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1. INTRODUCTION

In this work we present a complete solution of the classical problem, going back
to E. Cartan, on the classification of generic $(2, 5)$-distributions on the level of
formal power series.

Namely, we define explicitly a set $\{D_{C(x)}\}$ of $(2, 5)$-distributions parameterized
by a function $C(x_{1}, \ldots, x_{5})$ and a set $\mathrm{N}$ of functions of five variables such that the
following holds:
a generic $(2, 5)$-distribution germ is formally (on the level of formal power series)
diffeomorphic to a distribution of the form $D_{C(x)},$ $C(x)\in \mathrm{N}$ ;

two distribution germs $D_{C(x)}$ and $D_{\tilde{C}(x)}$. with $C(x)\tilde{C}(x)\in \mathrm{N}$ are formally diffeo-
morphic if and only if $C(x)$ and $\tilde{C}(x)$ have the same Taylor series.

Our approach is based on the quasi-homogeneous filtration with the natural
weights 1, 1, 2, 3, 3. The starting points are as follows:
$\bullet$ all (2, 3, 5)-distributions (i.e. (2, 5) distributions with the growth vector (2, 3, 5))
have diffeomorphic quasi-homogeneous 2-jets;
$\bullet$ the classical Cartan invariant is a complete invariant in the classification of
quasi-homogeneous 3-jets of (2, 3, 5)-distributions.

I started to think about the possibility to obtain an exact normal form after the
RIMS Symposium “Developments of Cartan Geometry and Related Mathematical
Problems”, Kyoto, October 2005. In this Symposium I heard many beautiful talks
related to E. Cartan’s work [3] written 100 years ago. In particular, the Cartan in-
variant was explained in $[5, 8]$ by developing the theory $[6, 7]$ of graded nilpotent Lie
algebras associated with differential systems and in [9] in terms of the variational-
symplectization approach $[1, 2]$ . The coordinate-free constructions of these works
allow to obtain many new invariants, see for example $[4, 10]$ . On the other hand,
these constructions do not solve, as far as I know, the problem of complete classifi-
cation of generic $(2, 5)$-distributions, i.e. the problem of finding a complete system
of independent invariants and realizing them in an exact normal form.

I heard the opinion that constructing an exact normal form without coordinate-
free invariants, just using certain methods of step-by-step normalization of formal
power series, is a hopeless task. Basing on my own attempts I agree with this opin-
ion if step-by-step means normalizing $(k+1)$-jet with already normalized $k$-jet and
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the $k$-jet is understood in usual way-the segment of the Taylor expansion including
terms of degree $\leq k$ . Under such normalization the variables $x_{1},$ $..,$ $x_{5}$ have the same
weights 1. On the other hand it is clear that working with $(2, 5)$-distributions the
natural weights are 1, 1, 2, 3, 3. I decided to classify $(2, 5)$ -distributions using the
quasi-homogeneous filtration with these weights in the space of vector field germs.

A quasi-homogeneous degree $d$ vector field is a linear combination of quasi-
homogeneous monomial vector fields of degree $d$ . The quasi-homogeneous degree of
a monomial vector field $x^{\alpha}\partial/\partial x$ : is $(\alpha, \lambda)-\lambda_{i}$ , where $\lambda=$ ( $\lambda_{1},$

$\ldots$ , A5) is the tuple of
weights. This definition is natural because it is easy to check that the Lie bracket
of quasi-homogeneous vector fields of degrees $d_{1}$ and $d_{2}$ is a quasi-homogeneous
vector field of degree $d_{1}+d_{2}$ .

With weights 1, 1, 2, 3, 3 the Taylor series of vector fields spanning a $(2, 5)$ distri-
bution contains terms of quasi-homogeneous degrees starting with $-3$ . The first,
rather simple step is to prove that the quasi-homogeneous $(-1)$-jets of all $(2, 3, 5)-$

distributions are diffeomorphic. I think that to some extend the quasi-homogeneous
$(-1)$-jet is the nilpotent approximation of a (2, 3, 5)-distribution, but I am not ready
to develop this claim in the present work.

The second, also relatively easy step, is to prove that all quasi-homogeneous
terms of degree $0,1$ and 2 can be killed by a change of coordinates and change of
the frame of vector fields spanning a (2, 3, 5)-distribution. Therefore all (2, 3, 5)
distributions have diffeomorphic quasi-homogeneous 2-jets.

The third step is to realize the classical Cartan invariant as follows: it is the
only invariant distinguishing non-diffeomorphic quasi-homogeneous 3-jets. In the
original E.Cartan’s work [3] this invariant was obtained by rather sophisticated
manipulations. Within the quasi-homogeneous approach it appears in a natural
way and does not require much calculations. After this step it became clear that
an exact normal form can be constructed.

The main final results are formulated in section 2. In this paper we do not
present complete $\mathrm{p}\mathrm{r}o$ofs (they will be published elsewhere), but in sections 2-9 all
results are explained and the outline of the proofs is given.

Acknowledgements. I am thankful to A. Agrachev, T. Morimoto, K. Yamaguchi,
and I. Zelenko for discussions which encouraged me to think about exact normal
form. Most of them were hold during the Symposium “Developments of Cartan
Geometry and Related Mathematical Problems”, Kyoto, October 2005. I would
like to thank Professor Tohru Morimoto and everyone who helped him to organize
this very important Symposium. I am especially thankful to Professor Goo Ishikawa
who invited me to Japan–this allowed me to participate in the Kyoto Symposium
and other mathematical activities in Japan; each of them was fruitful and led to
new interesting research.

2. MAIN RESULTS

We work with germs at $0\in \mathrm{R}^{5}$ of $C^{\infty}$ distributions, but our normal forms
hold in the formal category, i.e. on the level of formal power series. The Borel
theorem on the realization of any formal power series as the Taylor series of a $C^{\infty}$

function allows to define the formal equivalence as follows: two germs $D$ and $\tilde{D}$ of
2-distributions are formally equivalent if there exist a couple of vector field germs
$(V_{1}, V_{2})$ spanning $D$ , a couple of vector field germs $(\tilde{V}_{1},\tilde{V}_{2})$ spanning $\tilde{D}$ , and a local
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$C^{\infty}$ diffeomorphism $\Phi$ : $(\mathrm{R}^{5},0)arrow(1\mathrm{R}^{5},0)$ such that the vector fields $\Phi_{*}V_{i}$ and $\tilde{V}_{\iota’}$

have the same Taylor series, $i=1,2$ . Of course the definition remains the same if
one of the frames $\backslash$, either $(V_{1}, V_{2})$ or $(\tilde{V}_{1},\tilde{V}_{2})$ , is fixed.

In subsection 2.1 we present a formal normal form serving for all (2, 3, 5) distri-
butions. In subsection 2.2 we explain, in terms of this normal form, the classical
Cartan’s tensor and Cartan’s invariamt. In subsection 2.3 we present a formal
normal form for (2, 3, 5) distributions with a non-degenerate Cartan tensor. This
normal form is almost exact: it is exact up to a certain discrete group of linear
transformations. A completely exact normal form is presented in subsection 2.4.

2.1. Normal form for all (2, 3, 5) distributions. Fix the following couples of
vector fields

(2.1) $A==(_{\partial x_{2}}^{\partial x_{1}}=_{\partial}^{\partial}-x_{1_{\partial x_{3}}}+x_{2_{\partial x_{3}}}=_{\partial}^{\partial})$ , $B==$
(2.2) $N=A+B$

Fix also the following ideal in the ring of function germs.
Notation. By I we denote the ideal in the ring of function germs at $0\in \mathrm{R}^{5}$

generated by the following monomials of degree 4:
(2.3) $x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}x_{3}^{\alpha \mathrm{s}}$ , where $\alpha_{1}+\alpha_{2}\geq 2$ , $\alpha_{1}+\alpha_{2}+\alpha_{3}=4$ ;

(2.4) $x_{1}^{2}x_{3}x_{4}$ , $x_{2}^{2}x_{3}x_{5}$ , $x_{\mathrm{J}}x_{2}x_{4}x_{5}$ .
Theorem A. Any germ at $\mathrm{O}\in \mathrm{R}^{5}$ of a (2, 3, 5) distribution is formally equivalent
to a distribution spanned by a couple of vector fields of the form
(2.5) $N+C(x)\cdot B$ , $C(x)\in$ I

2.2. Cartan invariant. About 100 years ago in the work [3] E. Cartan associ-
ated to a (2, 3, 5)-distribution a certain homogeneous degree 4 polynomial of two
variables $x_{1},$ $x_{2}$ , obtained by rather involved calculations realizing so-called Cartan
method, and proved that the equivalence class of this polynomial with respect to
the group of linear transformations of the plane $\mathrm{R}^{2}(x_{1}, x_{2})$ is an invariant of the
distribution–it is the same for all diffeomorphic distributions. In terms of nor-
mal form (2.5) the Cartan invariant can be defined as follows. Note that for any
function $C(x)$ belonging to the ideal I one has

(2.6) $C(x_{1}, x_{2},0,0,0)=P^{(4)}(x_{1}, x_{2})+o(||(x_{1}, x_{2})||^{4})$ ,

where $P^{(4)}(x_{1}, x_{2})$ is a homogeneous degree 4 polynomial.

Definition 2.1. Let $D$ be the germ at $0\in \mathrm{R}^{5}$ of a (2, 3, 5)-distribution. Let $C(x)$

be the functional parameter in the normal form (2.5). The homogeneous degree 4
polynomial $P^{(4)}(x_{1}, x_{2})$ defined by (2.6) will be called the Cartan tensor of $D$ .

The following proposition is “isomorphic” to E.Cartan’s result in [3].

Proposition 2.2. If two germs at $0$ of (2, 3, 5)-distnbutions are diffeomorphic then
the corresponding Cartan tensors (according to Definitton 2.1) are linearly equiva-
lent, $i.e$ . can be brought one to the other by a non-degenerate linear transformation
of the plane $\mathrm{R}^{2}(x_{1}, x_{2})$ .
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Proposition 2.2 defines a modulus (Cartan invariant) in the classification of
(2, 3, 5)-distributions - the factor-class of the Cartan tensor with respect to the
linear equivalence. The explanation of this invariant is given in section 8: it is
a complete invariant in the classification of quasi-homogeneous 3-jets of $(2, 3, 5)-$

distributions with respect to the natural weights 1, 1, 2, 3, 3.

Definition 2.3. A homogeneous polynomial $P^{(4)}(x_{1}, x_{2})$ is called non-degenerate
if $P^{(4)}(x_{1}, x_{2})\neq A^{2}(x_{1}, x_{2})B(x_{1}, x_{2})$ for any polynomials $A(x_{1}, x_{2}),$ $B(x_{1}, x_{2})$ .

It is easy to prove that any non-degenerate homogeneous degree 4 polynomial
of two variables can be reduced by a linear change of coordinates to one and only
one of the polynomials of the set (normal form) $\mathrm{P}^{(4),+}\mathrm{U}\mathrm{P}^{(4),-}$ , where
$\mathrm{P}^{(4),+}$ is the set of all polynomials of the form $x_{1}^{4}+\alpha x_{1}^{2}x_{2}^{2}+x_{2}^{4},$ $|\alpha|>2$ and of the
$\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}-x_{1}^{4}-\alpha x_{1}^{2}x_{2}^{2}-x_{2}^{4},$ $\alpha>2$ ;
$\mathrm{P}^{(4),-}$ is the set of all polynomials of the form $x_{1}^{4}+\alpha x_{1}^{2}x_{2}^{2}-x_{2}^{4},$ $\alpha\in$ R.

Therefore in the non-degenerate case the Cartan invariants are represented by
the polynomials of the set $\mathrm{P}^{(4),+}\cup \mathrm{P}^{(4)_{\}}-}$ and no two different polynomials of this
set represent the same Cartan invariant.

Definition 2.4. We will say that a non-degenerate polynomial $P^{(4)}(x_{1}, x_{2})$ has a
positive (respectively negative) type if it is linearly equivalent to a polynomial of
the set $\mathrm{P}^{(4),+}$ (respectively $\mathrm{P}^{(4),-)}$ .

2.3. Exact normal form up to discrete group of involutions. In this subsec-
tion we give a normal form for (2, 3, 5) distributions with non-degenerate Cartan
tensor. This normal form is exact up to a certain discrete group of linear transfor-
mations.

Introduce the following subsets $\mathrm{I}_{0}^{+},$
$\mathrm{I}_{0}^{-}$ of the ideal I.

The set $\mathrm{I}_{0}^{\pm}$ of function germs. We will denote by $\mathrm{I}_{0}^{+}$ (respectively $\mathrm{I}_{0}^{-}$ ) the
subset of the ideal I consisting of function germs $C(x)\in \mathrm{I}$ satisfying the following
conditions:
1. $C(x_{1}, x_{2},0,0,0)=P^{(4)}(x_{1}, x_{2})+o(||(x_{1}, x_{2})||^{4})$ , where $P^{(4)}(x_{1}, x_{2})\in \mathrm{P}^{(4),+}$

(respectively $P^{(4)}(x_{1},$ $x_{2})\in \mathrm{p}(4),-$ );

2. The Taylor expansion of $C(x)$ does not contain monomials $x_{1}^{3}x_{3},$ $x_{2}^{3}x_{3},$ $x_{1}^{4}x_{4},$ $x_{2}^{4}x_{5}$ ;

3. The sum (respectively the difference) of the coefficients at the monomials $x_{1}^{4}x_{3}$

and $x_{2}^{4}x_{3}$ in the Taylor expansion of $C(x)$ is equal to $0$ .

We also need the involutions
$i_{1}$ : $x_{1}arrow-x_{1}$ , $x_{2}arrow x_{2},$ $x_{3}arrow-x_{3},$ $x_{4}arrow x_{4},$ $x_{5}arrow-x_{5}$

$i_{2}$ : $x_{1}arrow x_{1}$ , $x_{2}arrow-x_{2},$ $x_{3}arrow-x_{3},$ $x_{4}arrow-x_{4},$ $x_{5}arrow x_{5}$

$i_{3}$ : $x_{1}arrow x_{2}$ , $x_{2}arrow x_{1},$ $x_{3}arrow-x_{3},$ $x_{4}arrow-x_{5},$ $x_{5}arrow-x_{4}$

Note that the involutions $i_{1},$ $i_{2}$ commute and the group generated by these invo-
lutions consists of 3 non-identity transformations; the group generated by $i_{1},$ $i_{2},$ $i_{3}$

consists of 7 non-identity transformations.
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Theorem B.

(i). The germ at $0$ of any (2, 3, 5)-distribution germ with a non-degenerate Cartan
tensor of positive (respectiveiy negative) type is formally equivalent to a distribution
spanned by a couple of vector fields
(2.7) $N+C(x)\cdot B$ , $C(x)\in \mathrm{I}_{0}^{+}$ (respectively $C(x)\in \mathrm{I}_{0}^{-}$ ).

(ii). Two distribution germs spanned by vector fields $N+C(x)\cdot B$ and $N+\tilde{C}(x)\cdot B$

with $C(x),\overline{C}(x)\in \mathrm{I}_{0}^{+}$ (respectively $C(x),\tilde{C}(x)\in \mathrm{I}_{0}^{-}$ ) are formally equivalent if and
only if the Taylor series of $\tilde{C}(x)$ can be brought to the Taylor series of $C(x)$ by
a linear change of coordinates of the group generated by the involutions $i_{1},$ $i_{2},$ $i_{3}$

(respectively the group generated by the involutions $i_{1},$ $i_{2}$).

2.4. Exact normal form. The action of the discrete group of transformations in
Theorem $\mathrm{B}$ can be easily “killed” by replacing the set $\mathrm{I}_{0}^{\pm}$ by a subset $(\mathrm{I}_{0}^{\pm})\#\subset \mathrm{I}_{0}^{\pm}$

consisting of function-germs $C(x)\in \mathrm{I}_{0}^{\pm}$ whose Taylor series satisfy certain condi-
tions of the form of inequalities. To present these condition one has to chose an
open subset $O^{+}$ (respectively $O^{-}$ ) of the set of (2, 3, 5) distributions with a non-
degenerate Cartan tensor of positive (respectively negative) type. Consider, for
example, the following open sets.

origin satisfying the following conditions:

1. The Cartan tensor is non-degenerate and has positive (respectively negative)
type;

2. Let $b_{1},$ $b_{2}$ be the coefficients at the monomials $x_{1}^{2}x_{2}x_{3}$ and $x_{1}x_{2}^{2}x_{3}$ in the Tay-
lor expansion of $C(x)$ in the normal form (2.7). Then $b_{1}\neq 0,$ $b_{2}\neq 0,$ $b_{1}\neq b_{2}$

(respectively $b_{1}\neq 0,$ $b_{2}\neq 0$ ).

For this choice of $O^{\pm}$ the set $(\mathrm{I}_{0}^{\pm})\#\subset \mathrm{I}_{0}^{\pm}$ is as follows.

The set $(\mathrm{I}_{0}^{\pm})\#$ of function germs. By $(\mathrm{I}_{0}^{-})\#$ we denote the subset of the set $\mathrm{I}_{0}^{-}$

consisting of function germs $C(x)\in \mathrm{I}_{0}^{-}$ such that the coefficients $b_{1},$ $b_{2}$ at $x_{1}^{2}x_{2}x_{3}$

and $x_{1}x_{2}^{2}x_{3}$ in the Taylor expansion of $C(x)$ are positive. By $(\mathrm{I}_{0}^{+})\#$ we denote the
subset of the set $\mathrm{I}_{0}^{+}$ consisting of function germs $C(x)\in \mathrm{I}_{0}^{+}$ such that the same
coefficients satisfy the condition $b_{1}>b_{2}>0$ .

Theorem C.

(i). Any (2, 3, 5) distribution germ in the open set $O^{+}$ (respectively $O^{-}$ ) is formally
equivalent to a distribution spanned by a couple of vector fields of the form
(2.8) $N+C(x)\cdot B$ , $C(x)\in(\mathrm{I}_{0}^{+})\#$ (respectively $C(x)\in(\mathrm{I}_{0}^{-})\#$).

(it). This normal form is exact: two distributions spanned by vector fields of
the form $N+C(x)\cdot B$ and $N+\tilde{C}(x)\cdot \mathcal{B}$ with $C(x),\tilde{C}(x)\in(\mathrm{I}_{0}^{+})\#$ (respectively
$C(x),\tilde{C}(x)\in(\mathrm{I}_{0}^{-})\#)$ are formally equivalent if and only if the function germs $C(x)$

and $\tilde{C}(x)$ have the same Taylor series.
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3. QUASI-HOMOGENEITY

The explanation of results of section 2 requires the quasi-homogeneous filtration
in the space of functions and vector fields with the natural for (2, 3, 5)-distributions
weights 1, 1, 2, 3, 3.

Fix a coordinate system $x_{1},$
$\ldots,$

$x_{n}$ and positive numbers $\lambda_{1},$

$\ldots,$

$\lambda_{n}$ which will be
called the weights of $x_{1},$ $..,$ $x_{n}$ . In the definitions below by quasi-homogeneity we
mean quasi-homogeneity with respect to these weights.
$\bullet$ The quasi-homogeneous degree of a monomial $x^{\alpha}$ is the number $(\alpha, \lambda)=\alpha_{1}\lambda_{1}+$

.. $.+\alpha_{n}\lambda_{n}$ ;
$\bullet$ The quasi-homogeneous degree of a monomial vector field $x^{\alpha\delta_{-}}Tx_{j}$ is the number
$(\alpha, \lambda)-\lambda_{j}$ .

$\bullet$ A function (vector field) is called quasi-homogeneous of degree $d$ if it is a linear
combination with numerical coefficients of monomials (monomial vector fields) of
quasi-homogeneous degree $d$ . By definition the zero function (vector field) is quasi-
homogeneous of any degree.
$\bullet$ The quasi-homogeneous $r$-jet of a function (a vector field) is its $r$-equivalence class,
where the $r$-equivalence is as follows: two functions (vector fields) are $r$-equivalent if
they have the same segment of Taylor expansions containing monomials (monomial
vector fields) of degree $\leq r$ . Usually the $r$-jet will be identified with this segment
of Taylor expansion. The quasi-homogeneous $r$-jet will be denoted $j_{qh}^{r}$ .

One can easily check the following properties.

Proposition 3.1. Let $f_{1},$ $f_{2}$ be quasi-homogeneous functions of degrees $d(f_{1}),$ $d(f_{2})$

and let $V_{1},$ $V_{2}$ be quasi-homogeneous vector fields of degrees $d(V_{1}),$ $d(V_{2})$ .
(i). $f_{1}f_{2}$ is a quasi-homogeneous function of degree $d(f_{1})+d(f_{2})$ ;

(ii). $f_{1}V_{1}$ is a qvasi-homogeneous vector field of degree $d(f_{1})+d(V_{1})_{i}$

(iii). $[V_{1}, V_{2}]$ is a quasi-homogeneous vector field of degree $d(V_{1})+d(V_{2})$ .

4. CONVENTION AND NOTATIONS. THE GROUP $\mathrm{G}$

If $D$ is a (2, 3, 5) distribution then in suitable coordinates
$D(0)=span(\partial/\partial x_{1}, \partial/\partial x_{2}),$ $D^{2}(0)=D(0)+span(\partial/\partial x_{3})$ ,

$D^{3}(0)=D^{2}(0)+span(\partial/\partial x_{4}, \partial/\partial x_{5})$ .
Therefore the natural weights in the study of (2, 3, 5)-distributions are 1, 1, 2, 3, 3.
Convention. In what follows we work in a fixed local coordinate system $x_{1},$

$\ldots,$
$x_{5}$

and fix the weights
weight $(x_{1})=$ weight $(x_{2})=1$ , weight $(x_{3})=2$ , weight $(x_{4})=$ weight $(x_{6})=3$ .
The quasi-homogeneity means the quasi-homogeneity with respect to these weights.
Notation. By V we denote the space of germs at $0$ of vector field on $\mathrm{R}^{5}$ ; by $\mathrm{V}^{(\dot{*})}$

we denote the subspace ofV consisting of quasi-homogeneous degree $i$ vector fields.
Example. Throughout the paper we will use the couples of vector fields $A,$ $6,N$
in (2.1), (2.2). One has

$A,$ $B,N\in(\mathrm{V}^{(-1)})^{2}$ .
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We need few more notations:
$\mathrm{F}$ : the space of all function germs at $0;\mathrm{F}^{(i)}$ - the subspace of $\mathrm{F}$ consisting of
quasi-homogeneous degree $i$ functions;

$\mathrm{M}_{2,2}$ : the space of all $2\cross 2$ matrices whose entries are function germs, $\mathrm{M}_{2,2}^{(i)}$ -the
subspace of $\mathrm{M}_{2,2}$ consisting of matrices whose entries belong to $\mathrm{F}^{(i)}$ .
$\mathrm{G}$ : the group consisting of pairs $((H), \Phi)$ , where $(H)\in \mathrm{M}_{2,2}$ is a matrix-function
such that $det(H)(\mathrm{O})\neq 0$ and $\Phi$ : $(\mathrm{R}^{5},0)arrow(\mathrm{R}^{5},0)$ is a local diffeomorphism.

The group $\mathrm{G}$ acts in the space $\mathrm{V}^{2}$ : $((H), \Phi).\xi=(H)\cdot\Phi_{*}\xi$ , $\xi\in \mathrm{V}^{2}$ . The
problem of classification of $(2, 5)$ -distributions coincides with the problem of the
classification of the space $\mathrm{V}^{2}$ with respect to this action. Two couples $\xi,\tilde{\xi}\in \mathrm{V}^{2}$

will be called $G$-equivalent if they belong to one orbit of the action of G.

5. THE QUASI-HOMOGENEOUS $(-1)$ -JET.

Proposition 5.1. Any couple $\xi$ $\in \mathrm{V}^{2}$ spanning a (2, 3, 5) distribution is G-equiva-
lent to a couple whose Taylor series has the form
(5.1) $N+\xi^{(0)}+\xi^{(1)}+\xi^{(2)}+\cdots,$ $\xi^{(i)}\in(\mathrm{V}^{(i)})^{2}$ .

The couple $N\in(\mathrm{V}^{(-1)})^{2}$ is the quasi-homogeneous degree $(-1)$ part in (5.1).
It satisfies the following conditions:
1. The couple of vector fields $N$ spans a $(2, 3, 5)- \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$,

2. If $V_{1},$
$\ldots,$

$V_{4}$ is one of the vector fields of the couple $N$ then $[V_{1}, [V_{2}, [V_{3}, V_{4}]]]=0$ .

It is worth to note that the proof of these properties does not require calculations,
they are direct corollaries of Proposition 3.1. I believe that the couple $N$ is the
nilpotent approximation of a (2, 3, 5)-distribution, i.e. the nilpotent approximation
of a (2, 3, 5)-distribution is its quasi-homogeneous $(-1)$ -jet. Nevertheless this claim,
if it is correct, requires additional explanation.

6. $\mathrm{T}\mathrm{H}+$ STATIONARY GROUP OF THE (–1)-JET.
SUBGROUPS $\mathrm{G}^{+}$ AND $Symm^{}(N)$

Now we will determine the group of transformations preserving the normal form
(5.1). The group $\mathrm{G}$ can be decomposed onto three parts –the “negative”, the
“zero“, and the “positive” parts.

Definition 6.1. Let $((H), \Phi)\in$ G. Write the matrix $(H)$ and the diffeomorphism
$\Phi$ in the form

$(H)=I+(h)$ , $\Phi$ : $x_{i}arrow x_{i}+\phi_{i}(x)$ .
The subgroups $\mathrm{G}^{-},$ $G^{0}$ and $\mathrm{G}^{+}$ (the negative, zero, and the positive parts of G)
are distinguished by the following conditions, where $w_{i}$ is the weight of $x_{i}(w_{1}=$

$w_{2}=1,$ $w_{3}=2,$ $w_{4}=w_{4}=3)$ and $i=1,$ $\ldots,$

$5$ :
$\mathrm{G}^{-}:$ $(h)$ is the zero matrix and $\phi_{i}(x)$ is a polynomial containing no terms of
quasi-homogeneous degree $\geq w_{i}$ ;
$\mathrm{G}^{0}$ : $(h)$ is a constant matrix and $\phi_{i}(x)$ is a quasi-homogeneous polynomial of
degree $w:$ ;
$G^{+}:h(\mathrm{O})=0$ and dii $(x)$ is a function with zero quasi-homogeneous $w:-.|\mathrm{e}\mathrm{t}$ .
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It is easy to show that $\mathrm{G}^{-},$
$\mathrm{G}^{0}$ and $G^{+}$ are subgroups of $\mathrm{G}$ and for any $g\in G$

one has unique decomposition

(6.1) $g=g^{+}\cdot g^{0}\cdot g^{-},$ $g^{-}\in \mathrm{G}^{-},$ $g^{0}\in \mathrm{G}^{0},$ $g^{+}\in \mathrm{G}^{+}$ .

Proposition 6.2. Let 6 be any couple of vector fields of form (5.1) and let $g\in \mathrm{G}$ ,

If $j_{qh}^{-1}(g\xi)=j_{qh}^{-1}\xi=N$ then the decomposition (6.1) contains no negative part:
$g^{-}=id$ . If $g\in \mathrm{G}^{+}$ then $j_{qh}^{-1}(g.\xi)=j_{qh}^{-1}\xi=N$ .

It is not hard to prove that the group $\mathrm{G}^{0}$ acts in the space $(\mathrm{V}^{(i)})^{2}$ , for any $i$ :

$g\in \mathrm{G}^{0},$ $\xi\in(\mathrm{V}^{(\dot{\iota})})^{2}$ $\Rightarrow g.\xi\in(\mathrm{V}^{(i)})^{2}$ .
Notation. By $Symm^{}(N)$ we denote the subgroup of $\mathrm{G}^{0}$ preserving $N$ .

Proposition 6.2 implies the following statement.

Proposition 6.3. Two couples of form (5.1) are $\mathrm{G}$-equivalent if and only if they
are equivalent with respect to the action of the group $\mathrm{G}^{+}$ . $Symm^{}$ $(N)$ .

The group $Symm^{}$ $(N)$ can be calculated. Note that the group $\mathrm{G}^{0}$ contains non-
linear transformations. It is not hard to prove that the group Symmo $(N)$ contains
linear transformations only and they have the following form.

Proposition 6.4. The group $Symm^{}$ $(N)$ is isomorphic to the group of constant
non-singular $2\cross 2$ matrices. The isomorphism is as follows: $Qarrow g_{Q}^{0}=((Q^{t}), L_{Q})\in$

$Symm^{}(N)$ , where $Q$ is an arbitrary constant non-singular $2\cross 2$ matrix and $L_{Q}$ is
the following linear transformation of $\mathrm{R}^{5}$ :

$L_{Q}$ : $(x_{1}, x_{2})^{t}arrow Q\cdot(x_{1}, x_{2})^{t}$ , $x_{3}arrow(detQ)\cdot x_{8}$ ,

(6.2) $(x_{4}, x_{5})^{t}arrow detQ\cdot Q\cdot(x_{4}, x_{5})^{t}$ .

Notations. Given a constant non-singular 2 $\cross 2$ matrix $Q$ we will use the no-
tation $L_{Q}$ for the linear transformation (6.2) of $\mathrm{R}^{5}$ and the notation $g_{Q}^{0}$ for the
transformation $((Q^{t}), L_{Q})\in Symm^{0}(N)$ .

Proposition 6.4 states that any transformation $g^{0}\in$ $Symm^{}$ $(N)$ is defined by a
constant non-singular $2\cross 2$ matrix $Q:g^{0}=g_{Q}^{0}$ . A priori the transformations of the
group $Symm^{}(N)$ preserve $N=A+B$. By Proposition 6.4 any transformation of
the group $Symm^{}(N)$ is linear, therefore we have the following corollary.

Corollary 6.5. Any transformation of the group $Symm^{}$ $(N)$ preserves each of the
couples $A,$ $B\in(\mathrm{V}^{(-2)})^{2}$ .

This corollary implies the following statement which will be used in the sequel
(it is the key point for the normalization with respect to the group $Symm^{}(N)\cdot \mathrm{G}^{+}$

after normalization with respect to the group $\mathrm{G}^{+}$).

Proposition 6.6. The transformation $g_{Q}^{0}\in$ Symmo $(N)$ brings a couple of vector
fields of the form $N+C(x)\cdot B$ to the couple $N+C(L_{Q}(x))\cdot B$ .

7. THE INFINITESIMAL OPERATORS $\mathrm{L}_{N}^{(\mathrm{i})}$ .

In this subsection we “forget” about the group $Symm^{}(N)$ (till the next sub-
section) and present a normal form to which any couple of vector fields with the
quasi-homogeneous $(-1)$-jet $N$ can be reduced by a transformation of the the group
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$\mathrm{G}^{+}$ . We present this normal form in terms of infinitesimal operators defined by $N$ .
We need the Lie algebra of the group $\mathrm{G}^{+}$ amd the exponential map.

Notation. By $\mathrm{M}_{2,2}^{+}$ we denote the subspace of $\mathrm{M}_{2_{1}2}$ consisting of 2 $\cross 2$ matrix
functions $(h)$ such that $h(0)=0$ . By $\mathrm{V}^{+}$ we denote the subspace of V consisting
of vector fields with zero quasi-homogeneous O-jet.

The space $\mathrm{M}_{2,2}^{+}\cross \mathrm{V}^{+}$ can be treated as the Lie algebra of the group $\mathrm{G}^{+}$ . Given
$\lambda=((h), Z)\in \mathrm{M}_{2,2}^{+}\cross \mathrm{V}^{+}$

define the 1-parameter family $((H_{t}), \Phi_{t})\in \mathrm{G}$ by the system of ODEs

$\frac{d\Phi_{t}}{dt}=Z(\Phi_{t})$ , $\frac{dH_{t}}{dt}=H_{t}\cdot h(\Phi_{t})$

and the initial conditions $\Phi_{0}=id,$ $H_{0}=I$ . One can prove that $((H_{t}), \Phi_{t})\in \mathrm{G}^{+}$ .
The family $((H_{t}), \Phi_{t})$ will be called the flow of A. The map sending A to $((H_{1}), \Phi_{1})$

will be called the exponential map:
$exp:\mathrm{M}_{2,2}^{+}\cross \mathrm{V}^{+}arrow \mathrm{G}^{+}$ , $\exp(\lambda)=((H_{1}), \Phi_{1}))$ .

Given a couple $\xi\in \mathrm{V}^{2}$ define the infinitesimal linear operator
$\mathrm{L}_{\xi}$ : $\mathrm{M}_{22,1}^{+}\cross \mathrm{V}^{+}arrow \mathrm{V}^{2}$ , $\mathrm{L}_{\xi}(\lambda)=(d/dt)|_{t=0}(exp(t\lambda)).\xi$ .

In other words $\mathrm{L}_{\xi}$ is the differential of the map $\mathrm{G}\ni garrow g.\xi$ at the point $id\in G$ .
It is easy to calculate

$\mathrm{L}_{\xi}((h), Z)=(h)\cdot\xi+[\xi, Z]$ .
The normalization of couples of vector fields of form (5.1) is tied with the linear
operator $\mathrm{L}_{N}$ .

Notation. The restriction of the operator $\mathrm{L}_{N}$ to the space $\mathrm{M}_{2,2}^{(i)}\cross \mathrm{V}^{(i)},$ $i\geq 1$ , will
be denoted $\mathrm{L}_{N}^{(i)}$ .

Since $N\in(\mathrm{V}^{(-1)})^{2}$ then by Proposition 3.1 the image of the operator $\mathrm{L}_{N}^{(i)}$

belongs to the space $(\mathrm{V}^{(i-1)})^{2}$ . We obtain a one-index family of linear operators
$\mathrm{L}_{N}^{(:)}$ : $\mathrm{M}_{2}^{(*}|_{2}^{)}\cross \mathrm{V}^{(:)}arrow(\mathrm{V}^{(i-1)})^{2}$ , $i\geq 1$ ,

$\mathrm{L}_{N}^{(i)}((h), Z))=(h)\cdot N+[N, Z]$ .

Proposition 7.1. Let $i\geq 1$ and let A $=((h), Z)\in \mathrm{M}_{2_{\{}2}^{(i)}\mathrm{x}\mathrm{V}^{(i)}$ . Let 4 be any
couple of vector fields with the quasi-homogeneous $(-1)$ -jet N. Then

$j_{qh}^{1-1}(exp\lambda)\xi=j_{qh}^{1-1}\xi+\mathrm{L}_{N}^{(i)}(\lambda)$ .

This proposition easily implies the following corollary.

Proposition 7.2. Fix any complementary subspaces $\mathrm{W}^{(i-1)}$ for the image of the
operator $\mathrm{L}_{N}^{(:)}$ in $(\mathrm{V}^{(*-1})^{2}$ :

$(\mathrm{V}^{(:-1)})^{2}=Image(\mathrm{L}_{N}^{(i)})\oplus \mathrm{W}^{(i-1)}$ , $i\geq 1$ .
Any couple of form (5.1) is formally $\mathrm{G}^{+}$ -equivalent to a couple of the form
(7.1) $N+\tilde{\xi}^{(0)}+\tilde{\xi}^{(1)}+\tilde{\xi}^{(2)}+\cdots,\tilde{\xi}^{(i)}\in \mathrm{W}^{(i)}$ .
If $\xi^{(0)}$ , ..., $\xi^{(s)}\in W^{(i)}$ then the couple (5.1) is formally $\mathrm{G}^{+}$ -equivalent to (7.1)
$wi$ th $\tilde{\xi}^{(0)}=\xi^{(0)},$ $\ldots,\tilde{\xi}^{(\epsilon)}=\xi^{(s)}$ .
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In view of Propositions 7.1 and 7.2 it is worth to answer the following questions:
for which $i$ the operator $\mathrm{L}_{N}^{(i)}$ is surjective? injective? To guess the answer let us
find the difference

$\triangle_{i}=dim(\mathrm{V}^{(i-1)})^{2}-dim\mathrm{M}_{2,2}^{(i)}\cross \mathrm{V}^{(i)}$

between the dimensions of the target and the source space of the operator $\mathrm{L}_{N}^{(i)}$ .
One can expect that if $\triangle_{i}<0$ then the opeartor $\mathrm{L}_{\Lambda}^{(i}$) is surjective and its kernel
has dimension $|\triangle_{i}|$ , and if $\triangle_{i}>0$ then the operator $\mathrm{L}_{N}^{(:)}$ is injective. Theorem 7.3
below confirms that this is true. Note that

$dim(\mathrm{V}^{(i)})=2dim\mathrm{F}^{\dot{*}+1}+dim\mathrm{F}^{(*+2)}+2dim\mathrm{F}^{(*+3)}$ , $dim\mathrm{M}_{2^{*;_{2}=4dim\mathrm{F}^{(*)}}}^{()}$

(recall that $\mathrm{F}^{(i)}$ denotes the space of quasi-homogeneous degree $i$ functions). It
follows

$\triangle_{i}=3dim\mathrm{F}^{(i+2)}-2d\iota’m\mathrm{F}^{(i+3)}$ .
Calculating $dim\mathrm{F}^{(i)}$ we obtain the following table

$\prime 1^{\tau}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}1$ . $\prime 1^{}\mathrm{h}\mathrm{e}$ dlnerence $\triangle:$ oetween rne
dimensions of the target and the source
space of the operator $\mathrm{L}^{(\gamma:}$

This table explains (though of course does not prove) the following

Proposition 7.3.
(i) The operator $\mathrm{L}_{N}^{(i)}$ is surjective if and only if $i\leq 3$ .

(ii) The operator $\mathrm{L}_{N}^{(i)}$ is injective if and only if $i\geq 4$ . One has

$dimKer\mathrm{L}_{N}^{(1)}=2,$ $dimI\mathrm{f}er\mathrm{L}_{N}^{(2)}=1,$ $dimKer\mathrm{L}_{N}^{(3)}=2$ .

8. QUASI-HOMOGENEOUS 3-JET. CARTAN INVARIANT.

The complementary subspace for the image of the operator $\mathrm{L}_{N}^{(4)}$ in $(\mathrm{V}^{(3)})^{2}$ can
be $\mathrm{e}\mathrm{a}s$ily calculated. Table 1 suggest that it is 5-dimensional.

Lemma 8.1. $(\mathrm{V}^{(3)})^{2}=Image(\mathrm{L}_{N}^{(4)})\oplus\{P^{(4)}(x_{1}, x_{2})\cdot B\}$ , where $P^{(4)}(x_{1}, x_{2})$ is an
arbitrary homogeneous degree 4 polynomial of two variables.

This lemma and Propositions 7.2 and 7.3 imply that the quasi-homogeneous
3-jet of any couple of vector fields with the quasi-homogeneous $(-1)$-jet $N$ is $\mathrm{G}^{+}-$

equivalent to a quasi-homogeneous 3-jet of the form $N+P^{(4)}(x_{1}, x_{2})\cdot B$ , where
$P^{(4)}(x_{1}, x_{2})$ is a homogeneous degree 4 polynomial. Using Proposition 7.1 it is not
hard to prove a stronger statement.
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Proposition 8.2. The quasi-homogeneous 3-jet of a couple of vector fields with
the quasi-homogeneous $(-1)$ -jet $N$ is $\mathrm{G}^{+}$ -equivalent to one and only one of the
quasi-homogeneous 3-jets of the form
(8.1) $N+P^{(4)}(x_{1}, x_{2})\cdot B$ ,

where $P^{(4)}(x_{1}, x_{2})$ is a homogeneous degree 4 polynomzal.

According to our definition in section 2 the homogeneous degree 4 polynomial
$P^{(4)}(x_{1}, x_{2})$ in this normal form is called the Cartan tensor. In order to explain this
definition we have to analyze the action in the space of quasi-homogeneous 3-jets
of the whole group G.

Recall that by Proposition 6.3 two couples of vector fields with the quasi-homoge-
neous $(-1)$-jet $N$ are $\mathrm{G}$-equivalent if and only if they are equivalent with respect
to the action of the group $Symm^{}$ $(N)\cdot \mathrm{G}^{+}$ . Let $g^{0}\in Symm^{0}(N)$ . By Proposition
6.4 $g^{0}=g_{Q}^{0}$ for some non-singular constant 2 $\cross 2$ matrix $Q$ . By Proposition 6.6
the transformation $g_{Q}^{0}$ brings a couple of the form $N+C(x)\cdot B$ to the couple
$N+C(L_{Q}(x))\cdot \mathcal{B}$ . If $C(x)$ depends on $x_{1},$ $x_{2}$ only then $C(L_{Q}(x))$ is the function
obtained from $C(x)$ by the linear transformation of $\mathrm{R}^{2}$ with the matrix $Q$ . We
obtaim the following statememt.

Proposition 8.3. Let $Q$ be a non-singular constant 2 $\cross 2$ . The transformation
$g_{Q}^{0}\in$ $Symm^{}$ $(N)$ brings a couple of vector fields of form (8.1) to the couple of
the form $N+\tilde{P}^{(4)}(x_{1}, x_{2})\cdot B$ , where $\tilde{P}^{(4)}(x_{1}, x_{2})$ is the polynomial obtained from
$P^{(4)}(x_{1}, x_{2})$ by a linear transformation with the matrix $Q$ .

This means that the group $Symm^{}(N)$ preserves the normal form (8.1). Propo-
sitions 5.1, 8.2 and 8.3 imply the following statement on the classification of quasi-
homogeneous 3-jets with respect to the whole group G.

Proposition 8.4. The quasi-homogeneous 3-jet of a couple of vector fields span-
ning a (2, 3, 5) distribution is $\mathrm{G}$ -equivalent to a quasi-homogeneous 3-jet of form
(8.1). Two quasi-homogeneous 3-jets of this form, with Cartan tensors $P^{(4)}(x_{1}, x_{2})$

and $\tilde{P}^{(4)}(x_{1}, x_{2})$ , are $\mathrm{G}$ -equivalent if and only if the Cartan tensors can be brought
one to the other by a linear non-degenerate transformation of the plane $\mathrm{R}^{2}(x_{1}, x_{2})$ .

Proposition 2.2 is a part of Proposition 8.4. Proposition 8.4 implies that the
Cartan invariant (see section 2.2) is a complete invariant in the classification of
quasi-homogeneous 3-jets of (2, 3, 5) distributions.

If the Cartan tensor $P^{(4)}(x_{1}, x_{2})$ is non-degenerate and has positive (respectively
negative) type then it is linearly equivalent to one and only one of the polynomials
of the set $\mathrm{P}^{(4),+}$ (respectively $\mathrm{P}^{(4),-}$ ), see section 2.2. Therefore the exact normal
form for the quasi-homogeneous 3-jets is as follows.

Proposition 8.5. The quasi-homogeneous 3-jet of a couple of vector fields span-
ning a (2, 3, 5)-distribution with a non-degenerate Cartan tensor ofpositive (respec-
tively negative) type is $\mathrm{G}$ -equivalent to one and only one of the quasi-homogeneous
3-jets of the form $N+P^{(4)}(x_{1}, x_{2})\cdot B$, where $P^{(4)}(x_{1}, x_{2})\in \mathrm{P}^{(4),+}$ (respectively
$P^{(4)}(x_{1}, x_{2})\in \mathrm{P}^{(4),-})$ .
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9. PROOF OF THEOREMS $\mathrm{A}$,B,C (OUTLINE)

To prove Theorem A we calculate the complementary subspace for the images

of the operator $\mathrm{L}_{N}^{(i)}$ in $(\mathrm{V}^{(i-1)})^{2}$ for any $i\geq 1$ . Let

(9.1) $\mathrm{W}^{(i-1)}=\{C(x)\cdot B$ , $C(x)\in \mathrm{F}^{(i)}\cap \mathrm{I}\}$ , $i\geq 1$ ,

where I is the ideal defined in section 2.

Proposition 9.1. $(\mathrm{V}^{(\dot{*}-1)})^{2}=Image(\mathrm{L}_{N}^{(:)})\oplus \mathrm{W}^{(i-1)}$ , $i\geq 1$

Remarks. Lemma 8.1 is a particular case of Proposition 9. $1-\mathrm{t}\mathrm{h}e$ space $\mathrm{F}^{(4)}\cap \mathrm{I}$

is exactly the space of homogeneous degree 4 polynomials $P^{(4)}(x_{1}, x_{2})$ . Note that
$\mathrm{W}^{(0)}=\mathrm{W}^{(1)}=\mathrm{W}^{(2)}=\{0\}$ because any function in the ideal I has zero quasi-
homogeneous 3-jet. Therefore Proposition 7.3, (i) is a corollary of Proposition 9.1.

Theorem A is a direct corollary of Propositions 5.1, 7.2, and 9.1. Theorem $\mathrm{C}$ is
a simple corollary of Theorem B. In what follows we give the outline of the proof
of Theorem B. At first we reduce Theorem $\mathrm{B}$ to the following statement.

Proposition 9.2.

(i) Any couple of vector fields whose quasi-homogeneous 3-jet has the form
$N+P^{(4)}(x_{1}, x_{2})\cdot B$ with $P^{(4)}(x_{1}, x_{2})\in \mathrm{P}^{(4),\pm}$ is $\mathrm{G}^{+}$ -equivalent to a couple of the

form $N+C(x)\cdot B$ , where $C(x)\in \mathrm{I}_{0}^{\pm}$ (either all signs $are+or$ all signs are-).

(ii) This normal form is exact with respect to the group $\mathrm{G}^{+}:$ two couples of the

form $N+C(x)\cdot \mathcal{B}$ and $\mathcal{N}+\tilde{C}(x)\cdot B$ with $C(x),\tilde{C}(x)\in \mathrm{I}_{0}^{+}$ or $C(x),\tilde{C}(x)\in \mathrm{I}_{0}^{-}$ are
formally $\mathrm{G}^{+}$ -equivalent if and only if the Taylor series of $C(x)$ and $\tilde{C}(x)$ coincide.

Here $\mathrm{I}_{0}^{\pm}$ is the set of function germs defined in section 2.3. Theorem $\mathrm{B}_{l}.(\mathrm{i})$ is a
direct corollary of Propositions 8.5 and 9.2, (i). Theorem $\mathrm{B},$ $(\mathrm{i}\mathrm{i})$ is almost logical
corollary of Proposition 9.2, (ii), the results of sections 6 and 8, and the following
observations:
1. It is easy to sh$o\mathrm{w}$ that the linear transformation of $\mathrm{R}^{2}$ with a matrix $Q$ preserves
a polynomial of the set $\mathrm{P}^{(4),+}$ (respectively $\mathrm{P}^{(4),-}$ ) if and only if $Q$ belongs to the
group generated by the matrices

$Q_{1}=$ , $Q_{2}=,$ $Q_{3}=$

(respectively to the group generated by the matrices $Q_{1},$ $Q_{2}$).

2. It is clear that $L_{Q_{1}}=i_{1},$ $L_{Q_{2}}=i_{2},$ $L_{Q_{3}}=i_{3}$ , where $i_{1},$ $i_{2},$ $i_{3}$ are the involutions
defined in section 2.3.
3. The involutions $i_{1},$ $i_{2}$ preserve $\mathrm{I}_{0}^{+}$ and $\mathrm{I}_{0}^{-}$ . The involution $i_{3}$ preserves $\mathrm{I}_{0}^{+}$ .

The proof of Proposition 9.2 is based on the $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}- \mathrm{q}\mathrm{u}\mathrm{a}\epsilon$ i-homogeneous
techniques for the normalization of a couple of vector fields with a fixed quasi-
homogeneous 3-jet $N+\xi^{(3)}$ . Fix, as in section 7, a complementary subspace $\mathrm{W}^{(i)}$

for the image of the operator $\mathrm{L}_{N}^{(i+1)}$ in $(\mathrm{V}^{(i)})^{?}$ : $(\mathrm{V}^{(:)})^{2}=Image(\mathrm{L}_{N}^{(*+1)}’)\oplus \mathrm{W}^{(:)}$

Let $\pi_{i}$ : $(\mathrm{V}^{(i)})^{2}arrow \mathrm{W}^{(i)}$ be the projection according to this direct sum. Recall
that by Proposition 7.3, (ii) the operators $\mathrm{L}_{N}^{(1)},$ $\mathrm{L}_{N}^{(2)},$ $\mathrm{L}_{N}^{(3)}$ have kernels of dimension

2, 1, 2 and the kernels of the operators $\mathrm{L}_{N}^{(i)},$ $i\geq 4$ are trivial. The latter is the main
point in the proof of Theorem 9.2.
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Given $\xi^{(3)}\in(\mathrm{V}^{(3)})^{2}$ consider the following three linear operators:

(9.2) $\mathrm{T}_{N,\xi^{(\mathrm{s}\rangle}}^{(i)}$ : $Ker\mathrm{L}_{N}^{(i)}arrow \mathrm{W}^{(i+3)}$ , $\mathrm{T}_{N1\xi^{(\mathrm{s}\rangle}}^{(i)}(\lambda)=\pi_{i+3}\mathrm{L}_{\xi^{(3)}}(\lambda)$ , $i=1,2,3$ .

Here $\mathrm{L}_{\xi}$ is the infinitesimal operator defined by $\xi\in(\mathrm{V})^{2}$ , see section 7. Fix
complementary subspaces $\mathrm{U}^{(i)}$ for the images of these operators in $\mathrm{W}^{(i+3)}$ :

$\mathrm{W}^{(:+3)}=(Image\mathrm{T}_{N,\xi^{(3)}}^{(:)})\oplus \mathrm{U}^{(i+3)}$ , $i=1,2,3$ .

Proposition 9.3. Fix $\xi^{(3)}\in(V^{(3)})^{2}$ .
(i) Any couple of vector fields with the quasi-homogeneous 3-jet $N+\xi^{(3)}$ is formally
$\mathrm{G}^{+}$ -equivalent to a couple of the form
(9.3) $N+\xi^{(3)}+\xi^{(4)}+\cdots,$ $\xi^{(4)}\in \mathrm{U}^{(4)},$ $\xi^{(5)}\in \mathrm{U}^{(5)},\xi^{(6)}\in \mathrm{U}^{(6)},$ $\xi^{(*\geq \mathit{7})}.\in \mathrm{W}^{(:)}$ .

(ii) If the operators (9.2) are injective then this normal form is exact with respect
to the group $\mathrm{G}^{+}:$ two couples ofform (9.3) are formally $\mathrm{G}^{+}$ -equivalent only if they
have the same Taylor series.

Now to prove Proposition 9.2 one has to analyze operators (9.2) with $\xi^{(3)}=$

$P^{(4)}(x_{1}, x_{2})\cdot B$ , where $P^{(4)}(x_{1}, x_{2})\in \mathrm{P}^{(4)_{)}\pm}$ .

Proposition 9.4. Let $\xi^{(3)}=P^{(4)}(x_{1}, x_{2})\cdot B$, where $P^{(4)}(x_{1}, x_{2})\in \mathrm{P}^{(4),\pm}$ . Let
$\mathrm{W}^{(i)}$ be the subspaces (9.1) (see Proposition 9.1).
1. The operators (9.2) are injective.

2. $\mathrm{W}^{(i+3)}=Image(\mathrm{T}_{\lambda_{)}’\zeta^{(3))}}^{(:)}\oplus\{C(x)\cdot B, C(x)\in \mathrm{F}^{(i+4)}\cap \mathrm{I}_{0}^{\pm}\}$ (the sign in $I_{0}^{\pm}$ is
the same as the sign in the assumption of the proposition).

Theorem 9.2 is a direct corollary of Propositions 9.3 and 9.4.
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