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Abstract

We consider a stochastic shortest path problem with associative criteria in which for each
node of a graph we choose a probability distribution over the set of successor nodes so as to
reach a given target node optimally. We formulate such a problem as an associative Markov
decision processes. We show that an optimal value function is a unique solution to an optimality
equation and find an optimal stationary policy. Also we give a value iteration method and a
poilicy improvement method. ' '
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1. Introduction

For & directed graph with nodes 1,2, ..., K and with a cost (length or time) assigned to each
arc, a stochastic shortest path problem is to select a probability distribution over all possible
successor nodes at each node i # K so as to reach a target node K with minimal associative
accumulate cost.

Such a stochastic shortest path problem is analyzed by using the general theory of Markov
decision processes in many references. Eaton and Zadeh[3] formulated such a problem as a
pursuit problem and they showed that the optimal expected total cost is a unique solution to
an optimality equation if at least one proper policy exists, and they gave an optimal value by a
value iteration method. Derman in [4, 5] considered the problem, where a target state (node)
is absorbing, and proved that the problem has an optimal stationary policy and he gave several
methods for obtaining optimal solutions. In [18], Sancho formulated Markov decision processes to
analyze the problem and gave a policy iteration method. Bertsekas and Tsitsiklis[2] investigated
the problem without the cost nonnegativity assumption and proved a natural generalization of the
standard result for the deterministic shortest path problem within the framework of undiscounted
finite state Markovian decision processes. In all of these, a criterion function is the expected total
cost, which we call an additive case.

Also, Ohtsubo[14] considered a minimizing risk models in stochastic shortest path problems
as undiscounted finite Markov processes and showed that an optimal value function is a unique
sclution to an optimality equation and found an optimal stationary policy by using an invariant
imbedding method. General minimizing risk models in discounted Markov decision processes
were investigated in White [20], Wu and Lin [21], Ohtsubo and Toyonaga [13, 15] and Ohtsubo
[16]. |

On the other hand, Maruya.ma in [9 , 10, 11, 12] investigated deterministic shortest path



problems with associative criteria and show the existence and uniqueness of the optimal value.
Especially in [11} he obtained a parameterized recursive equation for the class of the problem by
using an invariant imbedding technique.

Furthermore the optimization problem for minimum criteria, which is associative, was first
introduced by Bellman and Zadeh[1] as decision-making in fuzzy environment, and Iwamoto et
al.[6, 7, 8] and Ohtsubo[17] formulateed their optimization problem as finite horizon Markov
decision processes and give a optimal policy by using an invariant imbedding approach.

In this paper we concern ourselves with a stochastic shortest path problem with an associative
criterion, which is an expected accumulate cost E] [Or—1Ys] = Ef[YooYi0Y30---Y;] where Y,
is a cost at nth step, o is an operator with an associative property satisfying some conditions,
7 is a hitting time to the target node K and ET is an expectation operator when the starting
node is i and a policy 7 is used. In Section 2, we give notations and formulate our model as
* undiscounted finite Markov decision processes with infinite horizon. In Section 3, we prove that
the optimal value function is a unique solution to an optimality equation by using an invariant
imbedding approach and that it is given by a value iteration method. We also show that there
exists an optimal left continuous stationary policy. In Section 4, we give a policy improvement
method for obtained a optimal policy.

2. Notations and formulation

In this section we formulate associative models in stochastic shortest path problems as Markov
decision Processes I' = ((X3,), (4n), (Yn),p) with a discrete time space N = {0,1,2,...}. The
state space S is a finite set {1,2,..., K} where K is a target state, and we denote the state at
time n € N by X,.. The action space A is finite and we denote the action at time n € N by
Ap. The cost space E is a finite set {y1,¥2,...,¥e}, where E C B for some subset B of R, and
Y, € F is a random cost function at time n € N with Y; = e, where e is a unit element defined
below. We define conditional probability distributions by

¢*(jli) = P(Xnt1=j|Xn=1,4An =a),
ﬁgj(y) = P(Yn+1=y|Xn =4, Xn+1=j,An=a)

and set
pa(jv ylz) = qa(JIZ)ﬁ%(y) = P(Xn+1 =J,Yns1 = y’Xn =1, Ap = a)

fori,j € S,ac Aandy € E. We use Sgp = § X B as a new state space.
For a binary operator o : R x R — R and a subset B of R, we assume that

(i) B is closed for the operator o, that is, z oy € B for any z,y € B,
(ii) the operator o is associative, that is, (zoy) oz =z o (yo2) ( = z oy o2, say) for any
z,y,z € B, ' '
(iii) B has a unit element e, that is, e € Band zoe=eoz =« for any z € B,
(iv) (B, c) is nondecreasing in the sense that £ <z oy and z < y oz for any z,y € B.

In algebra, (B, o) satisfying the condition (i), (ii) and (iii) is called semigroup. On the condition
(iv), letting z = e, we notice that y > e for any y € B. Also we easily see under (i), (ii) and
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(i) that if z > eand if zoy < zozand yoz < zox when y < z for any z,y, z € B then the
condition (iv) holds.

We give several examples in which (B, o) satisfies the above conditions (cf. Maruyamal[10]).
Example 2.1.

(1) (Additive case). When z oy = z + y, we have B = [0, 00) and e = 0.

(2) (Multiplicative case). When z oy = Ly for a constant L > 0, we have B = [1/L, c0) and
e=1/L.

(3) (Maximum case) When z o y = max(z, y), we have B = [L, M| and e = L for constants
L, M € R such that —oo < L < M < oo. '

(4) (Multiplicative-additive case). When z oy = z + y — Lzy for a constant L > 0, we have
B={0,1/L] and e = 0. ' .

(5) (Fractional case). When z oy = (z + y)/(1 + Lzy) for a constant L > 0, we have
B=[0,1/vL] and e = 0.

Let a stopping time 7 be a hitting time to the target state K, that is, 7 is the smallest
nonnegative integer n such that X, = K where 7 = oo if there does not exist such an integer n.
Then we define the random reward as a criterion function by

.
Z=QY.,=YoY0---0Y,.
n=0
Then our problem is to minimize the expected reward ET[Z] with respect to all policies .

To simplify the optimization problem, we can redefine the equivalent version of the Markov
decision processes as follows. We assume that the target state K is absorbing and cost-free, that
is, ¢*(K|K) = 1 and §% s (€) = 1 and hence p*(K,e|K) = 1 for all a € A. Under this assumption
we have

Z=0Y= lim OY%
= QY = lim ks
k=0 N ®k=0
which exists from the remark of the assumption (iv), where we admit Z = oo.
In order to analysis our problem we also define the random reward for a subproblem by

Y =YyoYi0---0Y,, n>0,

Os

Z, =
k

1

Further we define another random sequence as an imbedded parameter by
Ao =), An~}-1 =ApoYp4, n2>0,

wkhere A is a given initial parameter in B.

Let Ho = Sp and Hpy1 = Hp, x A x Sp for each n € N. Then H, represents the set of all
possitle histories of the system when the nth action must be chosen, and we denote by 6, the
history at time n € N. A decision rule 4, for time n € N is a conditional probability given
bn: On(an|hn) = P(An = Gn|n = hn), Where hyn = (io, Aoy G0, 81, ALy« +; Gno1,%n; An) € Hy
which is a realising value of 6, = (Xo, Ao, Ao, X1,A1,...;An—1,Xn,Ap). It is assumed that
0n(An € Alhyn) = 1 for every history hn, = (i, Ao, @0, - -, in, An) € Hn. We denote by A the



set of all decision rules. A policy 7 is an infinite sequence of decision rules (6,,n > 0) =
(80,81,02,...,0n,...). We denote by C the set of all such policies.

A policy # = (ép,n > 0) is said to be Markov when the decision rule 6, is a function of
(Xn, An) = (in, An) for every n € N. We denote the set of such decision rules by Az and the
set of all Markov policies by Cas. Also, a policy 7 is called a deterministic Markov policy if 7
is Markov and dy(ali, A) = 1 for some a € A. We write 6, (5, A) = a for such a decision rule 6,
and we denote by Ap the set of such decision rules. We also denote the set of all deterministic
Markov policies by Cp. When 8, = é € Ap for all n € N, we write 7 = §°°, which is called a
stationary policy, and we denote the set of all stationary policies by C§,.

We denote by ET[Z] the conditional expectation of Z given an initial state Xo = 7 and a
policy m € C. Since the random variable Z depends upon not only ¢ and n but also A, we
may sometimes use a conditional probability P ,)(-) and an expectation ET, ,)(-). Through this
paper we assume that P(] ,)(Xn = K for some n > 0) = P\ (7 < 00) =1 for every stationary
policy 7 € C}, and each (i,A) € Sg, that is, the states 1,2,..., K — 1 are transient when we
use any policy # € C3. Thus we easily see that Pin(Z < 00) =1 for all m € C} and each
(4,A) € S3. This is analogous to a condition given in Ohtsubo[16].

A decision rule 6 € Ap is said to be left continuous (on B) if for each (i,A) € Sp there is a
positive rzal number 4 such that 6(¢,\) = (i, A — u) for all 4 : 0 € u < p such that A —u € B.
A policy m = §*° € C}, is said to be left continuous if the decision rule & is left continuous.

In order to analysis our model, we denote criterion functions for finite and infinite horizon

cases by
FF(i,\)=ETf[Ao Z,], F™(i,\) = ET[Ao Z),

respectively, for each (4, ) € Sp and m € C. When n = 3, the explicit form of the expectation
FI(i1, ) is

Bzl = LYY YT ST Yhomomoen)

01 EAYIEE 12€S 6,€A y2€E i3€S ag€Ays€E i4€S
X p% (is, yalia)dz(asli1, A, a1, 42, A o y1, 6,43, Ao y1 o o)
X p* (i3, yaliz)01 (a2li1, A, a1,12, Ao y1)
x p* (2, yali1)do(a1léz, A)
for (i1,A) € Sp and m = (89,01, 02, --) € C. We also define optimal value functions F;; and F*
for finite and infinite horizon cases by, respectively,

* /e o T/ ok —_ 3 LI
F7(,2) = iof F7(i,A), F*(i,A) = inf F7(3, }).
Then we notice that optimal value in the original problem is
F*(i,e) = sup F™(i,e) = sup ET|Z],
neC neC

since e is the unit element. A policy 7 is said to be optimal if F*(3,1) = F™(i, ) for every
(2,A) € Sp. ‘

We define the following sets of functions: let F be the set of functions F from Sz into B such

that F(i,)) is measurable on B for each i € § and F(i,\) > A, let Fp be the set of functions
F € F such that F(,, A) is bounded for each A € B, and let F; be the set of functions F € F

98



such that F(4,-) is nondecreasing and left continuous on B for each i € S. In Theorem 3.1 it is
shown that F* € Fp. However, it is not necessarily true that F™ € F, for each 7 € C.
We finally define operators 7%, T and T from F into itself as follows. For F' € F, (i, ) € Sz,
a€ Aand b € Ap,
T°F(i,A) =Y Y F(G, Aoy)r® (4, uld),
jESYEE
F(i,\) =Y _ T°F(i, \)d(ali, \),

acA

TF(i,2) = jn{ TF(i,)) = min T°F (i, \).

We also define operators T" by T! = T and T"+! = T(T™),n > 1. Similarly, (7)™ is defined for
§ € Ays. In all argument, for F,G € F, F > G means that F(i,A) > G(4, A) for all (3, A) € Ss.

3. Optimal value and optimal policy

In this section we prove that the optimal value function is a unique solution to an optimality
equation and we give a value iteration method. These results are an associative extension of Eaton
and Zadeh[3], Derman[4, 5], and Bellman and Zadeh([1], and a stochastic one of Maruyamal11].
We also show that there exists an optimhl left continuous policy.

We first give fundamental lemmas below.

Lemma 3.1.

() For F,Ge Fand§ € A, T°F - T°G =T%(F - G).

(i) If F,G € F and F > G, then T*F > T°G for each a € A, T*F > TG for each 6 € A and
 TF>TG.

(iii) If G-€ Fy, then T°G € F; for any a € A. Also, T is an operator from F (or Fg) into itself.
(iv) If Gp € Fy and Gy, < Gpyy for each n > 0, then limy .00 Gn € Fy.

We easily see that for each F' € F, there is a measurable decision rule § € Ap satisfying
TF =T¢F, since TF is measurable and A is finite.

PFurthermore, the following lemma is important for main theorems.

Lemma 3.2. For each F € F;, there exzists a left continuous decision rule § € Ap satisfying
TF =T¢F.

For any m = (0p,n > 0) € C and a given history (i, A,a) € Sg X A, the cut-head policy of =
to (i, ), ¢) is defined by 1r(2®) = (682 n > 0) where 65 (-|hy) = 6n41(|(3, A, @), hn) for
every by € H, and each n > 0. Then we see that z(é*@) € C for a fixed (3, A, a). For the sake
of simplicity we use a notation:

(‘Aa) . .
TRF(i,N) = Y bo(ali, A)} F (G, A 0 p)pt (5 wle)
G.EA Jny

for each 7 = (8,,n > 0) € C and (i,)) € Sp.

Lemma 3.3. Let m = (6,,n > 0) € C be arbitrary. For eachn > 0, Fr, = T®F,™ and
F™ = T%F'", Especially, F™ = TSF™ when 7 = §~ € C},

We next give fundamental properties for optimal value functions of finite and infinite horizon

99



100

cases.

Theorem 3.1. We have the following:

(i) For eachn >0, F;;, € Fy and {F};,n > 0} satisfies equations :
F3(,\) =M\ (i,\) €8g, F:=TF; , n>1

(ii) For each n > 0, there exists a left continuous policy = € Cp such that Fy; = F.
(iii) For eachn > 0, Fy < Fpy oy <limpoo Fy < F* and limp—oo Fy; € Fp.

Remark. On the statement (iii) we have lim,—o Fr = F* under some conditions, which we
will prove in Theorem 3.2.

From Theorem 3.1, we have F; = T"Fg for each n > 0. In order to prove that F* =
limy, oo F¥, we need the following important lemma.

Lemma 3.4. Let 1 = §° € C} be a policy satisfying the condition that for each (i,A) € S
there is'a constant M > 0 such that P} \y(Ao Z < M) = 1.

() Let F,GE€ Fp. If F~G<T*F -G) on {K}*x B and F=G on {K} x B, then F < G
or. Sg. ‘
(ii) F™ is the unique solution in Fg to equation F = T°F with F(K,)) = X for every X € B.

Now we are in a position to give a main theorem.

Theorem 3.2. Suppose that there ezists at least one policy o € C such that for each (i,\) € Sp
there is a constant M > 0 such that (‘I’,\)(,\ oZ<M)=1.

() F* =limp 00 Fpr-
(i) F* is the unique solution in Fp to F = TF with F(K,)) = X for every A € B.
(i) There erists a left continuous policy m = 6 € C, satisfying F* = T°F* on {K}° x B and
7 is optimal.

In order to consider special cases, we define new policy spaces below. Let a policy space
II be the set of all policies m# = (6,,n > 0) € C such that é, is not depend upon parameters
A0, A, -y Ak, .. . for every n > 0. Similarly, we defien Iz, IIp and I} corresponding to Ca, Cp
and C%, respectively. For example, 7 = §° € II}, is a policy such that §(¢) = a for each ¢ € S and
some a € A. These are usual policy spaces defined on Markov decision processes with additive
criteria ( cf. White[19]). '

Corollary 3.1. Suppose that there ezists at least one policy o € II such that for each i € S there
is a constant M > 0 such that PF(Z < M) = 1.

(i) In an additive case, that is, T oy = x +y, there is an optimal policy m = §° € NI}, such that
F*(i,0) = TS F*(4,0) for each i € {K}¢ and F*(K,0) = 0.

(it) In an multiplicative case, that is, xoy = Lzy for a constant L > 0, there is an optimal policy
7w = 6% € 1% such that F*(i,1/L) = T°F*(i,1/L) for each i € {K}° and F*(K,1/L) =
1/L.
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(i) In an multiplicative-additive case, that is, z oy = = +y — Lzy for a constant L > 0, there
is on optimal policy m = 6% € I3, such that F*(i,0) = T®F*(4,0) for each i € {K}® and
F*(K,0)=0.

From Theorems 3.1 and 3.2 we see that a value iteration is given by F* = limy,_, T" Fy where
Fj(i,A) = X for each (i, ) € Sg. We give another value iteration in the following theorem.

Theorem 3.3. Suppose that there is a policy o € C such that for each (i,\) € Sp there is a
constent M > 0 such that P ,y(AoZ < M) =1.
Let G € F be a function satisfying G < F*. Then {T"G} converges and limp_,oo T"G = F*.

4. Policy iteration method
In this section we consider a policy space iteration procedure in our model as follows:

(i) Select an initial policy mo = (8)>® € C%. _
(ii) At step n, assume that we have a policy 7, = (,)> € C% and solve the equation F' = TéonF
with F(K,A) = X for every A € B to give a function F™» € F.
(iii) If 7%~ F™ = TF™~, stop the procedure. If T%» F™ # TF™ go the next step.
(iv) Find a new policy Tn41 = (0n41)>® € C} by Tén+t F™ = TF™,
(v) Return to step (ii) replacing n by n + 1.

From Lemma 3.4(ii) we can uniquely solve the equations in F at step (ii) under some conditions.
We have the following convergence theorem.

Theorem 4.1. Suppose that there exists at least one policy o € C such that for each (i,A) € SB
there is o constant M > 0 such that P ,)(AoZ < M) =1.

(i) The sequence {F ™} is nonincreasing and converges to F™*.
(ii) If 7% F™ = TF™, then F™ is the optimal value and m, = (6,)®° € C% is an optimal

policy.

5. Examples
We first consider an example of a maximum case and get optimal value and optimal policy by

tke policy iteration method.

Example 5.1. Let zoy = max(z, y). Let S = {1, 2, 3} be a state space and 3 be a target node.
Assume that the state 3 is absorbing and cost-free. Also let A = {a;,a2} be an action space.
We give the probability distributions by

2

PRR2AY =3 PRGN =

p%1(3,6]2) = p**(2,4/1) =1,
1
p(2,82) = p(3,32) = 5.

)

L =

Then we have B = [2, 8] and e = 2. We consider a policy space procédure to give an optimal
policy. Let mo = (§p)® € C§, be an initial policy such that (i, A) = a; for every (i,)) € Sp.
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Solving the equation F = T4 F with F(3,)) = X for every A € B, we have

e | 8 (2<A<6) o
F(ZM—{A 6<r<8) ’ F “M"{

IN+4 (252<6)
A (6<<A<8)

We now see that T% F™ £ TF™ = min(T® F™, T F™), since

a4 <A<
T Fﬂ'o(z’ ,\) = F'™o (2, /\), Tez 7o (2, /\) = ’\2 (2 s A < 3)
$+4 (3<A<3¥)

Next, using T% F™ = TF™, we give a policy 71 = (6;)® € C} by

51(3,/\)=¢11

az (2<A<4
6 2,/\ = )
12, { ai (4< /\SS)
61(1,)):0.1.

By solving F = T F with F(3,)) = A, F™ is given by

4 (2<A<3) A+ (2<2<3)
. A <4 2y4 8 <
Py =4 3+ B<r<y FM(1, ) = ?A+3 (B<A<4)

6 (4< A<6) 3A+4 (A< A<6)

A (6<A<8) A (6<A<8)

We can easily check that T F™(i,\) = TF™ (i, \) for every (i,\) € Sg. Thus we stop the
procecure. From Theorem 4.1 we obtain the optimal value F* = F™ and an optimal policy

1 = (61)%. Therefore, since e = 2, we have optimal value in the original problem as follows:
F*(1,2) = -13? F*(2,2) = -121 F*(3,2)=2.

We next consider an example of a multiplicative case.

Example 5.2. Let zoy = zy. Let S = {1, 2, 3} be a state space and 3 be a target node. Assume
‘that the state 3 is absorbing and cost-free. Also let A = {a1,a2} be an action space. We give
the probability distributions by :

2 1
pal(zvzll) =§, p 1(3a2[1)= '3',
p"(3,6(2) =p*(2,41) =1,
' 1 15
a2 —_—— a2 = —

Then we have B = [1,00) and e = 1. From Corollary 3.1, We may put A = e = 1 to analysis
the multiplicative case, but we use \. We consider a policy space procedure to give an optimal
value end an optimal policy. Let mo = (6p)> € C} be an initial policy such that 8o(, A) = ay
for every (i, A) € Sp. Solving the equation F = T% F with F(3,\) = X for every A € B, we have

F™(2,)) =6), F™(1,)) = ?\
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We now see that T9 F7 # TF™, since

T pro(2, ) = F™(2,A) = 61, T®F™(2,A) = :1/%)\

Next, using 7% F™ = TF™  we give a policy m; = (6;)® € C§ by
51(3, )\) =aj, 51(2,)\) = asg, 51(1, )\) =a.

By solving F = T% F with F(3,)) = A, F™ is given by

F™(2,3) = ‘il-f-x, Fm(1,)) = 13-133,\.

We can easily check that T% F™(i,\) = TF™(i,)) for every (i,A\) € Sp. Thus we stop the
procedure. We obtain the optimal value F* = F™ and an optimal policy 71 = (81)°. Therefore,
since e = 1, we have optimal value in the original problem as follows:

112 45

FL) =%, Feh)=g FEH=L
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