
Regret-optimal policies in absorbing
semi-Markov decision processes

with multiple constraints

門田良信 (和歌山大学教育学部) Yoshinobu $\mathrm{K}\mathrm{a}\mathrm{d}\mathrm{o}\mathrm{t}\mathrm{a}^{a}$

蔵野正美 (千葉大学教育学部) Masami $\mathrm{K}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{o}^{b}$

安田正實 (千葉大学理学部) Masami $\mathrm{Y}\mathrm{a}s\mathrm{u}\mathrm{d}\mathrm{a}^{c}$

$a\mathrm{F}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{t}\mathrm{y}$ of Education, Wakayama University, Wahyama 640-8510, Japan
$b\mathrm{F}\mathrm{a}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{y}$ of Education, Chiba University, Chiba 263-8522, Japan
cFaculty of Science, Chiba University, Chiba 263-8522, Japan

Abstract

We consider a constrained regret-optimization problem for semi-Markov decision
processes. The expected regret-utility of the total reward is minimized subject to
multiple expected regret-utility constraints and the planning horizon is a reaching
time to a given absorbing subset. By introducing a corresponding Lagrange function,
a saddle point theorem is given. The existence of a constrained optimal policy is
characterized by optimal action sets specified with a parametric utility’.

1. Introduction and notation
In decision making, it may be more appropriate to evaluate each decision or policy under
a regret-optimality criterion. In our preceding work[12], we consider the general regret-
utility problem for absorbing semi-Markov decision processes(semi-MDPs), in which the
expected utility of the total reward earned until the stopping time is minimized. The
regret-optimal policy is characterized by the corresponding optimality equation.

In this paper, we are concerned with the constrained optimization problem for the same
model as [12]. In fact, it often occurs, in a social life or in a business that that we want to
maximize the reward under several utility functions. For example, in the group decision
making with different utility functions each player wants to maximize the reward under
his own utility function. In such a case, not only one type of expected utility but other
types are desired to keep higher than some given bound.

Here, we consider the constrained regret-optimization problem for semi-MDPs in which
the expected regret-utility of the total reward earned until the reaching time to a given
absorbing subset is minimized subject to multiple expected regret-utility constraints and
the objective is to show that the Lagrange approach to the utility-constraints case is made
successfully. In fact, by introducing a corresponding Lagrange function, a saddle point
theorem is obtained and the existence of a constrained optimal policy is proved. Also
a constrained optimal policy is characterized by optimal action sets specified with the
parametric utility.

’Keywords: Semi-Markov decision process; Utility constraint; Lagrange technique; Saddle point; Op-
timal policy.
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In the same way with [12], we do not impose a special condition on the regret-utility
functions, expecting to enlarge the practical application of the optimization problem. For
the utility discussions for MDPs and constrained MDPs, refer to [5, 6, 8-11, 13] and their
references. In remainder of this section, a constrained regret-utility optimization problem
is formulated for the absorbing semi-MDPs model.

A semi-MDP is specified by the next five components:
(i) a countable state space: $S=\{0,1,2, \cdots\}$ ,
(ii) a finite action space: $A=\{1,2, \cdots, m\}$ ,
(iii) transition probability distributions: $\{(p_{1j}(a);j\in S)|i\in S, a\in A\}$ ,
(iv) distribution functions $\{F_{ij}(\cdot|a)|i, j\in S, a\in A\}$ of the time between transitions,
(v) an immediate reward $r$ and a reward rate $d$ which are functions from $S\cross A$ to $R_{+}$ ,

where $R_{+}=[0, \infty)$ .
When the system is in state $i\in S$ and action $a\in A$ is taken, then it moves to a new

state $j\in S$ with the sojourn time $\tau$ , and the reward $r(i, a)+d(i, a)\tau$ is obtained, where
the new state $j$ and the sojourn time $\tau$ are distributed with $p_{i}.(a)$ and $F_{1j}(\cdot|a)$ respectively.
This process is repeated from the new state $j\in S$ .

The sample space is the product space St $=(S\cross A\cross R_{+})^{\infty}$ . Let $X_{n},$ $\Delta_{n}$ and $\tau_{n+1}$

be random quantities such that $X_{n}(\omega)=x_{n},$ $\Delta_{n}(\omega)=a_{n}$ and $\tau_{n+1}(\omega)=t_{n+1}$ for all
$\omega=(x_{0}, a_{0}, t_{1}, x_{1}, a_{1}, t_{2}, \cdots)\in\Omega$ and $n=0,1,2,$ $\cdots$ . Let $H_{n}=(x_{0}, a_{0}, t_{1}, \cdots, x_{n})$ be a
history until time $n$ . A policy $\pi=(\pi_{0}, \pi_{1}, \cdots)$ is a sequence of conditional probabilities
$\pi_{n}=\pi_{n}(\cdot|H_{n})$ such that $\pi_{n}(A|H_{n})=1$ for all histories $H_{n}\in(S\cross A\cross R_{+})^{n}\cross S$.
The set of all policies is denoted by $\Pi$ . A policy $\pi=(\pi_{0}, \pi_{1}, \cdots)$ is called stationary if
there exists a function $f$ : $Sarrow A$ such that $\pi_{n}(\{f(X_{n})\}|H_{n})=1$ for all $n\geq 0$ and
$H_{n}\in(S\cross A\cross R_{\vdash})^{n}\cross S$ . Such a policy is denoted by $f^{\infty}$ or $f$ .

For any $\pi\in\Pi$ , we assume that
(i) Prob$(X_{n+1}=j|X_{0}, \Delta_{0,\tau_{1}}, \cdots, X_{n}=i, \Delta_{n}=a)=p_{1j}(a)$ and
(ii) Prob$(\tau_{n+1}\leq t|X_{0}, \Delta_{0}, \tau_{1}, \cdots , X_{n}=i, \Delta_{n}=a, X_{n+1}=j)=F_{1j}(t|a)$

for all $n\geq 0,$ $i,j\in S$ and $a\in A$ .
For any Borel set $D$ , we denote by $P(D)$ the set of all probability measures on $D$ . From

(i) and (ii), we can define the probability measure $P_{\pi}^{\nu}\in P(\Omega)$ with an initial distribution
$\nu\in P(S)$ with Prob$(X_{0}=i)=\nu(i),$ $i\in S$ and $\pi\in\Pi$ by a usual way.

For any subset $J_{0}\subset S$ , called as absorbing set, let

(1.1) $N:= \min\{n>0|X_{n}\in J_{0}\}$ , where $\min\emptyset=\infty$ .
The present value $\{\overline{D}_{\ell} : \ell=1,2, \cdots\}$ and the total lapsed time $\{\tilde{\tau}_{\ell} : \ell=1,2, \cdots\}$ of the
process $\{X_{n}, \Delta_{n}, \tau_{n+1} : n=0,1,2, \cdots\}$ until the $\ell$-th time are defined respectively by

$\overline{D}_{\ell}:=\sum_{n=0}^{\ell-1}(r(X_{n}, \Delta_{n})+\tau_{n+1}d(X_{n}, \Delta_{n}))$ and
(1.2)

$\tilde{\tau}_{\ell}:=\Sigma_{n=1}^{\ell}\tau_{n}$ , $(\ell\geq 1)$ .

Let $G,$ $H_{\mathrm{t}}(i=1,2, \cdots, k)$ : $R_{+}\cross R_{+}arrow R$ be Borel-measurable functions, which will
be called regret-utility functions as describing the general evaluation between the target
value and the present value.
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For any given threshold vector $\alpha=(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k})\in R^{k}$ and constraint-target vector
$h=(h_{1}, h_{2}, \cdots, h_{k})\in R^{k}$ , let

(1.3) $V(\nu, \alpha, h):=\{\pi\in\Pi|E_{\pi}^{\nu}[H_{i}(h_{i}\tilde{\tau}_{N},\overline{D_{N}})]\leq\alpha_{1}$ for all $i(1\leq i\leq k)\}$ ,

where $E_{\pi}^{\nu}[\cdot]$ is the expectation w.r.t. $P_{\pi}^{\nu}[\cdot]$ . If $\mathit{1}\text{ノ}(\{i\})=1$ for some $i\in S$ we write $P_{\pi}^{\nu}$ by
$\mathrm{R}_{\dot{\pi}}$ and $E_{\pi}^{\nu}$ by $E_{\pi}^{t}$ .

Then, for a constant $g^{*}$ , called a target value, our problem is given in the following.

Problem $\mathrm{A}$ : Minimize $E_{\pi}^{\nu}[G(g^{*}\overline{\tau_{N}},\overline{D_{N}})]$ subject to $\pi\in V(\nu, \alpha, h)$ .
The optimal solution $\pi^{*}\in V(\nu, \alpha, h)$ of Problem $\mathrm{A}$ , if it exists, is called a $l\text{ノ}$-constrained

regret-optimal policy or simply an optimal policy. For any $\nu\in P(S)$ , let

$\varphi(\nu):=\{P_{\pi}^{\nu}\in P(\Omega)|\pi\in\Pi\}$ .

Then, by a slight modification of the proof of Theorem 3.2 and 3.3 in V.S.Borkar[3], we
have the following assertion.

Lemma 1. 1 For any |ノ $\in P(S),$ $\varphi(\nu)$ is a convex and compact set in the weak topology.

Regret-optimality is motivated by average optimality. Suppose a Markov chain corre-
sponding to each stationary policy $f$ is possitive recurrent and irreducible. Let any state
$0\in S$ be absorbing and $\overline{\tau}=\min\{n\geq 1;X_{n}=0\}$ . Then we have from Theorem 7.5 of
Ross[17], for a real number $\delta$ and a bounded function $v$ ,

(1.4) $\lim_{Tarrow\infty}\frac{1}{T}E_{f}(\sum_{t}v(X_{t}, \triangle_{t})|0)\leq\delta$ if and only if $E_{f}[ \delta\tilde{\tau}-\sum_{t}v(X_{t}, \triangle_{t})|0]\geq 0$
.

Letting $\delta=g^{*}$ the average optimal value in (1.4), maximization of the first term is
equivalent to minimization of the second term which is the case $G(x, y)=x-y$. And
(1.4) is also valid for $\delta=\alpha_{j}$ . Thus, Problem A is closely related to the utility genralization
of a constrained average optimal problem.

In Section 2, the saddle point statement for Problem A will be described, for the pur-
pose of obtaining the existence of a $\nu$-constrained regret-optimal policy. In Section 3,
characterization of this optimal policy will be given.

2. Saddle point theorem for constrained semi-MDP
Now we discuss the saddle point theorem for Lagrangian associated with Problem A. For
any initial distribution $\nu\in P(S)$ , Lagrangeian $L^{\nu}$ is defined by

(2.1) $L^{\nu}( \pi, \lambda):=\sum_{i=1}^{k}\lambda_{i}(\alpha_{i}-E_{\pi}^{\nu}[H_{i}(h_{i}\overline{\tau_{N}},\overline{D_{N}})])-E_{\pi}^{\nu}[G(g^{*}\overline{\tau_{N}},\overline{D_{N}}])]$

for any $\pi\in\Pi$ and $\lambda=$ $(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k})\in R_{+}^{k}$ . Without any confusion, $\lambda=(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k})$

$\in R_{+}^{k}$ will be written simply by $\lambda\geq 0$ .
The following statement on saddle points can be proved similarly to that of Theorem 2

in Luenberger [15] at \S 8.5. The proof is omitted.
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Theorem 2. 1 (cf. [15]) Suppose that there exist $\pi*\in\Pi$ and $\lambda^{*}\geq 0$ such that $L^{\nu}$ with
|ノ $\in P(S)$ possesses a saddle point at $\pi^{*},$ $\lambda^{*},$ $i.e.$ ,

(2.2) $L^{\nu}(\pi, \lambda^{*})\leq L^{\nu}(\pi^{*}, \lambda^{*})\leq I_{J}^{\nu}(\pi^{*}, \lambda)$

for each $\pi\in\Pi$ and $\lambda\geq 0$ . Then, $\pi^{*}$ solves Prvblem $A$ and is a $\nu$ -constrained regret-
optimal policy.

This theorem motivates us to obtain a sufficient condition for the existence of a saddle
point associated with Lagrangian $L^{\nu}$ . We need the following assumptions.

Assumption 2. 1 (i) There enist $M_{1}$ and $M_{2}$ such that $0\leq r(i, a)\leq M_{1}<\infty,$ $0\leq$

$d(i, a)\leq M_{2}<\infty$ for all $i\in S_{f}a\in A$ .

(ii) There exist $L>0_{f}B>0$ such that $L \leq\int_{0}^{\infty}tF_{ij}(dt|a)\leq B$ for all $i,j\in S$ and
$a\in A$ .

Assumption 2. 2 $K:= \sup_{\pi\in\Pi}E_{\pi}^{\nu}(N)<\infty$ .

Assumption 2. 3 Regret-utility functions $G,$ $H_{2}(i=1,2, \cdots, k)$ are all lower semi-
continuous.

Now we give sufficient conditions for Assumption 2. 2 to hold. Define $e(n),$ $n=1,2,$ $\cdots$

by $e(n)= \sup_{:\in S}e_{i}(n)$ , where $e_{i}(n)= \sup_{\pi\in\Pi}P_{\pi}^{i}(N>n)$ . Then, it holds that $e(n+1)\leq$

$e(n)$ and $e(n+m)\leq e(n)e(m)$ for all $m,$ $n=1,2,$ $\cdots$ .

Proposition 2. 1 (cf. [12]) Each of the following conditions (i) and (ii) satisfies As-
sumption 2. 2.

(i) $\sum_{n=1}^{\infty}e(n)<\infty$ .

(ii) There exist $0<\eta_{0}<1$ and $n_{0}>1$ such that $e(n_{0})<1-\eta \mathrm{l}$ .

Let, for each $\nu\in P(S)$ and $\pi\in\Pi$ , define a class $\Phi(\iota \text{ノ})$ by

(2.3) $F_{\pi}^{\nu}(x, y):=P_{\pi}^{\nu}(\overline{\tau_{N}}\leq x,\overline{D_{N}}\leq y)$ and

(2.4) $\Phi(\nu):=\{F_{\pi}^{\nu}(\cdot, \cdot)|\pi\in\Pi\}$ .
Here, with some abuse of notation, we define

(2.5) $L^{\nu}(F, \lambda):=\int_{0}^{\infty}\int_{0}^{\infty}g_{\lambda}(x, y)F(dx, dy)$

for any $F\in\Phi(\nu)$ and $\lambda\geq 0$ , where

(2.6) $g_{\lambda}(x, y):= \sum_{j=1}^{k}\lambda_{j}(\alpha_{j}-H_{j}(h_{j}x, y))-G(g’ x, y)$ .

Then, Lagrangian $L^{\nu}$ defined in (2.1) is obviously rewritten by $L^{\nu}(\pi, \lambda)=L^{\nu}(F, \lambda)$ with
$F=F_{\pi}^{\nu}$ . Thus, we have the following corollary.
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Corollary 2. 1 Let $\pi^{*}\in\Pi$ and $\lambda^{*}\geq 0$ . $L^{\nu}(\cdot, \cdot)$ with |ノ $\in P(S)$ possesses a saddle point
at $\pi^{*},$

$\lambda^{*}$ if and only if the following relation holds

(2.7) $L^{\nu}(F, \lambda^{*})\leq L^{\nu}(F_{\pi^{*}}^{\nu}, \lambda^{*})\leq L^{\nu}(F_{\pi^{*}}^{\nu}, \lambda)$

for all $F\in\Phi(\nu)$ and $\lambda\geq 0$ . Then, $\pi^{*}$ solves Problem A and is a $\nu$-constrained $\prime \mathrm{w}\prime et-$

optimal policy.

Lemma 2. 2 For any $\nu\in P(S)_{f}$ it holds that

(i) $\Phi(\nu)$ is convex and compact it the weak topology;

(ii) $L^{\nu}(\cdot, \lambda)$ is concave and upper semi-continuous for each $\lambda\geq 0_{i}$

(iii) $L^{\nu}(F, \cdot)$ is convex and continuous for each $F\in\Phi(\nu)$ .

Proof. By Assumption 2. 1 and 2. 2, we observe that

$0\leq E_{\pi}^{\nu}[\overline{\tau_{N}}]\leq BK$ and $0\leq E_{\pi}^{\nu}[\overline{D_{N}}]\leq(M_{1}+M_{2}B)K$

for all $\pi\in\Pi$ . Also, $(\overline{\tau_{N}},\overline{D_{N}}):\Omegaarrow R_{+}\cross R_{+}$ is continuous, so that from Lemmal.
$1\square$

’

(i) follows. By using the Assumption 2. 3, (ii) holds. For (iii), it follows clearly.

Rom Lemma 2. 2, Fan’s minimax theorem(cf. [4]) can be applied to obtain the following
lemma.

Lemma 2. 3 It holds, for any $\nu\in P(S)$ ,

(2.8) $\inf_{\lambda\geq 0}\max_{F\in\Phi(\nu)}L^{\nu}(F, \lambda)=\max_{F\in\Phi(\nu)}\inf_{\lambda\geq 0}L^{\nu}(F, \lambda)$

Henthforth, the common value in the both side of (2.8) will be denoted simply by $L^{*}$ . In
order to prove the existence of a saddle point with (2.7), we need the following condition.

Slater Condition There exists $\mathrm{a}\overline{\pi}\in\Pi$ such that

(2.9) $E \frac{\nu}{\pi}[H_{i}(h_{i}\overline{\tau_{N}},\overline{D_{N}})]<\alpha_{i}$

for all $i(1\leq i\leq k)$ .

Since $L^{\nu}(F \frac{\nu}{\pi}, \lambda)$ — $\infty$ as $||\lambda||arrow\infty$ under condition (2.9), the convex function
$\max_{F\in\Phi(\nu)}L^{\nu}(F, \lambda)$ is bounded from below, so that by (2.8) there exists $\lambda^{*}\geq 0$ such that

(2.10) $\max_{F\in\Phi(\nu)}L^{\nu}(F, \lambda^{*})\leq L^{*}$ .

On the other hand, by Lemma 2. 3, there exists $F^{*}\in\Phi(\nu)$ with

(2.11) $L^{\nu}(F^{*}, \lambda)\geq L^{*}$

for all $\lambda\geq 0$ . Thus, applying Corollary 2. 1 , the following main theorem follows.
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Theorem 2. 2 Under Slater condition (2.9), Lagrangian $L^{\nu}(\cdot, \cdot)$ with |ノ $\in P(S)$ has a
saddle point, $i.e_{f}$. there eixists $\pi^{*}\in\Pi$ and $\lambda^{*}\geq 0$ satisfying (2.2).

Also, from Theorem 2. 1 and 2. 2, the following corollary holds.

Corollary 2. 2 Under Slater condition (2.9), there exists a $\nu$ -constrained regret-optimal
policy for $\nu\in P(S)$ .

3. Characterization of optimal policy
Now we will derive some theoretical results, which are useful to seek a v-constrained
regret-optimal policy. Letting $\nu\in P(S)$ and for each $\lambda\geq 0$ , a policy $\pi\in\Pi$ is said to be
$g_{\lambda}$-optimal if

$E_{\pi}^{\nu}.[g_{\lambda}(\overline{\tau_{N}},\overline{D_{N}})]\geq E_{\pi}^{\nu}[g_{\lambda}(\overline{\tau_{N}},\overline{D_{N}})]$

for all $\pi\in\Pi$ , where $g_{\lambda}$ is defined in (2.6).
The following Lemma can be easily proved (cf. [2]).

Lemma 3. 1 Let $\overline{\pi}\in\Pi$ and $\overline{\lambda}=(\overline{\lambda}_{1},\overline{\lambda}_{2}, \cdots,\overline{\lambda}_{k})\geq 0$ . Then, Lagrangian $L^{*}(\cdot, \cdot)$ given in
(2.1) has a saddle point at $\overline{\pi},\overline{\lambda}$ if and only if the follounng $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ holds:

(i) $\overline{\pi}$ is $g_{\overline{\lambda}}$-optimal;

(ii) $\overline{\pi}\in V(\nu, \alpha, h)_{i}$

(iii) $\Sigma_{\dot{\iota}=1}^{k}\overline{\lambda}_{i}(\alpha_{i}-E\frac{\nu}{\pi}[H_{i}(h_{i}\overline{\tau_{N}},\overline{D_{N}})])=0$.

For any Borel set $X$ , we denote by $B(X)$ the set of all bounded Borel measurable
functions on $X$ . We define an operator $U_{\lambda}(d)(\mathrm{c}_{0}, c, x|i, a)$ for $d=(d_{i};i\in S)$ with $d_{\mathrm{t}}\in$

$B(R_{+}^{k+2})$ providing that $c_{0}\in R,$ $c=(c_{1}, c_{2}, \cdots, c_{k})\in R^{k},$ $x\in R$ and $i\in S,$ $a\in A$ , by

$U_{\lambda}(d)(\mathrm{c}_{0}, \mathrm{c}, x|i, a)$

(3.1) $= \sum_{j\in J}p_{ij}(a)\int_{0}^{\infty}d_{j}(c_{0}+g^{*}t, c+ht, x+r(i, a)+d(i, a)t)F_{ij}(dt|a)$

$+ \sum_{j\in J\mathrm{o}}p_{ij}(a)\int_{0}^{\infty}g_{\lambda}(\mathrm{c}_{0}+g^{*}t, c+ht,x+r(i, a)+d(i, a)t)F_{ij}(dt|a)$

where $J=S-J_{0}$ and
$g_{\lambda}(c_{0}, c,x)= \sum_{j=1}^{k}\lambda_{j}(\alpha_{j}-H_{\mathrm{j}}(c_{j}, x))-G(\mathrm{q}, x)$ ,

with $c_{0}\in R,$ $c+ht=(c_{1}+h_{1}t, c_{2}+h_{2}t, \cdots, c_{k}+h_{k}t)\in R^{k},$ $x\in R$.
Now we define an optimal value function starting from the initial state $i\in S$ with

$(\mathrm{c}_{0}, \mathrm{c}, x)\in R_{+}^{k+2}$ by
$g_{\dot{\iota}}^{\lambda}(c_{0}, c,x)$

(3.2)
$:= \inf_{\pi\in\Pi}E_{\pi}^{1}[\sum_{j=1}^{k}\lambda_{\mathrm{j}}(\alpha_{j}-H_{j}(c_{j}+h_{j}\overline{\tau_{N}}, x+\overline{D_{N}}))-G(c_{0}+g^{*}\overline{\tau_{N}}, x+\overline{D_{N}})]$ .

Then we have the following by the same method of Theorem 2.1 in [12].
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Lemma 3. 2 For $\lambda\geq 0$ , the set of optimal value functions $g^{\lambda}=\{g_{i}^{\lambda};i\in S\}$ is given as
a unique solution of the optimality equation,

(3.3) $g_{i}^{\lambda}( \mathrm{c}_{0}, c, x)=\min_{a\in A}U_{\lambda}(g^{\lambda})(c_{0}, c,x|i, a)$

for all $i\in S$ and $(c_{o}, c, x)\in R_{+}^{k+2}$ .

In order to determine an optimal policy, we define the set of $\lambda$-optimal actions $A^{\lambda}(\mathrm{c}_{0},$ $c,x$

$|i)$ by
$A^{\lambda}(c_{0}, c,x|i):= \arg\min_{a\in A}U_{\lambda}(g^{\lambda})(c_{0}, c,x|i, a)$ ,

where $g^{\lambda}=$ $(g_{1}^{\lambda}. ; i\in S)$ is a unique solution of (3.3). Then we have the following theorem.

Theorem 3. 1 For any |ノ $\in P(S)$ , a policy $\pi^{*}\in V(|\text{ノ}, \alpha, h)$ is a $\nu$ -constrained regret-
optimal policy if and only if them exists $\lambda’\geq 0$ such that

(i) $P_{\pi}^{\nu}$. $(\Delta_{t}\in A^{\lambda}(g^{*}\overline{\tau_{t}}, h\tilde{\tau_{t}},\overline{D_{t}}|X_{t}))=1$ for all $t\geq 0$ , where $h\tilde{\tau_{t}}=(h_{1}\overline{\tau_{t}}, \cdots, h_{k}\tau_{t})_{i}\sim$

(ii) $\sum_{:=1}^{k}\lambda_{i}^{*}(\alpha_{i}-E_{\pi}^{\nu}$. $[H_{1}(h_{i}\overline{\tau_{N}},\overline{D_{N}}])=0$ .

Proof. Applying the results of Theorem 2.1 in [12], it can be shown that $\pi^{*}$ is $g_{\lambda}$.-optimal
if and only if the above (i) holds. So this theorem follows from Lemma 3. 1. $\square$
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