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Abstract
We consider a stochastic shortest path problem with associative criteria in which for each

node of a graph we choose a probability distribution over the set of successor nodes so as to

reach a given target node optimally. We formulate such a problem as an associative Markov

decision processes. We show that an optimal value function is a unique solution to an optimality

equation and find an optimal stationary policy. Also we give a value iteration method and a
$\mathrm{p}\mathrm{o}_{\wedge}\mathrm{i}\neg \mathrm{c}.\mathrm{v}$ improvement method.

$Keywo^{r}a’.\circ$ : shortest path problem, Markov decision process, associative criterion, invariant
$\mathrm{i}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{r}_{-}\mathrm{g}$ method, optimality equation, existence of optimal policy.

1. Introduction

For a directed graph with nodes 1, 2, . . ., $K$ and with a cost (length or time) assigned to each

arc, a stochastic shortest path problem is to select a probability distribution over all possible

successor nodes at each node $i\neq K$ so as to reach a target node $K$ with minimal associative

accumulate cost.
Such a stochastic shortest path problem is analyzed by using the general theory of Markov

decision processes in many references. Eaton and Zadeh[3] formulated such a problem as a

pursuit problem and they showed that the optimal expected total cost is a unique solution to

an optimality equation if at least one proper policy exists, and they gave an optimal value by a
value $\dot{i}\mathfrak{v}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}*\mathrm{i}\mathrm{o}\mathrm{n}$ method. Derman in $[4, 5]$ considered the problem, where a target state (node)

is absorbing, and proved that the problem has an optimal stationary policy and he gave several

methods for obtaining optimal solutions. In [18], Sancho formulated Markov decision processes to

analyze the problem and gave a policy iteration method. Bertsekas and Tsitsiklis[2] investigated

the problem without the cost nonnegativity assumption and proved a natural generalization of the

standard result for the deterministic shortest path problem within the framework of undiscounted

finite state Markovian decision processes. In all of these, a criterion function is the expected total

cost, which we call an additive case.
Also, Ohtsubo[14] considered a minimizing risk models in stochastic shortest path problems

$\mathrm{a}_{\vee}^{\mathrm{Q}}$ undiscountcd finite Markov processes and showed that an optimal value function is a unique

sclution to an optimality equation and found an optimal stationary policy by using an invariant

imbedding $\mathrm{m}\mathrm{e}^{\mathrm{A}}’.\mathrm{h}\mathrm{o}\mathrm{d}$. General minimizing risk models in discounted Markov decision processes

were investigated in White [20], Wu and Lin [21], Ohtsubo and Toyonaga $[13, 15]$ and Ohtsubo

[16].
On the other hand, Maruyama in [9 , 10, 11, 12] investigated deterministic shortest path
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$\mathrm{p}_{\vee}^{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\check{\mathrm{J}}\mathrm{T}_{\sim}\mathrm{S}$ with associative criteria and show the existence and uniqueness of the optimal value.
Especially in [11] he obtained a paramcterized recursive equation for the class of the problem by
using an invariant imbedding technique.

$\mathrm{w}_{\mathrm{u}\mathrm{r}_{\cup}^{\perp}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}}4\urcorner$ the optimization problem for minimum criteria, which is associative, was first
introduced by Bellman and Zadeh[l] as decision-making in fuzzy environment, and Iwamoto et
$\mathrm{a}\mathrm{J}.[6,7,8]$ and Ohtsubo[17] formulateed their optimization problem as finite horizon Markov
decision processes and give a optimal policy by using an invariant imbedding approach.

In this paper we concern ourselves with a stochastic shortest path problem with an associative
criterion, which is an expected accumulate cost $E_{i}^{\pi}[\mathrm{O}_{n=1}^{\tau}Y_{n}]=E_{i}^{\pi}$ [Yo $\mathrm{o}\mathrm{Y}_{1}\mathrm{o}Y_{2}\circ\cdots \mathrm{Y}_{\tau}$ ] where $\mathrm{Y}_{n}$

is a cost at $n$ th step, $\circ$ is an operator with an associative property satisfying some conditions,
$\tau$ is a hitting time to the target node $K$ and $E_{i}^{\pi}$ is an expectation operator when the starting
node is $i$ and a policy $\pi$ is used. In Section 2, we give notations and formulate our model as
undiscounted finite Markov decision processes with infinite horizon. In Section 3, we prove that
the optimal value function is a unique solution to an optimality equation by using an invariant
imbedding approach and that it is given by a value iteration method. We also show that there
exists an optimal left continuous stationary policy. In Section 4, we give a policy improvement
method for obtained a optimal policy.

2. Notations and formulation

In this section we formulate associative models in stochastic shortest path problems as Markov
decision Processes $\Gamma=((X_{n}), (A_{n}),$ $(Y_{n}),p)$ with a discrete time space $N=\{0,1,2, \ldots\}$ . The
state space $S$ is a finite set $\{1, 2, \ldots, K\}$ where $K$ is a target state, and we denote the state at
time $n\in N$ by $X_{n}$ . The action space $A$ is finite and we denote the action at time $n\in N$ by
$A_{n}$ . The cost space $E$ is a finite set $\{y_{1}, y_{2}, \ldots, y\ell\}$ , where $E\subset B$ for some subset $B$ of $R$, and
$Y_{n}\in E$ is a random cost function at time $n\in N$ with $Y_{0}=e$ , where $e$ is a unit element defined
below. We define conditional probability distributions by

$q^{a}(j|i)$ $=$ $P(X_{n+1}=j|X_{n}=i, A_{n}=a)$ ,
$\hat{q}_{ij}^{a}(y)$ $=$ $P(\mathrm{Y}_{n+1}=y|X_{n}=i, X_{n+1}=j, A_{n}=a)$

and $\mathrm{s}\mathrm{e}^{-}’$.
$p^{a}(j, y|i)=q^{a}(j|i)\hat{q}_{ij}^{a}(y)=P(X_{n+1}=j, \mathrm{Y}_{n+1}=y|X_{n}=i, A_{n}=a)$

for $i,j\in S,$ $a\in A$ and $y\in E$ . We use $S_{B}=S\cross B$ as a new state space.
For a’binary operator $\circ:R\cross Rarrow R$ and asubsct $B$ of $R$ , we assume that

(i) $B$ is closed for the operator $0$ , that is, $x\mathrm{o}y\in B$ for any $x,$ $y\in B$ ,
(ii) the operator $\circ$ is associative, that is, $(x\circ y)\circ z=x\circ(y\circ z)$ ( $=x\circ y\circ z$ , say) for any

$x,$ $y,$ $z\in B$ ,
(iii) $B\mathrm{h}\epsilon s$ a unit element $e$ , that is, $e\in B$ and $x\circ e=e\circ x=x$ for any $x\in B$ ,
(iv) $(B, \circ)$ is nondecreasing in the sense that $x\leq x\circ y$ and $x\leq y\circ x$ for any $x,$ $y\in B$ .

In algebra, $(B, \circ)$ satisfying the condition (i), (ii) and (iii) is called semigroup. On the condition
(iv), letting $x=e$ , we notice that $y\geq e$ for any $y\in B$ . Also we easily see under (i), (ii) and
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(iii) that if $x\geq e$ and if $x\circ y\leq x\circ z$ and $y\mathrm{o}x\leq z\mathrm{o}x$ when $y\leq z$ for any $x,$ $y_{i}z\in B$ then the
condition (iv) holds.

We give several examples in which $(B, \circ)$ satisfies the above $\mathrm{c}o$nditions (cf. Maruyama[10]).
Example 2.1.

(1) (Additive case). When $x\circ y=x+y$ , we have $B=[0, \infty)$ and $e=0$ .
(2) ($\mathrm{M}/\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ case). When $x\circ y=Lxy$ for a constant $L>0$ , we have $B=[1/L, \infty)$ and

$e=1/L$ .
(3) (Maximum case) When $x \circ y=\max(x, y)$ , we have $B=[L, M]$ and $e=L$ for constants

$L,$ $M\in R$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-\infty<L<M\leq\infty$ .
(4) (Multiplicative-additive case). When $xoy=x+y-Lxy$ for a constant $L>0$ , we have

$B=[0,1^{/},L]$ and $e=0$ .

(5) (
$\mathrm{R}/\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ case). When $x\circ y=(x+y)/(1+Lxy)$ for a constant $L>0$ , we have

$B=[0,1/\sqrt{L}]$ and $e=0$ .

Let a stopping time $\tau$ be a hitting time to the target state $K$ , that is, $\tau$ is the smallest
nonnegative integer $n$ such that $X_{n}=K$ where $\tau=\infty$ if there does not exist such an integer $n$ .
Then we define the random reward as a criterion function by

$z=\mathrm{O}^{Y_{n}\equiv \mathrm{Y}_{0}\mathrm{o}Y_{1}\circ\cdots\circ \mathrm{Y}_{\tau}}n=0\tau$ .

Then our problem is to minimize the expected reward $E_{i}^{\pi}[Z]$ with respect to all policies $\pi$ .
To $\mathrm{S}\mathrm{i}\mathrm{m}\mathrm{P}\mathrm{l}\mathrm{i}\mathfrak{b}^{r}$ the optimization problem, we can redefine the equivalent version of the Markov

decision processes as follows. We assume that the target state $K$ is absorbing and cost-free, that
is, $q^{a}(K|K)=1$ and $\hat{q}_{KK}^{a}(e)=1$ and hence $p^{a}(K, e|K)=1$ for all $a$ $\in A$ . Under this assumption
we have

$z=\mathrm{O}^{Y_{k}\equiv\lim}\mathrm{O}^{Y_{k}}k=0\infty nnarrow\infty_{k=0}$’

which exists from the remark of the assumption (iv), where we admit $Z=\infty$ .

in order to analysis our problem we also define the random reward for a subproblem by

$Z_{n}=\mathrm{O}^{Y_{k}}k=1n\equiv Y_{0}oY_{1}\mathrm{o}\cdots\circ \mathrm{Y}_{n},$ $n\geq 0$ ,

Further we define another random sequence as an imbedded parameter by

$\Lambda_{0}=\lambda$ , $\Lambda_{n+1}=\Lambda_{n}\mathrm{o}\mathrm{Y}_{n+1},$ $n\geq 0$ ,

where $\lambda$ is a given initial parameter in $B$ .
Let $H_{\star 0}=S_{B}$ and $H_{n+1}=H_{n}\cross A\cross S_{B}$ for each $n\in N$ . Then $H_{n}$ represents the set of all

$\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{s}\mathrm{i}^{\sim}\mathrm{b}\mathrm{l}\mathrm{e}$ histories of the system when the $n\mathrm{t}\mathrm{h}$ action must be chosen, and we denote by $\theta_{n}$ the
history at time $n\in N$ . A decision rule $\delta_{n}$ for time $n\in N$ is a conditional probability given
$\theta_{n}:\delta_{n}(a_{n}|h_{n})=P(A_{n}=a_{n}|\theta_{n}=h_{n})$ , where $h_{n}=(i_{0}, \lambda 0, a_{0}, i_{1}, \lambda_{1}, \ldots, a_{n-1}, i_{n}, \lambda_{n})\in H_{n}$

which is a realising value of $\theta_{n}=(X_{0}, \Lambda_{0}, A_{0}, X_{1}, \Lambda_{1}, \ldots, A_{n-1}, X_{n}, \Lambda_{n})$. It is assumed that
$\delta_{n}(A_{n}\in A|h_{n})=1$ for every history $h_{n}=(i_{0}, \lambda 0, a_{0)}\ldots, i_{n}, \lambda_{n})\in H_{n}$ . We denote by $\Delta$ the
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$\mathrm{s}\mathrm{e}^{+}$. of all decision rules. A policy $\pi$ is an infinite sequence of decision rules $(\delta_{n}, n\geq 0)=$

$(\delta_{0}, \delta_{1}, \delta_{2}\ldots., \delta_{n}, \ldots)$ . We denote by $C$ the set of all such policies.
A policy $\pi=(\delta_{n}, n\geq 0)$ is said to be Markov when the decision rule $\delta_{n}$ is a function of

$(X_{n}, \Lambda_{n})=(i_{n}, \lambda_{n})$ for every $n\in N$ . We denote the set of such decision rules by $\Delta_{M}$ and the
set of all Markov policies by $C_{M}$ . Also, a policy $\pi$ is called a deterministic Markov policy if $\pi$

is Markov and $\delta_{n}(a|i, \lambda)=1$ for some $a$ $\in A$ . We write $\delta_{n}(i, \lambda)=a$ for such a decision rule $\delta_{n}$

and we denote by $\Delta_{D}$ the set of such decision rules. We also denote the set of all deterministic
Markov policies by $C_{D}$ . When $\delta_{n}=\delta\in\Delta_{D}$ for all $n\in N$ , we write $\pi=\delta^{\infty}$ , which is called a
stationary policy, and we denote the set of all stationary policies by $C_{D}^{s}$ .

We denote by $E_{i}^{\pi}[Z]$ the conditional expectation of $Z$ given an initial state $X_{0}=i$ and a
policy $\pi\in C$ . Since the random variable $Z$ depends upon not only $i$ and $\pi$ but also $\lambda$ , we
may sometimes use a conditional probability $P_{(i,\lambda)}^{\pi}(\cdot)$ and an expectation $E_{(i,\lambda)}^{\pi}(\cdot)$ . Through this
paper we assume that $P_{(i,\lambda)}^{\pi}$ ($X_{n}=K$ for some $n\geq 0$ ) $=P_{(i.\lambda)}^{\pi}(\tau<\infty)=1$ for every stationary
policy $\pi\in C_{D}^{s}$ and each $(i, \lambda)\in S_{B}$ , that is, the states 1, 2, . . ., $K-1$ are transient when we
use any policy $\pi\in C_{D}^{s}$ . Thus we $\mathrm{e}\mathrm{a}s$ily see that $P_{(i,\lambda)}^{\pi}(Z<\infty)=1$ for all $\pi\in C_{D}^{s}$ and each
$(i, \lambda)\backslash \in S_{B}$ . This is analogous to a condition given in Ohtsubo[16].

A decision rule $\delta\in\Delta_{D}$ is said to be left continuous (on $B$) if for each $(i, \lambda)\in S_{B}$ there is a
positive $\mathrm{r}^{3}.\mathrm{a}1$ number $\mu$ such that $\delta(i, \lambda)=\delta(i, \lambda-\mathrm{u})$ for all $u:0\leq u<\mu$ such that $\lambda-u\in B$ .
A policy $\pi=\delta^{\infty}\in C_{D}^{s}$ is said to be left continuous if the decision rule $\delta$ is left continuous.

In order to analysis our model, we denote criterion functions for finite and infinite horizon
cases by

$F_{n}^{\pi}(i, \lambda)=E_{i}^{\pi}[\lambda \mathrm{o}Z_{n}]$ , $F^{\pi}(i, \lambda)=E_{i}^{\pi}[\lambda \mathrm{o}Z]$ ,

respectively, for each $(i, \lambda)\in S_{B}$ and $\pi\in C$ . When $n=3$ , the explicit form of the expectation
$F_{3}^{\pi}(i_{1}, \lambda)$ is

$E_{i_{1}}^{\pi}[\lambda \mathrm{o}Z_{3}]$ $=$ $\sum$ $\sum$ $\sum$ $\sum$ $\sum$ $\sum$ $\sum$ $\sum$ $\sum(\lambda \mathrm{o}y_{1}\mathrm{o}y_{2}\mathrm{o}y_{3})$

$a_{1}\in Ay_{1}\in Ei_{2}\in Sa_{2}\in Ay_{2}\in Ei_{\theta}\in Sa_{3}\in Ay\mathrm{s}\in E:_{4}\in S$

X $p^{a_{3}}(i_{4},$ $y_{3}|i_{3})\delta_{2}(a_{3}|i_{1},$ $\lambda,$
$a_{1},$ $i_{2},$ $\lambda \mathrm{o}y_{1},$ $a_{2},$ $i_{3},$ $\lambda \mathrm{o}y_{1}\mathrm{o}y_{2})$

$\cross p^{a_{2}}(i_{3,y_{2}}|i_{2})\delta_{1}(a_{2}|i_{1}, \lambda, a_{1}, i_{2}, \lambda\circ y_{1})$

$\cross p^{a_{1}}(i_{2,y_{1}}|i_{1})\delta_{0}(a_{1}|i_{1}, \lambda)$

for $(i_{1}, \lambda)\in S_{B}$ and $\pi=(\delta_{0}, \delta_{1}, \delta_{2}, \cdots)\in C$ . We also define optimal value functions $F_{n}^{*}$ and $p*$

for $\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}^{r,-}.,\mathrm{e}$ and infinite horizon cases by, respectively,

$F_{n}^{*}(i, \lambda)=\inf_{\pi\in C}F_{n}^{\pi}(i, \lambda)$ , $F^{*}(i, \lambda)=\inf_{\pi\in C}F^{\pi}(i, \lambda)$ .

Then we notice that optimal value in the original problem is

$F^{*}(i, e)= \sup_{\pi\in C}F^{\pi}(i, e)=\sup_{\pi\in C}E_{i}^{\pi}[Z_{\mathrm{J}}^{\rceil}$ ,

since $e$ is the unit element. A policy $\pi$ is said to be optimal if $F^{*}(i, \lambda)=F^{\pi}(i, \lambda)$ for every
$(i, \lambda)\in S_{B}$ .

We define the following sets of functions: let .1‘ be the set of functions $F$ from $S_{B}$ into $B$ such
that $F_{\backslash }^{(}i,$ $\lambda$ ) is measurable on $B$ for each $i\in S$ and $F(i, \lambda)\geq\lambda$ , let $F_{B}$ be the set of functions
$F\in F$ such that $F(\cdot, \lambda)$ is bounded for each $\lambda\in B$, and let $F_{\ell}$ be the set of functions $F\in F$
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such $\mathrm{t}_{11}$

”
$\mathrm{a}^{\{_{\lrcorner}^{-}}F(i, \cdot)$ is nondecreasing and left continuous on $B$ for each $i\in S$ . In Theorem 3.1 it is

shown that $F^{*}\in F_{\ell}$ . However, it is not necessarily true that $F^{\pi}\in F\ell$ for each $\pi\in C$ .
‘Ve $\mathrm{r}_{-}\mathrm{n}_{\sim}^{-}’‘!1\cap 1\mathrm{y}$ define operatorv $T^{a},$

$T^{\delta}$ and $T$ from $F$ into itself as follows. For $F\in \mathcal{F},$ $(i, \lambda)\in S_{B}$ ,
$a\in A$ and $\mathit{6}\subset\sim\Delta_{M}$ ,

$T^{a}F(i, \lambda)=\sum_{j\in S}\sum_{y\in E}F(j, \lambda \mathrm{o}y)p^{a}(j,y|i)$
,

$T^{\delta}F(i, \lambda)=\sum_{a\in A}T^{a}F(i, \lambda)\delta(a|i, \lambda)$
,

$TF(i, \lambda)=\inf_{\delta\in\Delta}T^{\delta}F(i, \lambda)=\min_{a\in A}T^{a}F(i, \lambda)$ .

We also define operators $T^{n}$ by $T^{1}=T$ and $T^{n+1}=T(\mathit{2}^{m}),$ $n\geq 1$ . Similarly, $(T^{\delta})^{n}$ iv defined for
$\delta\in\Delta_{M}$ . In all argument, for $F,$ $G\in F,$ $F\geq G$ means that $F(i, \lambda)\geq G(i, \lambda)$ for all $(i, \lambda)\in S_{B}$ .

3. Optimal value and optimal policy

In this section we prove that the optimal value function is a unique solution to an optimality
equation and we give a value iteration method. These results are an associative extension of Eaton
and Zadeh[3], Derman$[4, 5]$ , and Bellman and Zadeh[l], and a stochastic on$e$ of Maruyama[ll].

We also show that there exists an optimal left continuous policy.
We first give fundamental lemmas below.

$\mathrm{L}e$mma 3.1.

(i) For $F,$ $G\in F$ and $\delta\in\Delta,$ $T^{\delta}F-T^{\delta}G=T^{\delta}(F-G)$ .
(ii) If $F,$ $G\in F$ and $F\geq G$ , then $T^{a}F\geq T^{a}G$ for each $a\in A,$ $T^{\delta}F\geq T^{\delta}G$ for each $\delta\in\Delta$ and

$TF\geq TG$ .
(iii) If $G\in F_{\ell}$ , then $T^{a}G\in F_{\ell}$ for any $a\in A$ . Also, $T$ is an operator from $F$ (or $F_{\ell}$) into itself.
(iv) If $G_{n}\in F\ell$ and $G_{n}\leq G_{n+1}$ for each $n\geq 0$ , then $\lim_{narrow\infty}G_{n}\in F_{\ell}$ .

We easily see that for each $F\in F$ , there is a measurable decision rule $\delta\in\Delta_{D}$ satisfying
$TF=T^{\delta}F$ , since $TF$ is measurable and $A$ is finite.

Furthermore, the following lemma is important for main theorems.
Lemrra 3.2. For each $F\in \mathcal{F}_{\ell}$ , there exists a left continuous decision rule $\delta\in\Delta_{D}$ satishing
$TF=T^{\delta}F$ .

For $\mathrm{a}_{\alpha_{\wedge}^{\mathrm{I}}}^{-\mathrm{v}}$. $\pi=(\delta_{n}, n\geq 0)\in C$ and a given history $(i, \lambda, a)\in S_{B}\mathrm{x}A$ , the cut-head policy of $\pi$

to $(i, \lambda, a)$ is defined by $1(\pi\iota,\lambda a)=(\delta_{n}^{(\mathrm{i},\lambda,a)}, n\geq 0)$ where $\delta_{n}^{(i,\lambda,a)}(\cdot|h_{n})--\delta_{n+1}(\cdot|(i, \lambda, a), h_{n})$ for
every $h_{n}\in H_{n}$ and each $n\geq 0$ . Then we see that $1_{\pi}(i,\lambda,a)\in C$ for a fixed $(i, \lambda, a)$ . For the sake
oi $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}1_{\dot{\mathrm{i}}^{\rho}},\mathrm{i}\mathrm{t}\mathrm{y}$ we use a notation:

$T^{\delta_{0}}F^{1} \pi(i, \lambda)=\sum_{a\in A}\delta_{0}(a|i, \lambda)\sum_{j,,y}F^{\iota_{\pi^{(*,\mathrm{A}.a)}}}(j, \lambda \mathrm{o}y)p^{a}(j,y|i)$

for each $\pi=(\delta_{n}, n\geq 0)\in C$ and $(i, \lambda)\in S_{B}$ .

Lemma 3.3. Let $\pi=(\delta_{n},n\geq 0)\in C$ be arbitrary. For each $n\geq 0,$ $F_{n+1}^{\pi}=T^{\delta_{0}}F_{n}^{1}\pi$ and
$F^{\pi}=T^{\delta_{\mathrm{C}}}F^{1}\pi$ . Especially, $F^{\pi}=T^{\delta}F^{\pi}$ when $\pi=\delta^{\infty}\in C_{D}^{s}$ .

We next give fundamental properties for optimal value functions of $\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}_{t}\mathrm{e}$ and infinite horizon
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cases.

Theorem 3.1. We have the following:

(i) For each $n\geq 0,$ $F_{n}^{*}\in \mathcal{F}\ell$ and $\{F_{n}^{*}, n\geq 0\}$ satisfies equations :

$F_{0}^{*}(i, \lambda)=\lambda,$ $(i, \lambda)\in S_{B}$ , $F_{n}^{*}=TF_{n-1}^{*}$ , $n\geq 1$ .

(ii) For each $n\geq 0$ , there exists a left continuous policy $\pi\in C_{D}$ such that $F_{n}^{l}=F_{n}^{\pi}$ .
(iii) $Fcr$ each $n\geq 0,$ $F_{n}^{*} \leq F_{n+1}^{*}\leq\lim_{narrow\infty}F_{n}^{*}\leq p*$ and $\lim_{narrow\infty}F_{n}^{*}\in F_{\ell}$ .

Remark On the statement (iii) we have $\lim_{narrow\infty}F_{n}^{*}=F^{*}$ under some conditions, which we
$\mathrm{w}\mathrm{i}_{\lambda}^{1}1$ prove in Theorem 3.2.

From Theorem 3.1, we have $F_{n}^{*}=T^{n}F_{0}^{*}$ for each $n\geq 0$ . In order to prove that $F^{*}=$

$\lim_{narrow\infty}F_{n}^{*}$ , we need the following important lemma.

Lemma 3.4. Let $\pi=\delta^{\infty}\in C_{D}^{s}$ be a policy satisfying the condition that for each $(i, \lambda)\in S_{B}$

there is a constant $M>0$ such that $P_{(i,\lambda)}^{\pi}(\lambda\circ Z\leq M)=1$ .

(i) Let $\Delta\varpi,$ $G\in F_{B}$ . If $F-G\leq T^{\delta}(F-G)$ on $\{K\}^{c}\cross B$ and $F=G$ on $\{K\}\cross B$ , then $F\leq G$

on $S_{B}$ .
(ii) $F^{\pi}$ is the unique solution in $F_{B}$ to equation $F=T^{\delta}F$ Utth $F(K,’\lambda)=\lambda$ for every $\lambda\in B$ .

Now we are in a position to give a main theorem.

Theorem 3.2. Suppose that there exists at least one policy $\sigma\in C$ such that for each $(i, \lambda)\in S_{B}$

there is a constant $M>0$ such that $P_{(i,\lambda)}^{\sigma}(\lambda \mathrm{o}Z\leq M)=1$ .
$(^{\dot{\tau}},)F^{*}= \lim_{narrow\infty}F_{n}^{*}$ .

(ii) $F^{*}$ is the unique solution in $\mathcal{F}_{B}$ to $F=TF$ with $F(K, \lambda)=\lambda$ for every $\lambda\in B$ .
(iii) There exists a left continuous policy $\pi=\delta^{\infty}\in C_{D}^{s}$ satisfying $F^{*}=T^{\delta}F^{*}$ on $\{K\}^{c}\cross B$ and

$\pi$ is optimal.

In order to consider special cases, we define new policy spaces below. Let a policy space
$\Pi$ be the set of all policies $\pi=(\delta_{n}, n\geq 0)\in C$ such that $\delta_{n}$ is not depend upon parameters
$\lambda_{0}$ , Ai, . . ., $\lambda_{k},$

$\ldots$ for every $n\geq 0$ . Similarly, we defien $\Pi_{M},$ $\Pi_{D}$ and $\Pi_{D}^{s}$ corresponding to $C_{M},$ $C_{D}$

and $C_{D}^{\mathit{8}}$ , respectively. For example, $\pi=\delta^{\infty}\in\Pi_{D}^{s}$ is a policy such that $\delta(i)=a$ for each $i\in S$ and
some $a\in A$ . These are usual policy spaces defined on Markov decision processes with additive
criteria (cf. White[19]).

Coroilary 3.1. Suppose that there exists at least one policy $\sigma\in$ II such that for each $i\in S$ there
is a constant $M>0$ such that $P_{i^{\theta}}(Z\leq M)=1$ .

(i) In an additive case, that is, $x\circ y=x+y$, there is an optimal policy $\pi=\delta^{\infty}\in\Pi_{D}^{\epsilon}$ such that
$F^{*}(.i, \mathrm{O})=T^{\delta}F^{*}(i, 0)$ for each $i\in\{K\}^{c}$ and $F^{*}(K, 0)=0$ .

(ii) In an multiplicative case, that is, $x\circ y=Lxy$ for a constant $L>0$ , there is an optimal policy
$\pi=\delta^{\infty}\in\Pi_{D}^{\delta}$ such that $F^{*}(i, 1/L)=T^{\delta}F^{*}(i, 1/L)$ for each $i\in\{K\}^{\mathrm{c}}$ and $F$“ $(K, 1/L)=$

$1/L$ .
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(iii) In an multiplicative-additive case, that is, $x\circ y=x+y-Lxy$ for a constant $L>0$ , there
is an optimal policy $\pi=\delta^{\infty}\in\Pi_{D}^{s}$ such that $F^{*}(i, 0)=T^{\delta}F^{*}(i, 0)$ for each $i\in\{K\}^{c}$ and
$F^{\mathrm{x}}(K, 0)=0$ .

$y\backslash _{1\mathrm{o}\mathrm{m}}$ Theorems 3.1 and 3.2 we see that a value iteration is given by $F^{*}= \lim_{narrow\infty}T^{n}F_{0}^{*}$ where
$F_{0}^{*}(i,\grave{\lambda})=\lambda$ for each $(i, \lambda)\in S_{B}$ . We give another value iteration in the following theorem.

Theorem 3.3. Suppose that there is a policy a $\in C$ such that for each $(i, \lambda)\in S_{B}$ there is a
constant $M>0$ such that $P_{(i,\lambda)}^{\sigma}(\lambda\circ Z\leq M)=1$ .

Let $G\in \mathcal{F}$ be a function satisfying $G\leq F^{*}$ . Then $\{T^{n}G\}$ converges and $\lim_{narrow\infty}T^{n}G=F^{*}$ .

4. Policy iteration method

In this section we consider a policy space iteration procedure in our model as follows:

(i) Select an initial policy $\pi_{0}=(\delta_{0})^{\infty}\in C_{D}^{s}$ .
(ii) At step $n$ , assume that we have a policy $\pi_{n}=(\delta_{n})^{\infty}\in C_{D}^{s}$ and solve the equation $F=T^{\delta_{n}}F$

with $F(K, \lambda)=\lambda$ for every $\lambda\in B$ to give a function $F^{\pi_{n}}\in \mathcal{F}$ .
(iii) If $T^{\delta_{n}}F^{\pi_{n}}=TF^{\pi_{n}}$ , stop the procedure. If $T^{\delta_{n}}F^{\pi_{n}}\neq TF^{\pi_{n}}$ , go the next step.
$(\mathrm{i}\mathrm{v})\backslash$ Find a new policy $\pi_{n+1}=(\mathit{6}_{n+1})^{\infty}\in C_{D}^{s}$ by $T^{\delta_{n+1}}F^{\pi_{n}}=TF^{\pi_{n}}$ .
(v) Retum to step (ii) replacing $n$ by $n+1$ .

From Lemma 3.4(ii) we can uniquely solve the equations in .1‘ at step (ii) under some conditions.
We have the following convergence theorem.

Theorem 4.1. Suppose that there exists at least one policy $\sigma\in C$ such that for each $(i, \lambda)\in S_{B}$

there is a constant $M>0$ such that $P_{(i,\lambda)}^{\sigma}(\lambda \mathrm{o}Z\leq M)=1$ .

(i) The sequence $\{F^{\pi_{n}}\}$ is nonincreasing and converges to $F^{*}$ .
(iil If $T^{\delta_{n}}F^{\pi_{n}}=TF^{\pi_{n}}$ , then $F^{\pi_{n}}$ is the optimal value and $\pi_{n}=(\delta_{n})^{\infty}\in C_{D}^{s}$ is an optimal

5. Examples
We first consider an example of a maximum case and get optimal value and optimal policy by

the policy iteration method.

Example 5.1. Let $x \mathrm{o}y=\max(x, y)$ . Let $S=\{1,2,3\}$ be a state space and 3 be a target node.
Assume that the state 3 is absorbing and cost-free. Also let $A=\{a_{1}, a_{2}\}$ be an action space.
We give the probability distributions by

$p^{a_{1}}(2,2|1)= \frac{2}{3}$ $p^{a_{1}}(3,2|1)= \frac{1}{3’}$

$p^{a_{1}}(3,6|2)=p^{a_{2}}(2,4|1)=1$ ,

$p^{a_{2}}(2,8|2)=p^{a_{2}}(3,3|2)= \frac{1}{2}$ .

Then we have $B=[2,8]$ and $e=2$ . We consider a policy space procedure to give an optimal
policy. Let $\pi_{0}=(\delta_{0})^{\infty}\in C_{D}^{s}$ be an initial policy such that $\delta_{0}(i, \lambda)=a_{1}$ for every $(i, \lambda)\in S_{B}$ .
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Solving the equation $F=T^{\delta_{0}}F$ with $F(3, \lambda)=\lambda$ for every $\lambda\in B$ , we have

$F^{\pi_{0}}(2, \lambda)=\{$

6 $(2\leq\lambda\leq 6)$

$\lambda$ $(6<\lambda\leq 8)$

$F^{\pi_{0}}(1, \lambda)=\{$

$\frac{1}{3}\lambda+4$ $(2\leq\lambda\leq 6)$

$\lambda$ $(6<\leq\lambda\leq 8)$

We now see that $T^{\delta_{0}}F^{\pi_{0}} \neq TF^{\pi 0}=\min(T^{a_{1}}F^{\pi_{0}}, T^{a_{2}}F^{\pi_{0}})$ , since

$T^{a_{1}}F^{\pi 0}(2, \lambda)=F^{\pi_{0}}(2, \lambda)$ , $T^{a_{2}}F^{\pi_{0}}(2, \lambda)=\{$

$\frac{11}{2}$ $(2\leq\lambda\leq 3)$

$\frac{\lambda}{2}+4$ $(3<\lambda\leq 8)$

Next, using $T^{\delta_{1}}F^{\pi_{\mathrm{O}}}=TF^{\pi 0}$ , we give a policy $\pi_{1}=(\delta_{1})^{\infty}\in C_{D}^{\mathit{8}}$ by

$\delta_{1}(3, \lambda)=a_{1}$

$\delta_{1}(2, \lambda)=\{$

$a_{2}$ $(2\leq\lambda\leq 4)$

$a_{1}$ $(4<\lambda\leq 8)$
’

$\delta_{1}(1, \lambda)=a_{1}$ .

By solving $F=T^{\delta_{1}}F$ with $F(3, \lambda)=\lambda,$ $F^{\pi_{1}}$ is given by

$F^{\pi_{1}}(2, \lambda)=\{$

$\frac{11}{\frac\lambda,22}+4$

$(3<\lambda\leq 4)$

$(2\leq\lambda\leq 3)$

6 $(4<\lambda\leq 6)$

$\lambda$ $(6<\lambda\leq 8)$

$F^{\pi_{1}}(1, \lambda)=\{$

$\frac{1}{3}\lambda+_{T}^{11}$ $(2\leq\lambda\leq 3)$

$\frac{2}{3}\lambda+\frac{8}{3}$ $(3<\lambda\leq 4)$

$\frac{1}{3}\lambda+4$ $(4<\lambda\leq 6)$

$\lambda$ $(6<\lambda\leq 8)$

We can easily check that $T^{\delta_{1}}F^{\pi_{1}}(i, \lambda)=TF^{\pi_{1}}(i, \lambda)$ for every $(i, \lambda)\in S_{B}$ . Thus we stop the
Procedur.e. From Theorem 4.1 we obtain the optimal value $p*=F^{\pi_{1}}$ and an oPtimal policy
$\pi_{1}=(\delta_{\mathrm{A}_{\text{ノ}}}1\mathrm{I}^{\infty}$ Therefore, since $e=2$ , we have optimal value in the original problem as follows:

$F^{*}(1,2)= \frac{13}{3}$ , $F^{*}(2,2)= \frac{11}{2}$ , $F^{*}(3,2)=2$ .

We next consider an example of a multiplicative case.

Example5.2. Let $x\circ y=xy$ . Let $S=\{1,2,3\}$ be a state space and 3 be a target node. Assume
that the state 3 is absorbing and cost-free. Also let $A=\{a_{1}, a_{2}\}$ be an action space. We give
the probability distributions by

$p^{a_{1}}(2,2|1)= \frac{2}{3},$ $p^{a_{1}}(3,2|1)= \frac{1}{3}$

$p^{a_{1}}(3,6|2)=p^{a_{2}}(2,4|1)=1$ ,

$p^{a_{2}}(2,5|2)= \frac{1}{16},$ $p^{a_{2}}(3,3|2)= \frac{15}{16}$ .

Then $\mathrm{v}r\mathrm{e}$ have $B=[1, \infty)$ and $e=1$ . From Corollary 3.1, We may put $\lambda=e=1$ to analysis
the $\mathrm{m}^{=}.’ 1\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ case, but we use $\lambda$ . We consider a policy space procedure to give an optimal
$\mathrm{v}\mathrm{a}^{\tau}.|.\mathrm{u}\mathrm{e}$ end an optimal policy. Let $\pi_{0}=(\delta_{0})^{\infty}\in C_{D}^{s}$ be an initial policy such that $\delta_{0}(i, \lambda)=a_{1}$

for every $(i, \lambda)\in S_{B}$ . Solving the equation $F=T^{\delta_{\mathrm{O}}}F$ with $F(3, \lambda)=\lambda$ for every $\lambda\in B$ , we have

$F^{\pi 0}(2, \lambda)=6\lambda$ , $F^{\pi_{0}}(1, \lambda)=\frac{26}{3}\lambda$
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We now see that $T^{\delta_{0}}F^{\pi_{0}}\neq TF^{\pi_{0}}$ , since

$T^{a_{1}}F^{\pi_{\mathrm{O}}}(2, \lambda)=F^{\pi_{0}}(2, \lambda)=6\lambda$ , $T^{a_{2}}F^{\pi_{0}}(2, \lambda)=\frac{75}{16}\lambda$

Next, using $T^{\delta_{1}}F^{\pi_{0}}=TF^{\pi_{0}}$ , we give apolicy $\pi_{1}=(\delta_{1})^{\infty}\in C_{D}^{s}$ by

$\delta_{1}(3, \lambda)=a_{1}$ , $\delta_{1}(2, \lambda)=a_{2}$ , $\mathit{6}_{1}(1, \lambda)=a_{1}$ .

By $\mathrm{S}\mathrm{O}_{\mathrm{A}}^{1}’\tau^{r\mathrm{i}}\wedge \mathrm{n}\mathrm{g}F=T^{\delta_{1}}F$ with $F(3, \lambda)=\lambda,$ $F^{\pi_{1}}$ is given by

$F^{\pi_{1}}(2, \lambda)=\frac{45}{11}\lambda$. $F^{\pi_{1}}(1, \lambda)=\frac{112}{33}\lambda$ .

We can easily check that $T^{\delta_{1}}F^{\pi_{1}}(i, \lambda)=TF^{\pi_{1}}(i, \lambda)$ for every $(i, \lambda)\in S_{B}$ . Thus we stop the
procedure. We obtain the optimal value $F^{*}=F^{\pi_{1}}$ and an optimal policy $\pi_{1}=(\delta_{1})^{\infty}$ . Therefore,

since $e=1$ , we have optimal value in the original problem as follows:

$F^{*}(1,1)= \frac{112}{33}$ , $F^{*}(2,1)= \frac{45}{11}$ $F^{*}(3,1)=1$ .
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