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Some twistor spaces of 6-dimensional submanifolds in
the octonions.

Hideya Hashimoto

1 Introduction

In this paper, we shall consider the twistor space of 6-dimensional submanifolds in the
octonions.

First we recall the induced almost Hermitian structure of such 6-dimensional sub-
manifolds. In ([Brl]), R.L.Bryant showed that any oriented 6-dimensional submanifold
@ : M® — € of the octonions admits the almost complex (Hermitian) structure as follows

Pu(JX) = pu(X)(n X £)

where £, 7 is the oriented orthonormal frame field of the normal bundle of ¢, which is
defined locally, but 7 x £ is a global S®(C Im€)-valued function on M%. We obtain
the almost complex structure whole on M®. Therefore there exist a principal U(3)-
bundle structure on M®, and obtained the associated fibre bundle over M® with fibre
P?(C). This fibre bundle is called the twistor space of M®. In this paper, we consider
the integrability conditions on some almost complex structures on this twistor space.
Usually the twistor space is defined as a fibre bundle (over an even dimensional Riemmnian
manifold) whose fibre (at each point) consists of all almost complex structures on the
tangent space compatible with the metric and the orientation. The fibre is isomorphic
to the rank one Hermitian symmetric space SO(2n)/U(n). We note that SO(4)/U(2) ~
P(C) for n = 2 and SO(6)/U(3) ~ P3(C) for n = 3 (see P. Wong [Wo]). The twistor
space which is treated in this paper is different from the usual one.

We note that the induced almost complex (Hermitian) structure is a Spin(7) invariant
in the following sense.

Let @1,z : M® — € be two isometric immersions from the same source manifold to
the octonions. If there exist an element g € Spin(7) such that g o ¢; = ¢, (up to the
parallel translation), then the two maps are said to be Spin(7)-congruent. If two maps
are Spin(7)-congruent, then the induced almost. complex structures coincide.



2 Preliminaries
Let H be the skew field of all quaternions with canonical basis {1, , j, k}, which satisfy
P=P=kt=-1,ij=—ji=k, jk=—kj=1i, ki=—ik=].

The octonions (or Cayley algebra) € over R can be considered as a direct sum HGH = €
with the following multiplication

(a + be)(c + de) = ac — db + (da + be)e,

where ¢ = (0,1) € H®H and a,b, ¢,d € H, the symbol "™ denote the conjugation of the
quaternion. For any z,y € €, we have

<zy,zYy >=< T, >< Y,y >

which is called "normed algebra” in ([H-L]). The octonions is a non-commutative, non-
associative, alternative, division algebra. The group of automrphisms of the octonions is
the exceptional simple Lie Group

Gy = {g € SO(8) | g(uv) = g(u)g(v) for any u,v € €}.
In this paper, we shall concern the group of spinors Spin(7) which is defined as follows
Spin(T) = {g € SO(8) | g(uv) = g(u)xs(v) for any u,v € €}.

where x,(v) = g(g~'(1)v). We note that G, is a Lie subgroup of Spin(7); G; = {g €
Spin(7) | g(1) = 1}. The map  defines the double covering map from Spin(7) to SO(7),
which satisfy the following equivariance

g(u) x g(v) = xg(u X v)

for any u,v € € and u x v = (1/2)(%u — @) (which is called the ”exterior product”)
where 7 = 2 < v,1 > —v is the conjugation of v € €. We note that u X v is an element
of pure-imaginary part of €.

2.1 Spin(7)-structure equations

In this section, we shall recall the structure equation of Spin(7) which is established by
R.Bryant ([Brl]). To construct this, we fix a basis of the complexification of the octonions
C®RE as follows

N = (1/2)(1 — vV=1¢), N = (1/2)(1 + V-1¢)

Ey =iN, E, = jN, E3=—kN, E, =iN, E;=jN, E3 = —kN.
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We extend the multiplication of the octonions complex linearly. Then we have the follow-
ing multiplication table;

AB|N|E | B | Bs |N| E|E | E
NJnN] o] o 0 |lo| B | Ey | Es
E, |Ei| 0 |=E3| E; | O|-N| 0 0
E, |E;| Bs | 0 |-Ey 0] 0 |[=N| 0
Es |Es|-E,| E, | 0 [ 0] o 0 | -N
N {|o|E | E | E/|N| o 0
E, |0O|-N| O 0 (Ey| 0 |-FE3| E,
E;2 0] 0 |-N| 0 |E| Es| 0 |-E
Es 0| 0 0 | -N|Es|-E,| E; | 0

We define a € % Spin(7) (semi-direct product) admissible frame field as follows. Let o be

the origin of the octonions. The Lie Group € x Spin(7) acts on € & End(C®R€) such
that

(z,9)(0; N,E,N,E) = (9-0+z,9(N),g(E),g(N),g(E))
= (m,g(N),g(E),g(N),g(E))

. SR n 1 les
(O’N’E’N’E)(p(w) p(g))

1 les

p(z) plg)
(z;n, f,7, f) is said to be a €x Spin(7) admissible one if there exists a (z, g) € €x Spin(7)
such that

where (z,g) € € x Spin(7) and ( ) is an its matrix representation. A frame

(x;n’f,ﬁ,f)=($,Q)(O;N,E,N,E).

Proposition 2.1 ([Brl]) The Maurer-Cartan form of € x Spin(7) is given by

0 0 les 0 01x3
viv=lp -%h| 0 %
w| b K 0 @
—0 | —v/=Ip -'h
[6] b R

d(z;n, f,n,f) = (zin, f,7,f)

AN

&
D O

= (x;nafaﬁvf)w
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where 1 is the spin(T) & €(C Myxe(C)) -valued 1-form, p is a real-valued 1-form, v is a
complez valued 1-form, w,b,0 are Msy,-valued 1-form, k is a u(3)-valued 1-form which
satisfy v—1p +trk =0, and

0 6 —f
Bl=| -6¢ o ¢
2 —6' o0

for 0 = ¥(6,62,0%). The ¢ satisfy the following integrability condition dip + ¥ Ay = 0.
More precisely

€ «

dz = (n7f7ﬁ7f) )
W
dn = nv=1p+ fb+ f8,
df = n(-'h)+ fr+n(-*0) + 6,

AN

and the integrability conditions are given by

dv = V=IpAv+hAw+i0AG,

dw —bAV—kAw—-0AD—[0]AD,
d(v=1p) = *hAh+' A,

dh = —hAV=-Ip—sAh—[6]AH,

dd = OAV=1p—kN6—[0)Nb,

de = BAH—KAK+ONG—[B]A[6).

I

3 Gram-Schmidt process of Spin(7)

To construct the Spin(7)-frame field, we recall the Gram-Schmidt process of G,-frame.
Let € = {u € €| < u,1 >= 0} be the subspce of purely imginary octonions.

Lemma 3.1 For a pair of mutually orthogonal unit vectors e;, e4 in € put e5 = e;e,.
Take a unit vector e, which is perpendicular to ey, e and es. If we put e3 = €€y,
es = egey and ey = ezey then the matriz

g = [e1, e3, €3, €4, €5, €5, €7] € SO(T)

is an element of G,.



3.1 A method of construction

By Lemma 3.1, we can take e = 7 X £, we can get the G,-frame field as follows. We set

N = (1/2)(1-V=1e), N*=(1/2)(1+ V-Tey),

E} = (1/2)(ex —V—Tles), E;=(1/2)(e1 +v~1es),

E; = (1/2)(e2—V-1es), E5=(1/2)(ez+ v ~les),

E; = —(1/2)(es — V-1er), E3=—(1/2)(es+v~Ter).
Then spanc{N*, E}, E3, E3} is a v/—1-eigen space TM¢(c e® C) with respect to the
almost complex structure J = Ryx¢ at p € €. On the other hand, n = (1/2)(¢ — v/=17)

is a local orthonormal frame field of the complexified normal bundle T+t9 M. Since

T:((,i’)o)M C Té};ﬁ{@, there exists a Myx;(C)-valued function a; = *(az1, a1, as;, @), such

that
n=(1/2)(¢ - \/:—1"7) = (N*, E}, E;, E3)a:.

By the Gram-Schmidt orthonormalization with respect to the Hermitian inner product of

T&ﬁ))e, there exist three Myx1(C)-valued functions {az,as,as} such that {a;,as,as,as}

is a special unitary frame. We set
fi= (N*’ 10 E3, E3)ais1

fori=1,2,3, then
(n, fsﬁa f) = (n’flaf% fSaﬁ’ f1’f2,f3)
is a (local) Spin(7)-frame field on M.

Remark 3.1 This procedure comes from the following relation

Spin(7)/Spin(6) = Spin(7)/SU(4) = §® = G,/SU(3).

4 Invariants of Spin(7)
We shall recall the invariants of Spin(7)-congruence classes. By Proposition 2.1, we have

Proposition 4.1 l([Brl]) Let ¢ : M® — € be an isometric immersion from an oriented
6-dimensional manifold to the octonions. Then

dp = fw+ fo, | (4.1)
v = 0, (4.2)
dn = nv-=1p+ fb+ f8, (4.3)

df = n(=*B) + fr+n(-*9) + 4], (4.4)
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and the integrability conditions imply that

dw = —KkAw—-[0]A@, (4.5)
d(v-1p) = 'hAH+OAG, (4.6)
dhy = —hAV=Ip—rkAh—[0] A6, (4.7)
dd = OAV=1p—kAO—[B]AB, (4.8)
de = BA'B—kAK+ON [ A[6). (4.9)

The second fundamental form II is given by
I1=—2Re{(*how +' G o) ®n}

where the symbol ”o” is the symmetric tensor product. By Cartan’s Lemma (since v = 0),
there exist Msy3-valued matrices A, B, C such that

-GHE e

where A = A and !C = C. We have the following decomposition

%9 = (“woAw)®n
I = (~*%o o' Bw—-*woBw)®n
%2 = (~'@oCw)®n.

We shall write each elements more explicitly. There exists a unitary frame {e;, Je;} for
i=1,2,3, such that

n = (1/2)(€ - V=Tn), fi = (1/2)(es — v=1Jey).
Thus elements of second fundamental form are given by

A1'j = =-2< H(f,, fj),ﬁ >,
Bij = =2< II(f,,f;),ﬁ >,
C.‘j = —-2< II(f,‘, f,),ﬁ >.

We shall recall the relation of Ricci *-curvature p* and *-scalar curvature 7* which are
fundamental invariants on almost Hermitian manifolds. Generically, these curvatures of
an almost Hermitian manifold M = (M, J, <,>) with even dimension 2n, are defined by

2n

p'(z,y) = (1/2) ) _ < R(es, Jei) Iy, @ >

i=1
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and
2n
™= p"(eire),
i=1
respectively. We note that Ricci *-curvature is neither symmetric nor skew-symmetric
tensor.

Proposition 4.2 ([H2]) The Ricci *-curvature and *-scalar curvature of oriented 6-
dimensional submanifolds in € are given by

p'(z,y) = 'a(AB-BC~'(AB-BC))B
— ‘'a(AA- B'B —! BB + CC)B + its conjugation
T = —4(trAA - 2r*BB +trCC), '

where T = fa+ fa,y=fB+ fB and a,B € Ms,1(C).

4.1 Spin(7)-congruence theorem

In this section, we shall give the equivalent condition for Spin(7)-congruence. We shall
prove the following.

Proposition 4.3 Let M® be a connected 6-dimensional manifold and ¢, @, : M® — €
be two isometric immersions with same induced metrics and almost complex structures.
Let IIZ0, II%°) be the corresponding (2,0) part of the 2nd fundamental forms. Then there
ezists an element g € Spin(7) such that g o p; = ¢, if and only if Ilg’o) = [1‘(;,22’0)

Proof. By (4.1) of Proposition 4.1, w,&@ are determined by the induced Hermitian
Structure. We may check that p, b, and 6 depend on w,@ and I1?9, By (4.4), k and 6
depend only on the unitary frame f, f,df and d f . Hence they depend only on the induced
Hermitian Structure. By (4.10), B and C are also. If we fix II®9  we get the desired
complete information of the immersion. q.ed

5 A spinor frame field on S? x S*

In this section, we give the *-scalar curvature %7 of the immersion

a0 (Ps Y0, y) = cos(eo)p + sin(eo)(yo - 1 + ye),

where o € (0,7/2) is a constant, p € S2 C ImH (jp| = 1), and yo-1+ye € S* C
R®He (y§+|y[*> = 1). Then the oriented orthonormal basis {£,7} of the normal bundle
T+ M is given by £ = yo- 1+ ye,n = p. The almost complex structure is given by the right
multiplication of the vector field u = 7 x £ = yo p+ (y p)e. Let {ey, ez} be the oriented
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orthonormal basis at p (i.e., e2 = e;p), then {e1, e2, p} is an associated plane in Im€. We
construct Ga-frame field from the vector field u as follows:
Let e; € T,5%,e4 = u, then e5 = eje4 = yoez — (Yez)s. We set

6 = (yel)s’

|yl

. y
e3 = €163 = ——F¢,
: 2T

~ e
es = €ze4=—|yles — yogzlz) ,
er = eseg=—lylp— yoi(jp)

Then {e;, €3, -, €7} is the Gz-adapted frame at p+yo-1+ye € S? x S4. The complexified
G-adapted frame is given by as follows;

N = 1(1 VI + (yp)e))
E = ( — V=1(yoe2 - (yeg)e))

(Tlls +vV=1(|ylez + v |(y62)5))

(I | -v-1 (Iylp—l——l(yp)s))

By straightforward calculations, we get the local Spin(7) frame field along ¢,, as follows
1
n o= g ((yop + (yp)e) — v —1p)
fi = Ef=¢ (61 v—=1(yoe2 — (yez)e))

fo = B=5(Be+vilyles + Bilven)).

5(—lyl1+’|’°"l’e+xf—(l @p)e).

To calculate the Spin(7) invariants, we need the representation of co-frame as follows;

E} =

2\°
1
2
.1

fs

3
dipay = co8(ao)dp + sin(ao) (dyo + (dy)e) = 3 fus' + T

=1

Then we have

W' = 2 < dpey, i >= cos(ag)(< dp,er > +vV—1 < dp,e; >) — V—1sin(ag) < Tdy, ez >,

W = 2< dpay, fo >= —v/—1cos(ao)lyl(< dp, e >) + Sml;""°)(< Tdy, e1 > —v/=1 < Jdy, e >),
!

W = 2 < dpay, T3 >= sin(ao)(~|yldyo + = Iyl <ydy,1> — < vdy,p >).
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By (4.10), we have
2 -
_p (1 VT ¥ |1| 1y°|y2| 8
7 7 4 \sin(ap)  cos(ay) yooy Oyo 0 i

l—yo 143 wlyl 1 v-1 0
sm(ao) cos( ) vo A sm(zao) " cos(ap)
+ ¥

1 1—y2
B=-=- 0
1| wolvl sm(a ) cos(ao) ~ sin(ag)  cos(ao) (2)
0 0 sin(ap)

Hence the *-scalar curvature 7 of p,, is given by

v _ 2(cos*(o0) + 45)
sin?(ap) cos?(ag)”

Therefore the induced almost complex structure of ¢,, is not homogeneous.

6 The projective bundle over M?®

Let 7339 M8 be the +/—1-eigen space of the induced almost complex structure at m € M¢,
which is a subspace of the complexified tangent space C ® T,, M®. We note that T.\** M6
is isomorphic to C3. Let 7 : § — M?® be the principal U(3) bundle over M?®.

We set the projective space

P(T3OM®) = {spanc{fi} C T OM®Ih = fu(m,U) = (f1, fo, fa)ui}

where (fi1, fa, f3) is a local section of §, U is a 3 x 3 unitary matrix and U = (uy, ug, u3)
for each u; is a 3 x 1 matrix. We set

P(TUOME) = Uype e P(TEO M),

Then, P(T™% M?®) is the projective bundle over M® with the fibre P2(C). We call this
bundle twistor space. Then the projective bundle can be considered as a associated bundle
of §. By (4.4), we can define the U(3) connection V(9 on F as follows

VO (51, f2,fs) = (f1, fa, Fs) &,

where f = (1, f2, f3) is a U(3)-valued function on §. (This connection is well-defined on
F.) Then we have the following splitting

T3 = HF oV,



where H§, (resp. V;) is a horizontal subspace with respect to U(3) connection, (resp.
vertical subspace which is isomorphic to u(3) ) at f € §. From this, we get

Tfl (P(T(I,O)MG)) = Hh o vh

where V, is isomorphic to the holomorphic tangent space of the P?(C). Then we can
define the 4-types almost complex structures on P(T9 M?®) as follws;

1.
1 2 3.2 .3
{w',w’, 0’ K1, K3, }
2.
1,2 37373
{w,w,w,nl,ni’,}
3.
— 2 3 .2 .3
{wt,w®, W’ K3, K1, }
4.

{Z:)-f7 wz’ ws’ -’i—%7 E—?, }

The type 3 is very important. This construction comes from « : P(T956)(~ Q%) —
S6. If type 1 and 2 is inteagrable, then the induced almost complex structure of MS$
is integarable, that is, M® is a complex manifold. If type 3 is integrable, then M?® is
isomorphic to a 6-dimensional sphere. The type 4 in never integrable.
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