, as already was noticed in [11] (formulas (5.15) and (5.16) there), for
any Cartan’s frame

(4.5) $b_{1}=b$ , $\Pi=-\frac{4}{3}\alpha_{3}$ .

Substituting the last relations into (3.9) we obtain that for any Cartan frame $\{X_{1}\}_{=1}^{5}.\cdot$ ,
if $(x_{1}, \ldots, x_{5})$ are coordinates in $T_{q}M$ w.r.t. the basis $(X_{1}(q), \ldots, X_{5}(q))$ then the cone
$-q$ has the following equation in these coordinates

(4.6) $x_{1}x_{5}-x_{2}x_{4}+ \frac{2}{3}x_{3}^{2}=0$ .

Comparing this equation with (4.3) and taking into account that the coframe $\{\omega_{i}\}_{*=1}^{5}$.
is dual to the frame $\{X_{6-\mathrm{t}}\}_{i=1}$ , we get immediately $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}---q=N_{q}$ , which completes the
proof of Theorem 2.

Actually one can relate to Nurowski’s equation (4.3) for the canonical cones, as to
the particular case of our equation (3.9) applied to a Cartan franie.
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5. APPENDIX
In subsection 1.3 we gave the description of the Cartan covariant binary biquadratic

form of $(2, 5)$-distribution in terms of the Wilczynski invariant of certain curves in the
projective plane. In the present Appendix we collect several facts about the invariants
of curves in the projective spaces and their reductions, on which this description was
based.

First of all let us recall, what the Wilczynski invariants of curves in projective spaces
$([9],[6])$ are. As in subsection 2.1, let $Z$ be an $k$-dimensional linear space and $\zeta$ be a
regular curve in the projective space $\mathrm{P}Z$ . It turns out that the set of all parameters $t$

on $\zeta$ , such that for their canonical representative $\epsilon$ the coefficient $B_{k-2}$ in the decom-
position (2.2) is identically equal to zero, defines $t$he canonical projective structure on
the curve $\zeta$ (i.e., any two parameters from this set are transformed one to another by
M\"obius transformation). It follows $\mathrm{h}\mathrm{o}\mathrm{m}$ the following reparameterization rule for tfe
coefficient $B_{k-2}$ : if $\tau$ is another parameter, $t=\varphi(\tau)$ , and $\tilde{B}_{k-2}$ is the coefficient $\mathrm{h}\mathrm{o}\mathrm{m}$

the decomposition (2.2) corresponding to the canonical representative of $\zeta$ w.r.t. the
parameter $\tau$ , then

(5.7) $\overline{B}_{k-2}(\tau)=\dot{\varphi}(\tau)^{2}B_{k-2}(\varphi(\tau))-\frac{k(k^{2}-1)}{6}\mathrm{S}(\varphi)$ ,

where $\mathrm{S}(\varphi)$ is a Schwarzian derivative of $\varphi,$
$\mathrm{S}(\varphi)=\frac{d}{dt}(\frac{\varphi’’}{2\varphi},)-(2B’’\overline,)^{2}\varphi$ . Any parameter

from the canonical projective structure of (is called a projective parameter.
Now let $t$ be a projective parameter on $\zeta$ . E. Wilczynski showed that for any $i$ ,

$1\leq i\leq k-2$ , the following degree $i+2$ differentials
(5.8)

$\mathcal{W}_{\mathrm{t}}(t)^{d\mathrm{e}f}=\frac{(i+1)!}{(2i+2)!}(\sum_{j=1}^{:}(-1)^{j-1}\frac{(2i-j+3)!(k-i+j-3)!}{(i+2-j)!j!}B_{k-3-:+j}^{(j-1)}(t))(dt)^{*+2}$
.

on $\zeta$ does not depend on the choice of the projective parameters a The form $\mathcal{W}_{j}$ is
called the i-th Wilczynski invariant of the curve $\zeta$ . In particular, the first and the
second Wilczynski invariants, which $\mathrm{w}\mathrm{i}\mathrm{U}$ be used in the sequel, have the form

(5.9) $\mathcal{W}_{1}=B_{k-3}(t)(dt)^{3}$ , $k\geq 3$ ;

(5.10) $\mathcal{W}_{2}=(B_{k-4}(t)-\frac{k-3}{4}B_{k-3}’(t))(dt)^{4}$ , $k\geq 4$

Remark 5.1. In a continuation of Remark 2.1, if $\dim Z=k$ is even, $k=2m$,
the space $Z$ is endowed with the symplectic form $\overline{\sigma}$ , the $m$-dimensional subspaces
$\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\epsilon^{(:)}(t)\}_{1=0}^{m-1}$. is Lagrangian for any $t$ , and $t$ is a projective parameter, then $B_{2m-3}\equiv$

$B_{2m-2}’\equiv 0$ . So,

(5.11) $\mathcal{W}_{1}\equiv 0$ , $\mathcal{W}_{2}=B_{2m-4}(t)dt^{4}$ .
Besides, it can be shown that $\mathcal{W}_{2}$ coincides, up to some constant factor $C_{m}$ , with the

fundamental form of the curve of Lagrangian subspaces $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{\epsilon^{(i)}(t)\}_{i=0}^{m-1}$ , introduc$e\mathrm{d}$

in [1] (for its definition see also [10, subsection 2.3]). In the case $rn=2$ , corresponding
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to $(2, 5)$-distributions, this fact follows from formula (4.2) of [10] and the factor $C_{2}$ is
equal to 35. $\square$

Now let $Y$ be a three-dimensional linear space, $\xi$ is a regular curve in the projective
space $\mathrm{P}Y$ and the first Wilczynski invariant $\mathcal{W}_{1}$ of 4 is equal to zero at some point
$y\in\xi$ . If $t$ is a projective parameter, $t=t_{0}$ corresponds to the point $y$ and $B_{k-3}(t)$

is the corresponding coefficient in the decomposition (2.2), then $B_{k-3}(t_{0})=0$ and
the following form $\mathcal{W}_{1}^{(1)}=B_{k-3}’(t_{0})dt^{4}$ is the well-defined degree 4 differential at the
point $y$ on the curve. This degree 4 differential will be called the derivative of the
first Wilczynski invariant at $\ell$ . Note also that in the considered case there is only
one Wilczynski invariant, the first one, so, referring to it, one usually omits the word
“first”. Using formulas (5.11), it is not difficult to get the following

Proposition 5.1. Suppose that $\dim Z=4$ , the space $Z$ is endowed Utth the symplectic
$fo7m\overline{\sigma},$ $\zeta$ is a regular curve in $\mathrm{P}Z$ such that for its representative $t\mapsto\epsilon(t)$ all 2-
dimensional subspaces $\mathrm{s}\mathrm{p}\mathrm{t}\{\epsilon(t), \epsilon’(t)\}$ are Lagrangian. If $\xi$ is the reduction of the
curve $\zeta$ by a point $\ell_{f}$ then the Wilczynski invariant of $\xi$ at the point $y$ of the reduction,
corresponding to $p_{f}$ is equal to zero and the derivative of the Wilczynski invariant of
the curve $\xi$ at $y$ is equal, up to the factor-, to the second Wilczynski invariant of the
curve $\zeta$ at $l$ .
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