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1. BASIC THOERY OF AN EXACT $\mathrm{W}\mathrm{K}^{i}\mathrm{B}$ METHOD

We study $2\cross 2$ systems of first order differential equations

(1) $\frac{h}{i}\frac{d}{dx}\mathrm{u}=M(x, h)\mathrm{u}$ ,

where the unknown function $\mathrm{u}(x, h)={}^{t}(u_{1}(x, h),$ $u_{2}(x, h))$ is a column vec-
tor, $M(x, h)$ is a $2\cross 2$ matrix valued function and $h$ is a small parameter.
By conjugating the system with the function

$\exp$ $(- \frac{i}{h}\int^{x}$ Tr $M(t, h)dt$) ,

we can assume $M$ is trace-free:

(2) $M(x, h)=(a(x,h)c(x,h)$ $-a(x, h)b(x, h))$ .

The eigenvalues of $M$ are $\pm i\sqrt{\det M}=\pm iz’$ . The zeros of $\det M(x, h)$

are called the tuming points of the system (1). In this section, we assume
$(\mathrm{H}\mathrm{O}):M$ is independent of $h$ and $M\in \mathcal{H}(\Omega, GL(2,\mathbb{C}))$ , i.e. the ele-

ments $a(x, h),$ $b(x, h)$ and $c(x, h)$ are analytic in a complex domain
fl and there is no turning point there.

1.1. Formal construction. We define the phase function $z(x, h)$ by

(3) $z(x; \alpha)=\int_{\alpha}^{x}\sqrt{\det M(t)}dt$ ,

for a fixed point a, and we look for solutions of the form

(4) $\mathrm{u}_{\pm}(x,h)=e^{\pm z(x,h)/h}Q(x)\mathrm{w}^{\pm}(x,h)$ ,

(5) $\mathrm{w}^{\pm}(x, h)=\sum_{n=0}^{\infty}\mathrm{w}_{n}^{\pm}(x, h)$ , $\mathrm{w}_{0}^{\pm}(x, h)\equiv$ ,

where the sums are absolutely convergent in a neighborhood of a. fxed point
$x_{0}\in$ Sh, i.e. $u_{\pm}$ are exact solutions and, moreover, they give asymptotic
expansions of $u_{\pm}$ as $harrow \mathrm{O}$ in a subdomain $\Omega^{\pm}$ , which will be defined later.
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Lemma 1.1. There exists $Q(x)\in \mathcal{H}(\Omega, GL(2,\mathbb{C}))$ such that the followings
hold:

(6) $Q^{-1}MQ=$ ,

(7) $Q^{-1}Q’=-$ for some $c\pm(x)\in \mathcal{H}(\Omega, \mathbb{C})$ ,

where ’ stands for the derivative with respect to $x$ . Such matrix $Q(x)$ is
unique up to multiplication from the nght by a diagonal constant matrix.

Proof. Since su is turning point free, the matrix $M$ is diagonalizable in St by
a regular analytic matrix $P=P(x, h)$ :

$P^{-1}MP=$ .

Put

(8) $P^{-1}P’=C(x)=(c_{21}(x)c_{11}(x)$ $c_{22}(x)c_{12}(x))$ .

Then $Q(x)$ a,n$\mathrm{d}c_{\pm}(x)$ are given by

$Q(x)=P(x)E(x)$ , $E(x)=( \exp(-\int c_{11}(x)dx)0$ $\exp(-\int c_{22}(x)dx)0)$ ,

$c_{+}(x)=-c_{12}(x) \exp\{\int(c_{11}(x)-c_{22}(x))dx\}$ ,

$c_{-}(x)=-c_{21}(x) \exp\{\int(c_{22}(x)-c_{11}(x))dx\}$ .

$\square$

Remark 1.2. As a consequence from (7), $\det Q(x)$ is independent of $x$ .
Indeed, (7) implies

$\frac{d}{dx}(\det Q)=-\mathrm{R}\det Q=0$ .

Lemma 1.3. If the matrix $M$ is anti-diagonal

(9) $M(x\rangle=$ ,

the $matr\dot{\mathrm{v}}xQ(x)$ and the functions $c^{\pm}(x)$ are given by

$Q(x)=(H(x)^{-1}iH(x)$ $-iH(x)H(x)^{-1})$ , $c^{+}(x)=c^{-}(x)= \frac{H’(x)}{H(x)}$ ,

where

$H(x)=( \frac{g_{-}(x)}{g_{+}(x)})^{1/4}$
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The functions $\mathrm{w}^{\pm}$ in (4) satisfy

(10) $\frac{d\mathrm{w}^{\pm}}{dx}+\mathrm{w}^{\pm}=\mathrm{w}^{\pm}$ ,

or regarding $w^{\pm}$ as functions of $z$ ,

(11) $\frac{d\mathrm{w}^{\pm}}{dz}+\mathrm{w}^{\pm}=\frac{1}{z},$ $\mathrm{w}^{\pm}$ ,

where $z’$ and $c^{\pm}$ are also regarded as functions of $z$ in the second equations.
We can formally construct solutions of these systems in the form (5) with

(12) $\mathrm{w}_{n}^{\pm}=(w_{2n-1}^{\pm}w_{2n}^{\pm})$ ,

by determining inductively the functions $w_{n}(z,h)$ by

(13) $w_{-1}^{\pm}\equiv 0$ , $w_{0}^{\pm}\equiv 1$ ,
and for $n\geq 1$ ,

(14) $\{$

$\frac{d}{dx}w_{2n}^{\pm}$ $=$ $c^{\mp}w_{2n-1}^{\pm}$ ,

$( \frac{d}{dx}\pm\frac{2}{h}z’(x))w_{2n-1}^{\pm}$ $=$ $c^{\pm}w_{2n-2}^{\pm}$ ,

or equivalently,

(15) $\{$

$\frac{d}{dz}w_{2n}^{\pm}$ $= \frac{\mathrm{C}^{\mp}}{z},$ $w_{2n-1}^{\pm}$ ,

$( \frac{d}{dz}\pm\frac{2}{h})w_{2n-1}^{\pm}$ $= \frac{c^{\pm}}{z},$ $w_{2n-2}^{\pm}$ .

The recurrence equations (14) with initial conditions
(16) $w_{n}^{\pm}|_{x=x_{0}}=0$ $(n\geq 1)$

uniquely determine the sequence of scalar functions $\{w_{n}^{\pm}(x, h;x_{0})\}_{n=-1}^{\infty}$ and
the sequence of vector functions $\{\mathrm{w}_{n}^{\pm}(x, h;x_{0})\}_{n=0}^{\infty}$ . Let us write

$w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}^{\pm}(x, h;x_{0})= \sum w_{2n}^{\pm}(x, h;x_{0})$ , $w_{\mathrm{o}\mathrm{d}\mathrm{d}}^{\pm}(x,h;x_{0})= \sum w_{2n-1}^{\pm}(x, h;x_{0})$ ,

Thus we have constructed formal solutions (4), which we write from now
on $\mathrm{u}_{\pm}(x, h;\alpha,x_{0})$ , depending on a base point a for the phase and a base
point $x_{0}$ for the amplitude.

Theorem 1.4. The exact $WKB$ solutions $\mathrm{u}_{\pm}(x, h;\alpha,x_{0})$ have the following
three properties:

(i) The formal series (5) are absolutely convergent in a neighborhood of
$x_{0}$ .

(ii) Let $\Omega_{\pm}$ be the set of $x\in\Omega$ such that there enists a path ffom $x_{0}$ to $x$

in $\Omega$ along $which\pm{\rm Re} z(x)$ increases strictly. Then we have for each
$N\in \mathrm{N}$

$\mathrm{w}^{\pm}-\sum_{n=0}^{N-1}\mathrm{w}_{n}^{\pm}=O(h^{N})$ ,

uniformly in any compact $s\cdot ubset$ of $\Omega_{\pm}$ .
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(iii) The Wronskian of any two exact $WKB$ solutions of different sign
with different base points of amplitude are given by

(17) $\mathcal{W}(\mathrm{u}^{+}(x, h;\alpha,x\mathrm{o}), \mathrm{u}^{-}(x, h, \alpha,x_{1}))=-\det Qw_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}^{+}(x\iota, h;x\mathrm{o})$ ,

where $\mathcal{W}(\mathrm{f},\mathrm{g})$ is by definition the determinant of the matrix $(\mathrm{f}, \mathrm{g})$ .

Proof. The proof of the first and the second parts are just the same as in
[1], [2], [3], and we only check the third part.

From (4), we immediately have
$\mathcal{W}(\mathrm{u}^{+}(x, h;\alpha,x_{0}), \mathrm{u}^{-}(x, h;\alpha,x_{1}))$

$=\det Q\mathcal{W}(\mathrm{w}^{+}(z,x\mathrm{o}),\mathrm{w}^{-}(z,x_{1}))$

$=\det Q(w_{\mathrm{o}\mathrm{d}\mathrm{d}}^{+}(x,h;x_{0})w_{\mathrm{o}\mathrm{d}\mathrm{d}}^{-}(x, h;x_{1})-w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}^{+}(x, h;x\mathrm{o})w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}^{-}(x, h;x_{1}))$.

This must be independent of $x$ since the matrix $M$ is trace free. Hence we
can replace $x$ in the right hand side by a particular point, say $x=x_{1}$ . Then
taking (13) and (16) into accont, we get (17).

This theorem enables us not only to construct exact solutions in each
turning point free complex domain but also to connect these solutions using
the Wronskian formula (17). In particular, if the base points of these WKB
solutions are connected by a canonical curve along which the real part of the
phase increases in the good direction, we can know the asymptotic behavior
of the Wronskian, i.e. the connection coefficients. Thus we can generically
know the global asymptotic behavior of solutions.

2. APPLICATIONS

In this setion, we expose some typical problems of mathematical physics
to which our method of the previous section can be applied.

2.1. l-d Schr\"odinger equation. l-d $\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{r}\ddot{\mathrm{o}}\mathrm{d}\mathrm{i}\mathrm{n}_{b}\sigma \mathrm{e}\mathrm{r}$ equation

$-h^{2} \frac{d^{2}u}{dx^{2}}+V(x)u=Eu$

is reduced by putting ${}^{t}\mathrm{u}=(u, -ih \frac{du}{dx})$ to the form (1) with

$M(x)=$ ,

which is of the form (9). Hence, by Lemma 1.3, the first component of the
vector valued solution ($4\rangle$ is:

$u_{\pm}(x, h)=(V(x)-E)^{-1/4}e^{\pm\int^{x}(V-E)^{1/2}dx/h}(w_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}^{\pm}(x, h)+w_{\mathrm{o}\mathrm{d}\mathrm{d}}^{\pm}(x, h))$ ,

which are the exact WKB solutions introduced in [3]. This method was
applied to the double-well eignevalue asymptotics ([3]) and semiclassical l-d
scattering problems ([6], [2] etc.)
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2.2. 2-level adiabatic transition. If $x=t$ is a time variable, the equa-
tion (1) can be considered as a time-dependent 2-level Schr\"odinger equation
with Hamiltonian $-M(t, h)$ . The small parameter $h$ is the semiclassical or
adiabatic parameter. $M$ is often supposed to be real symmetric

$M(t, h)=(a(t,h)b(t,h)$ $-a(t, h)b(t, h))$ .

By the change of the unknown

$\mathrm{u}=\frac{1}{\sqrt{2}}\mathrm{v}$

(1) can also be reduced to the form (9):

$\frac{h}{i}\frac{d}{dx}\mathrm{v}=\mathrm{v}$ .

In this case, one has

$z(x, h)=i \int^{x}(a^{2}+b^{2})^{1/2}dx$ , $H=( \frac{a+ib}{a-ib})^{1/4}$

2.3. Langer modification. $3rightarrow \mathrm{d}$ Schr\"odinger equation with radially sym-
metric potential is reduced to the l-d equation with respect to the radial
variable $r$ :

(18) $-h^{2} \frac{d^{2}u}{dr^{2}}+V(r)u+\frac{h^{2}l(l+1)}{r^{2}}u=Eu$ .

For this equation, $r=0$ is a regular singular point with Fuchsian indices
$l+1,$ $-l$ . The principal terms of the usual WKB solutions (so called Liouville
Green functions) are

$(V(r)-E+ \frac{h^{2}l(l+1)}{r^{2}})^{-1/4}\exp\{\pm\frac{1}{h}\int^{r}(V(r)-E+\frac{h^{2}l(l+1)}{r^{2}})^{1/2}dr\}$ ,

and they behave asymptotically like $r^{\pm\sqrt{l(l+1)}+1/2}$ as $rarrow \mathrm{O}$ (while $h>0$ is
fixed). The exponents apparently differ from the Fuchsian indices, and this
means that the WKB approximations in this direction are not uniformly
accurate when $r$ is small. This change of exponents from $l(l+1)$ to $(l+ \frac{1}{2})^{2}$

is often called Langer modification, and since his own work [5], many differ-
ent approaches have been tried to know the monodromy around a regular
singular point (see for example [2], [4] for very recent references).

The following reduction to a system is also one of such approaches. Put

${}^{t}\mathrm{u}=(r^{-1/2}u,$ $\frac{h}{i}r\frac{d}{dr}r^{-1/2}u)$ .

Then (18) is reduced to

(19) $\frac{h}{i,\backslash }\frac{d}{dr}\mathrm{u}=\frac{1}{r}\mathrm{u}$ .
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$r=0$ is a regular singular point also for this system and the Fuchsian
indices $\mathrm{a}\mathrm{r}\mathrm{e}\pm(l+1/2)$ . On the other hand, the principal terms of the exact
WKB solutions constructed for (19) in our way are

(20) $\mathrm{u}_{\pm}(r, h)\sim e^{\pm z(r,h)/h}(\mp iH(r,h)H(r,h)^{-\mathrm{i}})$ ,

where
$z(r, h)= \int^{r}\sqrt{r^{2}(V(r)-E)+h^{2}(l+1/2)^{2}}\frac{dr}{r}$ ,

$H(r, h)=(r^{2}(V(r)-E)+h^{2}(l+1/2)^{2})^{1/4}$

Since $z(r, h) \sim(l+\frac{1}{2})\log r$ and $H(r, h) \sim h^{1/2}(l+\frac{1}{2})^{1/2}$ as $rarrow \mathrm{O}$ while $h>0$

is fixed, the right hand side of (20) behaves like constant times $r^{\pm(l+1/2)}$ ,
which coincides with the Fuchsian indices.

As a matter of fact, it can be shown that the subdominant solution at
the origin to (19) corresponding to the index $l+ \frac{1}{2}$ (which corresponding the
regular solution to (18) $)$ is colinear to the exact WKB solution $\mathrm{u}_{+}(r, h;\alpha, 0)$

whose phase $z(r, h)$ is determined so that its real part is decreasing as $r$

tends to $0$ and whose base point for the symbol is taken at the origin. Note
that, in this case, the recurence relations (14) becomes of regular singular
type equations at $r=0$ with $0$ initial data there.

2.4. A model of conical intersection. In [1], the semiclassical distribu-
tion of resonances of the following model of 2-d 2-level Schr\"odinger equation
is studied:

$-h^{2}\Delta \mathrm{u}+\mathrm{u}=E\mathrm{u}$

This second order equation is reduced to a first order one by h-Fourier
transform:

\^u $( \xi)=\frac{1}{2\pi h}\int_{\mathrm{N}^{2}}e^{-ix\cdot\xi/h}\mathrm{u}(x)dx$ .

Using the polar coordinate $\xi=r(\cos\theta, \sin\theta)$ and developing \^u $(\xi)$ in Fourier
series after some change of the unknown function

\^u $( \xi)=r^{1/2}(\cos\sin\frac{\frac{\theta}{\beta}}{2}$ $- \sin_{2}^{\theta}\cos\frac{\theta}{2})\sum_{\iota_{=-\infty}}^{\infty}e^{i(l+1/2)\pi\theta/h}\mathrm{v}_{l}(r)$ ,

we get the following reduced equations for $\mathrm{v}_{l}(r)$ :

(21) $\frac{h}{i}\frac{d}{dr}\mathrm{v}_{l}=(-(l+\frac{1}{2})h/rr^{2}-E$ $(l+ \frac{1}{-2})h/rEr^{2})$ v1.

This equation has a regular singular point at $r=0$ and the Fuchsian indices
$\mathrm{a}\mathrm{r}\mathrm{e}\pm(l+1/2)$ .

Conjugated with a constant matrix $\frac{1}{\sqrt{2}}$ , this equation becomes
again of the form (9), and we can construct exact WKB solutions as in the
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previous section. Their principal terms are given by (20) where

$z(r, h)= \int^{r}\sqrt{(l+1/2)^{2}h^{2}-r^{2}(E-r^{2})^{2}}\frac{dr}{r}$ ,

$H(r, h)=( \frac{(l+1/2)h+Er-r^{3}}{(l+1/2)h-Er+r^{3}})^{1/4}$

In this case also, the physically interesting solution to (21) is colinear
to the exact WKB solution constructed with the phase whose real part
decreases as $rarrow \mathrm{O}$ (see [1]).

REFERENCES
[1] Fujii\’e, S., Lasser, C., Nedelec, L.: Serniclassical resonances for a two-level Schrdinger

operator with a conicd intersection, preprint.
[2] Fujii\’e, S., Ramond, T. : Exact WKB analysis and the Langer modiflcation vvith

application to barrier top resonances, Toward the exact WKB analysis of differential
equations, linear or non-linear, Kyoto Univ. Press, (2000), pp.15-32.

[3] G\’erard, C., Grigis, A. : Precise Estimates of Tunneling and Eigenvalnae near a
Potential Barrier, J.Differential Equations, 72 (1988), pp.149-177.

[4] Koike, T.: On a regular singular point in the exact WKB analysis, Toward the
exact WKB analysis of differential equations, linear or non-linear, Kyoto Univ. Press,
(2000), pp.9-10, 39-53.

[5] Langer, R.E.: On the asymptotic solutions of ordinary differential equations, with
reference to the Stokes’ phenomenon about a singular point, bans. Amer. Math. Soc.
37 (1935), pp.397-416.

[6] Ramond, T.: Semiclassical $st\mathrm{u}\mathrm{d}\gamma\vee$ of quantum scattering on the line, Commun. Math.
Phys. 177 (1996), pp.221-254.

7


