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Abstract Balanced incomplete block (BIB) design and group divisible $(\mathrm{G}\mathrm{D})$ designs
are connected with finite geometry. In this paper, at first, we denote BIB design,
GD designs and finite geometry. Next, the combinatorial structure of GD designs
with $r=\lambda_{1}+1$ is discussed. Moreover the combinatorial structure of GD designs is
discussed $\mathrm{h}\mathrm{o}\mathrm{m}$ another point of view of assuming local structure in each group. Finally,
we give a conjecture about combinatorial structure of GD designs with local structure
corresponding finite geometry in each group.
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1. Introduction

Let $V$ be a finite set and $B$ be a collection of subsets of the same size of $V$ . A pair
(V, $B$) is called a block design, or simply a design. Elements of $V$ and $B$ are called points
and blocks, respectively. Let $v=|V|$ and $b=|B|$ . In discussing the combinatorial
problems on designs, we adopt the terminology “points” instead of treatments used
usualy. For a block design (V, $B$), let $V=\{p_{1},p_{2}, \cdots,p_{v}\}$ and $B=\{B_{1}, B_{2}, \cdots, B_{b}\}$ ,
and the $v\cross b$ matrix $N=(n_{1j})$ , called an incidence $mat\dot{m}$ of a block design (V, $B$),
is defined as $n_{1j}=1$ when $p:\in B_{j}$ , and $n_{ij}=0$ when $p_{i}\not\in B_{j}$ . The complement of a
design with the incidence matrix $N$ is the design with the incidence matrix $\overline{N}$ which
is obtained by exchanging $\mathrm{O}’ \mathrm{s}$ and l’s in $N$ .

Now a group divisible $(\mathrm{G}\mathrm{D})$ design is defined. Let $v=mn(m,n\geq 2),$ $b,$ $r,$ $k,$ $\lambda_{1},$ $\lambda_{2}$

be positive integers. A $GD$ design with parameters $v=mn,$ $b,$ $r,$ $k,$ $\lambda_{1},$ $\lambda_{2}$ is a triplet
$(V,B,\mathcal{G})$ , where $V$ is a $v$-set of points, $B$ is a collection of $bk$-subsets, called blocks, of
$V$ and $\mathcal{G}=\{G_{1}, \cdots, G_{m}\}$ is a partition of $V$ into $m$ groups of $n$ points each such that
any two distinct points in the same $\Psi^{\mathrm{o}\mathrm{u}}\mathrm{P}$ occur together in exactly $\lambda_{1}$ blocks of $B$,
while those in different groups occur together in exactly $\lambda_{2}$ blocks of $B$ . Here, $r$ is the
number of blodcs containing a given point. Note that $r$ is a constant not depending on
the point chosen. Among parameters of a GD design, it holds that

$bk=vr$, (1.1)
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$\lambda_{1}(n-1)+\lambda_{2}n(m-1)=r(k-1)$ . (1.2)

When $\lambda_{1}$ equals $\lambda_{2}$ , a GD design is called a balan$ced$ incomplete block $(BIB)$ design
with parameters $v,$ $b,$ $r,$ $k,$ $\lambda(=\lambda_{1}=\lambda_{2})$ , which satisfy (1.1) and

$r(k-1)=\lambda(v-1)$ . (1.3)

When $v=b$, a design is said to be symmetric.
Let $N$ be an incidence matrix of a GD design and $N’$ be the transpose of $N$ . In

the analysis of the design of experiment, the eigenvalues of the matrix $NN’$ play an
important role. For the incidence matrix $N$ of a GD design with parameters $v,$ $b,$ $r,$ $k$ ,
$\lambda_{1}$ and $\lambda_{2}$ , the determinant of $NN’$ is given by

$|NN’|=rk(r-\lambda_{1})^{m(n-1)}(rk-v\lambda_{2})^{m-1}$

and the eigenvalues of $NN’$ are $rk,$ $r-\lambda_{1},$ $rk-v\lambda_{2}$ with multiplicities 1, $m(n-1)$ and
$m-1$ , respectively (see, for example, Raghavarao [8, pp.127-128]).

Bose and Connor [3] classified GD designs into three types in terms of the eigenvalues
of $NN^{j}$ as follows:

(1) Singular if $r-\lambda_{1}=0$ ,
(2) $Non\mathit{8}ingular$ if $r-\lambda_{1}>0$

(2a) Semi-regular if $rk-v\lambda_{2}=0$

(2b) Regular if $rk-v\lambda_{2}>0$ .
By considering the rank of $NN’$ , it folows that $v\leq b$ holds in the case of a regular

GD design similarly to the case of a BIB design, which is called Fisher’s inequality. A
design is said to be symmetric, if $v=b$. We refer the reader to [2] and [5] for relevant
design-theoretic terminology.

2. Finite geometry

Rom the standpoint of this paper, geometry is a particular kind of incidence system.
The basic relation is the incidence relation $P\in L$ , read the point $P$ is on the line $L$ .
A finite geometry is one that contains a finite number of points. Let $PG(\ell,q)$ be
a projective geometry of dimension $l$ over the finite field $F_{q}=GF(q)$ with $q=p^{f}$

elements, where $p$ is a prime.
If we take the points as objects and the lines as blocks, a finite projective plane is a

$\mathrm{s}\mathrm{y}\dot{\mathrm{m}}$mmetric block design with parameters $v=\ell^{2}+\ell+1,$ $k=\ell+1,$ $\lambda=1$ . Conversely,
a block design with these parameters is a finite projective plane.

Several methods of constructing GD designs are given by Bose et al. [4]. A geo-
metrical method of constructing symmetric regular GD designs is given by Sprott [10].
When $s$ is a prime or a prime power, there exists a regular symmetric GD design with
parameters $v=b=s(s-1)(s^{2}+s+1),$ $m=s^{2}+s+1,$ $n=s(s-1),$ $r=k=s^{2}$ ,
$\lambda_{1}=0,$ $\lambda_{2}=1$ .
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3. Group divisible designs without $\alpha$-resolution class

For a singular GD design $r=\lambda_{1}$ holds, while in case of a nonsingular GD design
$r>\lambda_{1}$ holds. It may be natural to investigate the case of $r=\lambda_{1}+1$ , since it may
have some interconnecting property (the next saturated case) between singular and
nonsingular cases.

In this section, we will characterize the combinatorial structure of GD designs with
$r=\lambda_{1}+1$ , and that of GD designs without “a-resolution class” in each group. All the
results in this section are due to [9], [7], and [1].

To state the results, we will give some basic notations. We denote the identity
matrix of order $s$ , an $s\cross t$ matrix $\mathrm{a}1$ of whose elements are unity and an $s\cross t$ matrix
all of whose elements are zero, by $I_{s},$ $J_{\epsilon \mathrm{x}t}$ and $O_{\iota \mathrm{x}t}$ , respectively. In particular, let
$J_{s}=J_{\epsilon\cross \mathit{8}}$ and $O_{s}=O_{*\cross*}$ . Moreover, let $1_{n}=J_{1\mathrm{x}n}$ and $0_{n}=O_{1\mathrm{x}n}$ . Hence the above
$\overline{A}=1_{v}’1_{b}-A=\sqrt v\mathrm{x}b-A$ . Here $1_{n}’$ means the transpose of $1_{n}$ . $A\otimes B$ denotes the
kronecker product of matrices $A$ and $B$ .

A symmetric BIB design with parameters $v,$ $k=(v-1)/2,$ $\lambda=(v-3)/4$ is cald
a Hadamard design. For a tournament, i.e., a complete simple digraph, with the $v\cross v$

adjacency matrix $N$ , if $N$ is the incidence matrix of a Hadamard design, then the
tournament is called a Hadamard toumament of order $v$ (see [5]). A simple undirected
graph is called a strongly regular graph if for any two distinct vertices $i$ and $j$ , there are
$p_{11}^{1}$ or $p_{11}^{2}$ vertices which are connected to both of vertices $i$ and $j$ , according as $i$ and
$j$ are connected or not. We refer the reader to [6] and [11] for relevant graph-theoretic
terminology.

3.1. Group divisible designs with $r=\lambda_{1}+1$

The combinatorial property of a GD design with $r=\lambda_{1}+1$ was first investigated
by Shimata and Kageyama [9] who showed that a GD design with $r=\lambda_{1}+1$ must
be symmetric and regular. Jimbo and Kageyama [7] completely characterized a GD
design with $r=\lambda_{1}+1$ in terms of Hadamard tournaments and strongly regular graphs.

In fact, in a GD design with parameters $v=mn(m,n\geq 2)=b,$ $r=k=\lambda_{1}+1,$ $\lambda_{2}$ ,
by the result given in [9], the $v\cross v$ incidence matrix $N$ of the GD design is divided into
$m^{2}n\cross n$ submatrices such as $N=(N_{ij})$ , where $N_{11}=N_{22}=\cdots=N_{mm}=I_{n}$ or $J_{n}-I_{n}$ ,
and $N_{1j}=J_{n}$ or $O_{n}$ for $i\neq j$ . The incidence matrix $N$ is completely characterized in
terms of Hadamard tournaments and strongly regular graphs from the viewpoint of
the construction as follows.

Theorem 3.1 (Jimbo and Kageyama [7]). Let $N$ be the incidence $mat\dot{m}$ of a regular
$GD$ design with $r=\lambda_{1}+1$ or of its complement such that $N_{i1}=I_{n}$ for any $i$ .
(i) When $n\geq 3$ and $\lambda_{2}\equiv 2$ (mod $n$), the incidence matrix of the design is given by

$N=I_{m}\otimes I_{n}+(J_{m}-I_{m})\otimes\sqrt n$ for general $m$ and $n$ , which leads to a symmetric
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regular $GD$ design with parameters $v=b=mn,$ $r=k=(m-1)n+1,$ $\lambda_{1}=$

$(m-1)n,$ $\lambda_{2}=(m-2)n+2$ .
(ii) When $n\geq 2$ and $\lambda_{2}\equiv 1$ (mod $n$) $(i.e.,$ $v=b=mn,$ $r=k=n(m-1)/2+1$,

$\lambda_{1}=n(m-1)/2,$ $\lambda_{2}=n(m-3)/4+1)C$ the enistence of the design is equivalent
to the existence of a Hadamard toumament of order $m\equiv 3$ (mod 4).

(iii) When $n=2$ and $\lambda_{2}$ is even $(i.e.,$ $v=b=2m,$ $r=k=2s+1,$ $\lambda_{1}=2s$ ,
$\lambda_{2}=2s^{2}/(m-1))C$ the evistence of the design is equivalent to the enistence of a
strongly regular graph with parameters $v=m,$ $k=s,$ $p_{11}^{1}=x,$ $p_{11}^{2}=x+1$ , where
$s^{2}=(x+1)(m-1)$ . Hence $\lambda_{2}=2(x+1)$ .

Remark. A regular GD design exists only when the parameters satisfy the conditions
(i), (ii) or (iii).

Theorem 3.1 reveals that the inner structure of GD designs with $r=\lambda_{1}+1$ is
characterized in terms of Hadamard tournaments and strongly regular graphs. For
Hadamard tournaments and strongly regular graphs, there are some available existence
or non-existence results Hence, the existence or nonexistence problem of GD designs
with $r=\lambda_{1}+1$ can be reduced to those of Hadamard tournaments and strongly regular
graphs.

3.2. Definition of an a-resolution class
In this subsection, we define an $(r, \lambda)$-design and an a-resolution class, which win be

utilized when we consider some substructure in each group of GD designs.
For positive integers $v,$ $r,$

$\lambda$ , an $(r, \lambda)$ -design with parameters $v,$ $r,$
$\lambda$ is a pair (V, $B$)

where $V$ is a $v$-set of points and $B$ is a colection of subsets of $V$ such that every point
of $V$ occurs in $r$ blocks of $B$ , and that any two distinct points of $V$ occur together in
exactly $\lambda$ blocks of $B$ . In particular, when every block has the same size ($=k$ , say), an
$(r, \lambda)$-design is exactly a BIB design.

For a subcollection $B^{j}(\subset B)$ , if every point of $V$ occurs in exactly $\alpha$ blo&s $(1\leq\alpha\leq r)$

in $B’$ , then $B’$ is called an $\alpha$-resolution class of (V, $B$). An a-resolution class is said to
be trivial when $\mathrm{a}=r$ , and nontrivial when $1\leq\alpha\leq r-1$ . In this paper, an a-resolution
class implies a nontrivial a-resolution class if it is not specified.

Here, we will give examples of a-resolution classes, in which one has nontrivial a-
resolution class, while the other does not.

Example 3.1. The folowing design is a $(3,1)$-design with nontrivial l-resolution
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classes.

$S=$
Example 3.2. The folowing design is a $(3,1)$-design with no nontrivial a-resolution
class.

$T=(_{1}^{0}00011000011100001110000111000011100001110000111)$

3.3. Combinatorial structure of these designs

Let $N$ be the $v\cross b$ incidence matrix of a GD design with parameters $v=mn(m,n\geq$
2), $b,$ $r(<b),$ $k,$ $\lambda_{1},$ $\lambda_{2}$ . Any groups $G_{l}(l=1,2, \cdots,m)$ of the GD design have the
$n\cross b$ incidence matrices $B_{l}=$ $(N_{l}^{*} : J : O)$ after appropriate permutations of columns,
where $N_{l}^{*}$ are the incidence matrices of $(r_{l}^{*}, \lambda_{l}^{*})$-designs with parameters $v_{l}^{*}=n,$ $b_{l}^{*},$ $r_{l}^{*}$

$(<b_{l}^{*}),$ $\lambda_{l}^{*}(<r_{l}^{*})$ and with block sizes less than $n$ . In this paper, we suppose that all
$(r_{l}^{*}, \lambda_{l}^{l})$-designs with the incidence matrices $N_{l}^{*}$ do not have any a-resolution classes,
if not specified. We call such design a GD design without a-resolution classes in each
group. Then the following two main theorems can be established.

Theorem 3.2 (Adachi, Jimbo and Kageyama [1]). Suppose that a $GD$ design without
$\alpha- oe\mathit{8}olution$ classes in each group has parameters $v=mn(m, n\geq 2),$ $b,$ $r(<b),$ $k,$ $\lambda_{1}$ ,
$\lambda_{2}$ . Then, the incidence matrix $N$ of the $GD$ design is, after an appropriate permutation
of rows and $column\mathit{8}$, represented by

$N=(o_{n\cross b}^{::}o_{n\mathrm{x}b}^{N_{1}^{*}}.$ $O_{n\mathrm{x}b^{*}}O_{n\mathrm{x}b^{*}}N_{2}^{*}:.$

$\cdot.$ .
$o_{n\mathrm{x}b^{*}}^{n\mathrm{x}b}o_{N_{m}^{*}}:.\cdot\backslash$

,

$+D\otimes J_{n\mathrm{x}b}\cdot$ , (3.1)

where all of $N_{l}^{*}$ are the incidence matrices of $BIB$ designs with the same parameters
$v_{l}^{*}=n,$ $b_{l}^{*}=b^{*},$ $r_{l}^{*}=r^{*},$ $k_{l}^{*}=k^{*},$ $\lambda_{l}^{*}=\lambda^{*}$ , and $D=(d_{1j})$ is an $m\cross m$ matrix with
entries $0$ or 1 and $d_{::}=0$ for all $i$ .
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Since $N$ is the incidence matrix of a GD design, each row of $D$ has the same number
of l’s. Let $s(\geq 1)$ be the number of l’s in each row of $D$ . For convenience, we denote
the first term of (3.1), by diag$(N_{1}^{*}, N_{2}^{*}, \cdots, N_{m}^{*})$ .

Theorem 3.3 (Adachi, Jimbo and Kageyama [1]). Let $N$ be the incidence matrix
(3.1) of a $GD$ design without a-resolution classes in each group. Then the $GD$ design
is regular and $N$ is characterized as follows:
(i) When $b^{*}\neq 2\mathrm{r}^{*}$ and $\lambda_{2}\equiv 0$ (mod $b^{*}$ ), the incidence matrix of the $GDde\mathit{8}ign$ is given

by $N=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(N_{1}^{*}, N_{2}^{*}, \cdots, N_{m}^{*})$ for general $m$ and $n$ , that is, $D=O_{m}$ , which leads
to a $GD$ design with parameters $v=mn,$ $b=mb^{*}=mnr^{*}/k^{*},$ $r=\mathrm{r}^{*},$ $k=k^{*}$ ,
$\lambda_{1}=r^{*}(k^{*}-1)/(n-1),$ $\lambda_{2}=0$ .

(ii) When $b^{*}\neq 2r^{*}$ and $\lambda_{2}\equiv 2r^{*}$ (mod $b^{*}$ ), the incidence matrir of the $GD$ design is
given by $N=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(N_{1}^{*}, N_{2}^{*}, \cdots, N_{m}^{*})+(\sqrt m-I_{m})\otimes J_{n\mathrm{x}b}$. for general $m$ and $n$ ,
that is, $D=\sqrt m-I_{m}$ , which leads to a $GD$ design with parameters $v=mn$,
$b=mb^{*}=mnr^{*}/k^{*}\prime r=r^{*}(mn-n+k^{*})/k^{*},$ $k=k^{*}+(m-1)n,$ $\lambda_{1}=$

$r\{(m-1)n(n-1)+k^{*}(k^{*}-1)\}/\{k^{*}(n-1)\},$ $\lambda_{2}=r^{*}(mn-2n+2k^{*})/k^{*}$ .
(iii) When $\lambda_{2}\equiv r^{*}$ (mod $b^{*}$ ), $D$ is the adjacency matrix of a Hadamard toumament

of order $m\equiv 3$ (mod 4), which leads to a $GD$ design with parameters $v=mn$,
$b=mb^{*}=mnr^{*}/k^{*},$ $r=r^{*}(mn-n+2k^{*})/(2k^{*}),$ $k=k^{*}+(m-1)n/2$,
$\lambda_{1}=r^{*}\{(m-1)n(n-1)+2k^{*}(k^{*}-1)\}/\{2k^{*}(n-1)\},$ $\lambda_{2}=r^{*}(mn-3n+4k^{*})/(4k^{*})$ .
In $thi\mathit{8}$ case, the existence of the $GD$ design is equivalent to that of a Hadamard
toumament of order $m$ .

(iv) When $b^{*}=2r^{*}$ and $\lambda_{2}\equiv 0$ (mod $b^{*}$ ), $D$ is the adjacency matriac of a strongly
regular gmph with parameters $\tilde{v}=m,\tilde{k}=s,$ $p_{11}^{1}=x,$ $p_{11}^{2}=x+1$ , where
$s^{2}=(x+1)(m-1)$ , which leads to a $GD$ design with parameters $v=mn,$ $b=$

$mb^{*}=2mr^{*},$ $r=(2s+1)r^{*},$ $k=n(2s+1)/2,$ $\lambda_{1}=r^{*}\{4(n-1)s+n-2\}/\{2(n-1)\}$ ,
$\lambda_{2}=2(x+1)r^{*}$ . In this case, the existence of the $GD$ design is equivalent to that
of a strongly regular graph.

Corollary 3.1. Theorem 3.1 is a special case of Theorem 3.3.

By Theorem 3.3, we see that the structure of GD designs without a-resolution classes
in each group is characterized in terms of Hadamard tournaments and strongly regular
graphs.

Four examples are given to show the structure of the present GD design.
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Example 3.3. For $m=3$, the incidence matrix of a GD design with $r=\lambda_{1}+1=$

$2n+1,$ $\lambda_{2}=n+2$ is given by

$N=$ .

Example 3.4. For $m=7$, the incidence matrix of a GD design with $r=\lambda_{1}+1=$

$3n+1,$ $\lambda_{2}=n+1$ is given by

$N=(_{\mathit{0}_{n}}^{I_{n}}\sqrt o_{n}^{n}O_{n}J_{n}J_{n}I_{n}O_{n}O_{n}O_{n}J_{n}J_{n}J_{n}I_{n}o_{n}^{n}o_{\hslash}O_{n}\sqrt J_{n}J_{n}O_{n}O_{n}O_{n}I_{n}J_{n}J_{n}J_{n}O_{n}O_{n}I_{n}O_{n}J_{n}J_{n}J_{n}O_{n}O_{n}O_{n}J_{n}I_{n}J_{n}J_{n}O_{n}O_{n}O_{n}J_{n}I_{n}J_{n}\sqrt n)$ ,

which corresponds to a Hadamard tournament of order 7. It is wel known that a
Hadamard tournament of order 7 is unique up to isomorphic.

Example 3.5. For $m=10$, the incidence matrix of a GD design with $r=\lambda_{1}+1$ ,
$n=2,$ $\lambda_{2}=2$ is given by

which corresponds to the Petersen graph, i.e., a strongly regular graph with $p_{11}^{1}=0$

and $p_{11}^{2}=1$ . It is well known that the Petersen graph is unique up to isomorphic.

Example 3.6. The folowing $N^{*}$ is the incidence matrix of a BIB design with
parameters $v^{*}=b^{*}=7,r^{\mathit{5}}=k^{*}=3,$ $\lambda^{*}=1$ , and also of a $(3,1)$-design without
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$\alpha$-resolution classes,

$N^{*}=$ $0000111000011100001110000111)$ ,

which, by utilizing Theorem 3.2 and 3.3, shows that an incidence matrix of a GD design
with $r=\lambda_{1}+2,$ $n=7$ is given by

$N=I_{m}\otimes N^{*}+D\otimes J_{7}$ ,

where $D=O_{m}$ in the case of $\lambda_{2}\equiv 0$ (mod 7), $D=J_{m}-I_{m}$ in the case of $\lambda_{2}\equiv 6$ (mod
7), or $D$ is the adjacency matrix of a Hadamard tournament of order $m\equiv 3$ (mod 4)
in the case of $\lambda_{2}\equiv 3$ (mod 7).

4. Concluding remark

A GD design with $r=\lambda_{1}$ is singular, whose existence is equivalent to that of a
BIB design [8, Theorem 8.5.1]. While, if $r>\lambda_{1}$ , a GD design is said to be regular or
semi-regular.

It is known that GD designs with $r=\lambda_{1}+1$ are symmetric and regular, and the com-
binatorial structure of these designs is characterized in terms of Hadamard tournaments
and strongly regular graphs from the viewpoint of the construction (see [7] and [9]).
As the next interesting cases we can consider two cases: a GD design with $r=\lambda_{1}+2$

and another GD design which is characterized in terms of Hadamard tournaments and
strongly regular graphs.

We can easily show that there exists a symmetric GD design with $r=\lambda_{1}+2$ . In fact,
a symmetric BIB design with parameters $v=b=7,$ $r=k=3,$ $\lambda=1$ can be generated
by a finite projective geometry $\mathrm{P}\mathrm{G}(2,2)$ . We can obtain a symmetric GD design with
$r=\lambda_{1}+2$ and $n=7$ together with a Hadamard tournament as in Example 3.6.

Thus we state the following open problem:

Open problem. What is a condition for the group size $n$ such that there exists a
symmetric GD design with $r=\lambda_{1}+2$?

Moreover, if it is shown that there are no $(r, r-2)$-designs with 7 points except
for $(2,0)-,$ $(3,1)-,$ $(4,2)-,$ $(6,4)$-designs which can be embedded in a GD design with
$r=\lambda_{1}+2$ and $n=7$, then the following conjecture may be made:
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Conjecture. A GD design with $r=\lambda_{1}+2$ and $n=7$ is regular and its $v\cross b$ incidence
matrix $N$ is, after an appropriate permutation of rows and columns, divided into $m^{2}$

submatrices $N=(N_{ij})$ . Every diagonal submatrix $N_{ii}$ is one of the following:

(i) $(I_{7} : I_{7})$ or its complement,

(ii) the incidence matrix of a BIB design with parameters $v=b=7,$ $r=k=3,$ $\lambda=1$

or its complement.

In case of (ii), it can be characterized as in Theorem 3.3 because the BIB design with
parameters $v=b=7,$ $r=k=3,$ $\lambda=1$ does not have any a-resolution class. The
BIB design with parameters $v=b=7,$ $r=k=3,$ $\lambda=1$ can be generated by a finite
projective geometry $\mathrm{P}\mathrm{G}(2,2)$ .
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