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1. Introduction and Result

We want to discuss what in quantum mechanics, after frequently repeated measurements
for each short time $t/n$ interval we shall have at time $t$ as a result, although it seems
to need to assume that each measurement is an instantaneous ideal measurement. The
decay of the system can be slowed down or even prevented. This is called quantum Zeno
effect. The problem was discussed in Beskow-Nilsson [BN], Misra-Sudarshan [MS]. Zeno
is a Greek philosopher who said something like “A flying arrow does not fly”.

The aim of this talk is to present the following product formula on quantum Zeno
dynamics. This note is mainly based on the joint work with P.Exner [EI].

Theorem. Let $H$ be a nonnegative selfadjoint operator in a separable Hilbert space
$\mathcal{H}$ , and $P$ an orthogonal projection on $\mathcal{H}$ . Assume that $H_{P}:=(H^{1/2}P)^{*}(H^{1/2}P)$ is
densely defined. Then it holds:

$\lim_{narrow\infty}[Pe^{-itH/n}P]^{n}=e^{-itH_{P}}P$, (1.1)

in the topology of IFhrech\’et space $L_{loc}^{2}(\mathrm{R};\mathcal{H})=L_{loc}^{2}(\mathrm{R})\otimes \mathcal{H}$ . In other words, for every
$\phi\in C_{0}^{\infty}(\mathrm{R})$ ,

$\int\phi(t)||Pe^{-itH/n}P]^{n}f-e^{-itH_{P}}Pf||^{2}dtarrow \mathrm{O}$, $narrow\infty$ ,

or for every $T>0$ ,

$\int_{0}^{T}||Pe^{-itH/n}P]^{n}f-e^{-itH_{P}}Pf||^{2}dtarrow \mathrm{O}$, $narrow\infty$ .

So passig to subsequences, we have also:

Corollary. There exist a subset $M\subset \mathrm{R}$ of Lebesgue measure zero and a sequence $\{n’\}$

of strictly increasing positive integers along which for all $t\in \mathrm{R}\backslash M$ ,

$[Pe^{-itH/n}P]^{n}farrow e^{-itH_{P}}Pf$ , strongly, $f\in \mathcal{H}$ .
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Remark. If $\dim P$ is finite, then (1.1) holds strongly on U.

2. Sketch of Proof.

We may think the time variable $t$ on $[0, \infty)$ instead of R. We use the method by
Kato [K] of the proof of the botter product formula for the form sum $A\dotplus B$ of two
nonnegative selfadjoint operators $A$ and $B$ in a Hilbert space $\mathcal{H}$ . He proved that
$\mathrm{s}-\lim_{narrow\infty}(e^{-tA/n}e^{-tB/n})^{n}=e^{-t(A\dotplus B)}J$ , where $J$ stands for the orthogonal projection
to the closure rc of the subspace $D[A^{1/2}]\cap D[B^{1/2}]$ , and $D[A^{1/2}]$ and $D[A^{1/2}]$ denote
the form domains for the operators $A$ and $B$ , so that $A\dotplus B$ would become a nonnegative
selfadjoint operator in the Hilbert space $\mathcal{K}$ .
With $H$ and $P$ in our Hilbert space $\mathcal{H}$ as in the statement of Theorem, put for ${\rm Re}\zeta\geq 0$

with $\zeta\neq 0$ ,

$F(\zeta,\tau):=Pe^{-\zeta\tau H}P$, $S(\zeta, \tau):=\tau^{-1}[I-F(\zeta,\tau)]=\tau^{-1}[I-Pe^{-\zeta\tau H}P]$ .

The key ingredient of the proof is the following

Lemma.
$(I+S(it,\tau))^{-1}arrow(I+itH_{P})^{-1}P$, $\tauarrow 0$ , (2.1)

strongly in $L_{loc}^{2}([0, \infty);H)$ .

Proof of Theorem. By Lemma

$P(I+S(it, \tau))^{-1}Parrow(I+itH_{P})^{-1}P,$ $\tauarrow 0$

strongly in $L_{lo\mathrm{c}}^{2}([0, \infty);\mathcal{H})$ and hence on $P\mathcal{H}$ : as $\tauarrow 0$ ,

$((I+S(it, \tau)|_{PH})^{-1}arrow[(I+itH_{P})|_{PH}]^{-1}$ ,

strongly in $L_{loc}^{2}([0, \infty);\mathcal{H})$

It is also easy to see: on $(I-P)\mathcal{H}\ni f$

$[Pe^{-itH/n}P]^{n}f=0$ , $e^{-itH_{P}}Pf=0$ .
Then by mimicking an argument used for Chernoff’s Theorem we have: for $f\in \mathcal{H}$ ,

$[Pe^{-itH/n}P]^{n}farrow e^{-itH_{P}}Pf,$ $narrow\infty$ ,

strongly in $L_{loc}^{2}([0, \infty);\mathcal{H})$ .

For the proof of Lemma, we employ the method of Kato [K] with Friedman’s idea
[F]. However, we would refer its details to [EI].

3. Qunatum Zeno Problem
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Facchi, Pascazio, Scardicchio and Schulman considered in [FPSS] the following problem
called “quantum Zeno problem” and asserted:

Let $H=-\Delta$ be the free Schr\"odinger operator, $i.e$ . Laplacian in $L^{2}(\mathrm{R}^{d})$ . Let St $\subset \mathrm{R}^{d}$ be
a bounded open subset with smooth boundary. Let $P:=\chi_{\Omega}$ be the indicator function of
the set St, so that $PL^{2}(\mathrm{R}^{d})=L^{2}(\Omega)$ . $Let-\Delta_{\Omega}$ be the $Di$richlet Laplacian in Sl), which
has domain $D[-\Delta_{\Omega}]=W^{2}(\Omega)\cap W_{0}^{1}(\Omega)$ .
Then it holds that

$\lim_{narrow\infty}[Pe^{it\Delta/n}P]^{n}=e^{it\Delta_{\Omega}}P$, (3.1)

strongly in $L^{2}(\mathbb{R}^{d})$ .

But their proof contains a gap. What is sure up to now is what we have been able
to show in our Theorem and its Corollary, namely, (3.1) holds only in a weaker sense
of convergence, strongly in $L_{loc}^{2}(\mathrm{R};L^{2}(\mathrm{R}^{d}))$ or in strong convergence on $\mathcal{H}$ for almost
every $t\geq 0$ along a subsequence $\{n’\}$ of some increasing potitive integers.

To see our theorem can apply, we have only to check that the operator $(-\Delta)_{P}\equiv$

$((-\Delta)^{1/2}P)^{*}((-\Delta)^{1/2}P)$ coincides $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}-\Delta_{\Omega}$ .

To prove it, let $u\in D[(-\Delta)_{P}]$ (then note $(-\Delta)^{1/2}P\in L^{2}(\mathrm{R}^{d})$), so that $u$ and
$(-\Delta)_{pu}$ belong to $L^{2}(\mathrm{R}^{d})$ . We have

$\langle(-\Delta)_{P}u, \varphi\rangle=\langle u, -\Delta\varphi\rangle=\langle-\Delta u, \varphi\rangle$ ,

for any $\varphi\in C_{0}^{\infty}(\Omega)$ because $\varphi$ has a compact support in $\Omega$ . Thus $(-\Delta)_{P}u=-\Delta u$ holds
in $\Omega$ in the sense of distributions. Then $u|_{\Omega}\in W^{2}(\Omega)$ . Then $u$ admits boundary trace
$u(\cdot)$ on the bry of $\Omega$ . Hence there exists an extension $\tilde{u}$ in $W^{2}(\mathrm{R}^{d})\mathrm{s}.\mathrm{t}.\tilde{u}|_{\overline{\Omega}}=u$ . Next,
since $\infty>\langle(-\Delta)_{P}u, u\rangle=\int|\nabla(\chi_{\Omega}u)|^{2}dx$ , we have

$\nabla(\chi_{\Omega}u)=\nabla((\chi_{\Omega})^{2}u)=(\nabla\chi_{\Omega})\chi_{\Omega}u(x)+\chi_{\Omega}\nabla(\chi_{\Omega}u)$.

For LHS to belong to $L^{2}(\mathrm{R}^{d})$ , the fun. $\nabla(\chi_{\Omega}u)$ must not contain the $\delta$-type singular
term, which requires $u(\cdot)=0$ on the bry of $\Omega$ . This, combined with the fact that
$u|\Omega,$ $\nabla u|\Omega\in L^{2}(\Omega)$ , implies $u|_{\Omega}\in W^{2}(\Omega)\cap W_{0}^{1}(\Omega)$ .

Thus we have shown that $u|_{\Omega}\in D[-\Delta_{\Omega}]$ and $(-\Delta)_{P}u|\Omega=-\Delta_{\Omega}(u|_{\Omega})$ or $-\Delta_{\Omega}\supset$

$(-\Delta)_{P}|_{L^{2}(\Omega)}$ , but both operators are selfadjoint, so they coincide.

4. Criticism to the paper by Facchi-Pascazio et al.

Let $\{\lambda_{j}\}_{j=1}^{\infty}$ be the set of the eigenvalues of the Dirichlet $\mathrm{L}\mathrm{a}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{n}-\Delta_{\Omega}$ and $\{\varphi_{j}\}_{j=1}^{\infty}$

the set of the corresponding orthonormal eigenfunctions:

$-\Delta_{\Omega\varphi_{j}=\lambda_{j\varphi_{j}}}$ , $\lambda_{j}>0$ .
Put $Z(\tau):=\chi_{\Omega}e^{-i\tau H}\chi_{\Omega}$ : $L^{2}(\Omega)rightarrow L^{2}(\Omega)$ with $\tau=t/n$ .

Since the linear combinations of $\{\varphi_{j}\}$ is dense, we have only to show, for $j$ fixed,
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$[Z(\tau)^{n}\varphi_{j}](x)$ $(x=x_{n})$

$= \int_{\Omega}\cdots\int_{\Omega}e^{-i\tau H}(x_{n}, x_{n-1})\cdots e^{-i\tau H}(x_{1},x_{0})\varphi_{j}(x_{0})dx_{n-1}\cdots dx_{1}dx_{0}$

$= \frac{1}{(4\pi i\frac{t}{n})^{dn/2}}\int_{\Omega}\cdots\int_{\Omega}\exp[i\frac{\sum_{j=1}^{n}(x_{j}-x_{j-1})^{2}}{4\frac{t}{n}}]\varphi_{j}(x_{0})dx_{n-1}\cdots dx_{1}dx_{0}$

$arrow e^{-itH_{D}}\varphi_{j}=e^{-it\lambda_{\mathrm{j}}}\varphi_{j}$ , in $L^{2}(\Omega)$ , $narrow\infty$ .

We may take $j=1$ . If $x\in\Omega$ ($x$ is an interior point of $\Omega$), we have by stationary
phase method

$Z(\tau)\varphi_{1}=(1-i\lambda_{1}\tau)\varphi_{1}+f_{1}$ ,

where $\int_{\Omega}|f_{1}(x)|dx=O(\tau)$ , $f_{1}(x)=O(\tau^{2})(\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{l}\mathrm{y}\mathrm{i}\mathrm{n}\Omega)$ .
Then their argument goes as follows: Hence

$Z(\tau)^{n}\varphi_{1}=(1-i\lambda_{1}\tau)^{n}\varphi_{1}+r_{n}(x)$,

$r_{n}(x)= \sum_{k=1}^{n}(1-i\lambda_{1^{\mathcal{T}}})^{n-k}f_{k}(x)$ , $f_{k}:=Z(\tau)^{k-1}f_{1}$ ,

$(1 – i\lambda_{1}\tau)^{n}\varphi_{1}arrow e^{-it\lambda_{1}}\varphi_{1}$ , in $L^{2}(\Omega)$ , $narrow\infty$ .
Up to here, there seems to be no problem. But then they took for granted, without
precisely checking, that “

$r_{n}(x)$ also would become small.” Here is a gap of their proof
Their argument is insufficient to see it, because we shall have to take care in using
the stationary phase method, not in the whole space $\mathrm{R}^{d}$ [though they considered in
one dimension $(d=1)]$ but in a bounded domain $\Omega$ with boundary. For our argument
around here, see also [TI].

5. Concluding Remarks with Open Problem
$1^{o}$ . Once the theorem of symmetric product case is proved, the following non-symmeric
product formula can also be proved of course:

$\lim_{narrow\infty}[e^{-itH/n}P]^{n}=\lim_{narrow\infty}[Pe^{-itH/n}]^{n}=e^{-itH_{P}}P$,

in the topology of $L_{loc}^{2}(\mathrm{R};\mathcal{H})$ .
$2^{o}$ . We can extend Theorem to the case $P$ may be $t$-dependent orthogonal projection
$P(t)$ on $\mathcal{H}$ such that

$P(t)P(\mathrm{O})=P(t),$ $P(\mathrm{O})=P$,

s- $\lim_{tarrow 0}||H^{1/2}P(t)v||=||H^{1/2}Pv||,$ $v\in D[H^{1/2}P]$ .

It holds that
$\lim_{narrow\infty}[P(1/n)e^{-i\mathrm{t}H/n}P(1/n)]^{n}=e^{-itH_{P}}P$,
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in the topology of $L_{l\mathrm{o}c}^{2}(\mathrm{R};\mathcal{H})$ .
$3^{o}$ . However, the strong convergence (1.1) on $\mathcal{H}$ holds, if we replace the operator $H$ in
$e^{-itH/n}H$ by its cut-off operator as well as $e^{-itH/n}$ by the resolvent $(I+itH/n)^{-1}$ (see
[EINZ] $)$ .
$4^{o}$ . The final result we actually expect to show is:

Coniecture. In case $\dim P$ is infinite, it also holds that

s- $\lim_{narrow\infty}[Pe^{-itH/n}P]^{n}=e^{-itH_{P}}P$ ,

uniformly on each compact $t$-interval in $[0, \infty)$ .
Needless to say, this is solved if one is able to show (2.1) strongly on the Hilbert

space H.
We hope this conjecture will be proved up to when this progress report will be

published (March 1, 2006).
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