0oooo0O0oooo
1510 0 2006 0 109-126 109

On the Mourre estimates for three body Schrodinger
operators in a constant magnetic field

MERZEZEH B [EFR (Tadayoshi ADACHI)
Faculty of Science, Kobe University

1 Introduction

In this article, we study the spectral theory for a three body quantum system in a constant
magnetic field which consists of one neutral and two charged particles.

The scattering theory for N-body quantum systems in a constant magnetic field has been
studied by Gérard-Laba [GL1, GL2, GL3, GL4]). But they have assumed that all particles in
the systems are charged, that is, there is no neutral particle in the systems under consideration,
even if the systems consist of only two particles (see also [L1, £2]). Under this assumption, if
there is no neutral proper subsystem, one has only to observe the behavior of all subsystems
parallel to the magnetic field. However, if the system has neutral particles or clusters, the
problem seems more difficult to be solved: For instance, neutral particles can move freely
without being influenced by the magnetic field, but charged particles and clusters are bound
in the directions perpendicular to the field. Hence one has to analyze these different motions
of particles and clusters simultaneously. Here it should be noted that Gérard-Laba [GL3] dealt
with a three body system which has at least one proper neutral subsystem (see also [GLA4]).

Skibsted [S2, S3] studied the scattering theory for N-body quantum systems in combined
constant electric and magnetic fields, but his result needs the asymptotic completeness for the
systems in a constant magnetic field only. By virtue of his works, we see that it is important to
know whether the asymptotic completeness for N-body quantum systems holds or not in the
presence of a constant magnetic field only.

For an N-body quantum system, we denote by L the number of charged particles in the
system. It is obvious that N — L is the number of neutral particles in the system. In [A1, A2],
we studied the scattering theory for an N-body quantum system with L = 1 in a constant
magnetic field. Even in this simple case, the problem was open till then. How to choose
a conjugate operator for the Hamiltonian which governs the system was one of the keys in
[Al, A2). When L = 1, it is important that the center of charge of the system coincides with
the position of the only charged particle of the system. By virtue of this, we obtained the
Mourre estimate and used it in order to obtain the so-called minimal velocity estimate which
is one of useful propagation estimates. Qur purpose is to remove the restriction on L. In this
article, we will announce a result of [A3], in which under the assumption that N = 3 and
L = 2, we have studied the spectral properties of the Hamiltonian under consideration. When
the total charge of the system is non-zero, we have constructed a conjugate operator for the



Hamiltonian which governs the system and prove the Mourre estimate. The Mourre estimate is
powerful also in studying the scattering theory for the Hamiltonian, as mentioned above. Our
construction of a conjugate operator needs the simplicity of the geometric structure of three
body systems.

For convenience in the arguments of later sections, we suppose that N is equal to two or
three, and that N — L = 1. We consider a system of [V particles moving in a given constant
magnetic field B = (0,0, B) € R% B > 0. In this article, we sometimes call the system
by the set of all indices of particles of the system, such as for instance {1,...,N}. For
j=1,...,N,letm; > 0and g; € R be the mass and charge of the j-th particle, respectively.
Suppose that the first particle is neutral and the rest are charged, that is,

q1 =0) q2,-.. aQN#O- (1.1)

We assume that the total charge of the system ¢ is non-zero:

N
g=) ¢ #0. (12)
i=1
This assumption (1.2) is crucial in this article.
Denoting the space dimension by d, we will deal with both the case where d = 2 and the
one where d = 3 in this article. In most cases, scattering pictures in a constant magnetic field
depend on the space dimension. We first consider the case whered = 2. Forj = 1,...,N,

lety; = (yj1,v;2) € R® be the position vector of the j-th particle. The total Hamiltonian for
the system is defined by

N
_1po> 1
H = 2m1 D!Il + (j;z 2mJ (Dy,- QJA(yJ)) ) + V (1.3)

acting on L2(R?*N), where the potential V' is the sum of the pair potentials Vie(y; = yk), that
1s,

V=3 Vilyi—w),

1<j<k<N

D,,J. = —iV,,.j =1,..., N, is the momentum operator of the j-th particle, and A(r) € R?
is the vector potential which is given by

B
A(r) = '5(—7‘277'1), r = (r,ry) € R%.

We equip the configuration space Y = R?*" with the metric

N
9= muy; T =V

=1
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fory = (y1,...,ynv) € Yand § = (§1,...,9n) € Y, where the dot - means the usual
Euclidean metric.

Introducing the total pseudomomentum ki, of the system which is defined by

N
kiotal = Dy, + > _(Dy, + ¢ A(y5)), (14)

Jj=2
one can remove the dependence on ki,a; from the Hamiltonian H: It is well-known that kiota;
commutes with H, and that since the total charge of this system g is non-zero, the two com-

ponents of the total pseudomomentum k.ta cannot commute with each other, but satisfy the
Heisenberg commutation relation (see e¢.g. [AHS2]). Now we introduce the unitary operator

U= e“iDch,1Ducm,ﬁ/(QB)e—iqulcm.Wcmﬂ/zeiUcm‘qA(‘!/cc) (15)

on L*(Y’) with the position vector of the center of mass of the system g, the position vector

of the center of charge of the system y,. and the total momentum of the system D, defined
by
1 X 1 X N
Yem = 37 ;mjyj: Yoo = EJZ;%'ZIJ', Dy, = ;Dy,-, (1.6)

where M = E;\Ll m; is the total mass of the system, and we wrote Yer, = (Yem,1, Yem,2) and
Dy = (Dye1s Dyen5)- Writing kiorar = (Keotal, 15 Krotal,2), We obtain

Ukiotat1U* = Dy iy Ukiotar2U* = ¢BYem 1 (1.7)

Then it is well-known that UHU” is independent of (D,...,,3B¥em,1) (see e.g. [GL4]). We

now introduce subspaces Y, Yo, 2 and Y%= of Y as follows: We define Y,,,.,1 and
Y., . oas

Gmax,

max,1s max,

Yomud = {¥ €Y | 5 = yx and y;2 = 0 forany j, k},
You2 = {y €Y | y; = yx and y;1 =0 forany j, k}.
Itisseenthat Y, . ; & Ry, .. Yo, = Youu! © Yau.,2 is called the configuration space of

Ginax
the center of mass motion. Y= is the configuration space of the system in the center of mass
frame, which is defined by

Yﬂmtx = {yEY

N
ijyj = 0}.

j=1

Itis well-known that Y = Y= @Y, _ holds. Then one can identify the Hamiltonian UHU*
acting on UL*(Y') with an operator H acting on H = L3 (Y= @Y, . ,), thatis,

UHU*=H®Id (1.8)
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onUL3(Y) = H ® L*(Ya,.,,1)- U is called a reducing unitary transformation.
We next consider the case where d = 3. Forj = 1,..., N, let z; = (y;,2;) € R be the
position vector of the j-th particle. The total Hamiltonian for the system is defined by

1
(Z D, ) + ——Dw + (Z T - QjA(yj))2> +V (19
acting on L2( R*V), where the potential V' is the sum of the pair potentials Vjx(z; — x3), that

is,
Z Vik(zi — k),

1<j<k<N

(Dy;» Ds;) = (—=iV,,;,—id,), j = 1,..., N, is the momentum operator of the j-th particle.
We equip Z = RY with the metric

N
H=)Y mz %, |zh=(z2)
=1

forz = (%,...,2y) € Zand Z = (21, .,Zn) € Z. We introduce subspaces Z,,, and
Z%nex of 7 as follows: We define Z,

amux
Zoax = {2 € Z | 2j = 2 forany j, k}.

Zanm., 18 called the configuration space of the center of mass motion parallel to the magnetic
field B. Z%== is the configuration space of the system parallel to the magnetic field B in the
center of mass frame, which is defined by

Z9max — {z=(zl,... ,ZN) ERN

N
ijZj = 0}

j=1

It is well-known that Z = Z%= @ Z, ., holds. Then one can separate the center of mass
motion of the system parallel to B from H:

H=Hold+Id® (—%Az,,m) (1.10)
on LAY x Z) = L*(Y x Z°»=) ® L*(Z,,.,), where
1
= —EAzumax + DVI + (Z om - qJA(yJ))Z) + \% (1.11)
j=2

on L3(Y x Z%=x), and A emex and A
Z respectively.

Ginax ?

are the Laplace-Beltrami operators on Z;max and

Zamax
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Introducing the total pseudomomentum ki, of the system perpendicular to B which is
defined by (1.4), one can remove the dependence on kiqta1 from the Hamiltonian H as in the
case where d = 2: Introducing the reducing unitary transformation U on L?(Y x Z°m=) which
is defined by (1.5), one can identify the Hamiltonian U HU* acting on UL?*(Y" x Z%) with
an operator H acting on M = L} (Y%= @ Y,_.,,) X Z%=), that is,

UHU*=H®Id (1.12)

on ULX(Y x Zom=) = H @ L¥(Y,...)-
Our goal in this article is to study the spectral theory for H. Now we state the assumption
on the pair potentials Vj;: Let d be equal to two or three.

(V)a Vi = Vi(r) € C®(R%),1 < j < k < 3, is a real-valued function that satisfies
|82Vir(r)| < Cafr) ™~
for some p > 0, where (r) = /1 + |r|2.

Remark. In our talk, we assumed that V;, and V;3, which are pair interactions between neutral
and charged particles, are finite-range. However, since we have seen that the assumption may
be relaxed as above in [A3] recently, we will here announce it. The local singularity of Vi
like |r|~#0 with 0 < po < d/2 may be allowed.

Under this assumption (V)g4, the Hamiltonians H and H are self-adjoint.

The main result of this article is the following theorem:

Theorem 1.1. Suppose that N = 3, L = 2, d is equal to two or three, and that the potential
V satisfies the condition (V)4. Put

d()) = dist(A, © N (=00, A})

for \ > inf ©, where 6 is the set of thresholds of H. Then for any for A > inf ©, there exists
a conjugate operator A for H at the energy )\ such that the following holds: For any ¢ > (,
there exists a § > 0 such that for any real-valued f € C°(R) supported in the open interval
(A= 8,\ + 0), there exists a compact operator K on 'H such that

F(E)H, Af(H) > 2(d()) — ) f(H)? + K (1.13)

holds.

Moreover, eigenvalues of H can accumulate only at ©, and OUapp(I:I ) is a closed countable
set.
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If one wants to study the scattering theory for the Hamiltonian H, the following corollary
seems useful, which follows from the fact that H = U "(fi ® Id)U and a standard argument
immediately (cf. [A1l, A2]):

Corollary 1.2. Suppose that N = 3, L = 2, d is equal to two or three, and that the potential
V satisfies the condition (V)4. Let A € R\ (6 U oy,(H)) be such that A > inf©. Put
A =U*(A®Id)U, where A is a conjugate operator for H at \ and U is the reducing unitary
transformation. Then there exist § > 0 and ¢ > 0 such that for any real-valued f € C{°(R)
supported in the open interval (A — 6, A + ),

f(H)ilH, Alf(H) > cf (H) (1.14)
holds.

2 The case whered =2

In this section, we construct a conjugate operator for H and state an outline of the proof of
Theorem 1.1 in the case where d = 2. Throughout this section, we assume the condition (V),.

We first introduce some notation that is used in many body scattering theory, in order to
simplify the representation of the proofs below: Let N = 3. A non-empty subset of the set
{1,2,3} is called a cluster. Let C;, 1 < j < jo, be clusters. If Ui<;<;,C; = {1,2,3} and
CiNCry=0forl <j<k<jya={C...,Cj} is called a cluster decomposition.
We denote by #(a) the number of clusters in a. We identify the pair (j, k) with the two-
cluster decomposition {{4, k}, {{}}, where [ satisfies {7, k,1} = {1,2,3}. We write amax =
{{1,2,3}} and api, = {{1}, {2}, {3}}. Then the set of all cluster decompositions .A is written
as

A = {amax, (1,2), (1, 3), (2, 3), Gmin}- @1

Leta,b € A. If each cluster in b is a subset of a cluster in a, we say b C a.
The cluster Hamiltonian H,, a € A, on L(Y) is defined as follows:

1

3
1
—H - 2 — a0 Al
Hoo = Ho = 5Dl + 3 5Dy = ) o

Hixy = Ho+ Vie(y; — wx), H,

Gmax

= H.

In particular, one has H, as well as H does commute with the total pseudomomentum kit 0f
the system. Thus UH,U* acting on UL?(Y') is reduced to H, acting on H in the same way as
in (1.8).
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For two-cluster decomposition a € A, the cluster Hamiltonian H,, is represented as the sum
of innercluster Hamiltonians H¢* with k = 1,2: We first consider a = (1, ) with j = 2,3.
For j = 2, 3, we define the innercluster Hamiltonian A {1} on L2(R**?) as

HOY = B 4 V(0 ), H' = HO + HUY,

1 L 2.3)
{1 = 2 g} o G A,
H 2my b, H 2m; (Dy; —4;A(yy))
Then one has
Hyg=HY 4 H®Y Hyg = HOS 4 g3, (2.4)

We note that H11.3} with j = 2, 3 is the Hamiltonian which was considered essentially in [A1].
Introducing the innercluster Hamiltonian H{23} on L?(R?*?) as

23} ng,s} + Vas(yz — v3), Héz's} = H 4 g 2.5)

one has
Hpg = H®3 + g, (2.6)
Applying the Weyl theorem for the reduced Hamiltonians of H {23} and H§2’3}, it is seen that
o(H® = g,,(H%%) is countable, 2.7

because
o(H™) = opp(HE*™) = 3 + 75 @38

by virtue of d = 2 (see [AHS2] and [GL4]). Here T; is the set of the Landau levels for j = 2, 3:

7 = o(HUY = {L@nl_B (n + %)
]

For convenience, we revisit the case where N = 2 and L = 1, which was already studied by
the author [A1] when the space dimension d was three. Begin with the following self-adjoint
operator A; on L2(R**?) for H{1.2}:

neNU {0}}. 29

1
Al = §(y1 . D!ﬂ -+ D!Il . yl) (2.10)

By a straightforward computation, one can obtain the commutation relation

i M, A = 7—n1—1Dm2 =271} = o(H{M — H?), (2.11)
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By virtue of (2.9), the commutation relation (2.11) seems nice for studying the spectral theory
for the reduced Hamiltonian H {12}, However, since A; does not commute with the total
pseudomomentum k2 = D, + D,, + g2 A(y) of the system {1,2}, U{1L2} 4, (U{12})*
cannot be reduced to an operator on H {1}, where U112} and H{1?} are equal to U and ‘H
defined as in §1 with N = 2, respectively. In order to overcome this difficulty, we introduce
the self-adjoint operator A(?} on H{12}, which is obtained by removing the dependence on
U2 L2 7 {12h)x from the operator U{12} 4, (U22h)*, This A2} is a conjugate operator
for the reduced Hamiltonian {12}, In [A1], using the relative coordinates and the center of
mass coordinates, we obtained this A{1:2}, but its representation was slightly complicated and
unsuitable for generalizations to N-body systems. Now we follow the argument in [A2]: In
[A2], it is obtained that the self-adjoint operator (I/{12H)*(A{12} @ 1d)U/ {12} on L2(R**?) can
be written as

(U402 @ 1)Ut = (w(”} D,, + D,, - wi?) (2.12)
with
2
" = =98, L = - A, @13)

Since by a simple computation
B?
A(A(r)) = -4 TE R?,
we will often use the notation A~! defined by

AN (r) = ————A('r), r € R?.

{1,2}

Then v¢c'*' can be rewritten as

8 = A ). (214
2¢ *

%{é 2} is called the center of orbit of the center of charge of the system {1, 2} (see [AHS2] and
[GL2, GL3, GL.4]), although in [A1, A2] we did not notice this fact unfortunately. In this case,
one knows that g, coincides with the total charge of the system {1, 2}, of course. One of basic

properties of 'yc{é 2} s that

-1 _
12} _ {12 = ) 412} = qu YDy, + (Dy, — 02A(¥2))) (2.15)

is H{1?}.bounded, where y{l % is the position vector of the center of charge of the system

1,2} and coincides with y,. Since y(1 2} 'yc{é‘z} does commute with k-2 by (2.15),
total
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U2yl _ 2y s A2 bounded. Here U112}yl — V(U L2h was
identified with an operator acting on {12}, Such identification will be used frequently below.
We notice that one can write

i[Vig, A = — (3 — y3) - (Vi) (31 — 12)
— (U8B gy — 15U - (Vi) (31 — 12)

on H{1?} since Vi, commutes with k{12, By the assumption that |82V;5(r)| < Ca(r)=#-lel
with some p > 0, (A8 + 1)71i[Vi,, AL (A + 1)~ is compact on H{2}, because
[(y1 = ¥2) - (VVi2) (1 — 12)| < Cly1 — 1) ™ and |(VVi2) (31 — y2)| < Cy1 — y2) ™# ! hold,
and U{L2} ({023 _ ({12 (i12hye i A" bounded. Thus for any real-valued f € C°(R)
there exists a compact operator K; on H{12} such that

f(g{x,z})i[vmA{m}]f(ﬁ{m) = K;
holds. Since both Dy, and k(%% commute with H{"?, it is clear that
i[AM, ALY = (M - gl g itk (2.16)

holds by virtue of (2.11). By using these two estimates, we obtained the desirable Mourre
estimate as in [A1].

Now we return to the present problem. First we define the set of thresholds © for H (or 0.
Put

Bomn = T2 + 73, B23) = (T2 + 73) U app (H2),
12 = (U opp(HMN) + 75, 69 = (73 U opp(H2) 4 75,

and define the set of thresholds 6 for H (or H) by

6= U 6, (2.17)

GeA\{amu}

Let A > inf©. We will define the original operator A = U*(A ® Id)U of a conjugate
operator A for the reduced Hamiltonian H at ). Following the above argument in the case
where N = 2, a candidate for A is

1
ABmax — E(wl . D!Il + Dyl . wl)’
(2.18)

cc

1 .
wy =y — 258, 0% = ‘2—qA *(kotal)s

which is a natural extension of (2.12) with (2.13) to the case where N = 3. In fact, if Vi; =
Vis = 0, A% works well. However, by a simple computation, it is seen that in general,
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(Hy + 1)7[V, A®mex](H, + 1)~! is not bounded on L?(Y") unfortunately. This implies the
difference between the case where L = 1 and the one where L = 2. We here put

. 1 ; )
409 = L@l D, 4 D, uft)

(2.19)

, | NS Ry
wi' =gy — 400, A0 = §§;A (ki)

for j = 2, 3, where kt{:t‘il} = Dy, + Dy, + g;A(y;) is the total pseudomomentum of the
subsystem {1,5}. A(9 is the original operator of a conjugate operator for {1} as seen
above, and is also a candidate for A. In fact, if Vi3 = Vo3 = 0, A2 works well as observed
above, and if V5 = Va3 = 0, AM® works well. However, by a simple computation, it is seen
that in general, (Hy + 1)~[V, A®9)(Hy + 1)~ is not bounded on L%(Y), either. In order to
overcome this difficulty, we will patch these candidates together by introducing a partition of
unity of the configuration space Y %max,

To this end, we will make some preparations. We first introduce a family of projections
{ma,q}ac 4 Of the configuration space Y in terms of charge: Fory = (y1,%2,¥3) € Y,

Tamaxa¥ = (Yoo Yoor Yec)s
Ta2)e¥ = Y2, ¥2,¥3),  Ta3).qY = (U3, Y2, ¥3), (2.20)
T(2,3),qY = (U1, Yeor Yee)y  Maming¥ = (Y1, Y2, ¥3)-

We note that y,, j = 2, 3, coincides with the position vector of the center of charge of the

subsystem {1, 7}, and that y.. coincides with the position vector of the center of charge of the
subsystem {2, 3}. We also notice that m,,.,, Y = Y,... One can see easily that

TaqMomang = Tamax,gTaq = Momaxiy @ € A, (2.21)

Maming = 1d- (2.22)

We set 749 = Id — 7, 4 for a € A. In particular, 7%= = 0 by (2.22). Now we note that for
y= (yl’ y23y3) (S Y;

+

qomexly = (m _ B2 T 5Ys By, — yg), 2 (ys — ya)) )
q q q

7"(1’2)"'1/ = (yl — Y2, O) 0)) 7T(1’3)’qy = (yl — Y3, 01 0)1 (2'23)

7r(213)!‘1y — (0’ gqg(y2 — y3)’ ---q:;-(yz — y3)) s 1ramhn‘Iy = (0’ 0, 0),

by using ye. = (g2y2 + ¢s¥3)/q. We denote by IT1%=== the orthogonal projection of Y onto
Yomsx, 1t is well-known that for y € Y, y%mex = [[%maxy js represented as

Yo = (yl = Yems Y2 — Yemr Y3 — ycm)- (2.24)
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Then we have

| +
ﬂ.amax.qyamax = <y1 — %&.—@—y—a, %(y2 —_ ya), —%(yz — yS)) ,

(1 2)1‘1 Omax __ (yl Y2, D, 0), 7|-(1a3)sqyamax —_ (,'y1 — Y3, O’ O),

7r(2,3).qyam.x = (0$ Ea(y2 - y3), _%2'(3’2 - yS)) ’
,n-amlmq,yamux —_ (0’ 0’ O)’
for ymex € Yomsx by (2.23), (2.24) and a simple computation. (2.23) and (2.25) imply that
7% |yemax, @ € A, is a projection of Y= Hence for y=e= € Y=, we write y*? =
7ra1q ‘ Yomax yamnx .
Now we would like to introduce a version of a Graf partition of unity of Y%=, To this end,
we follow the argument of [Gr]: There exists a p > 0 such that 40p < 1,

2 21\ —1
=3 q

(2.25)

and

2
10p {‘yl _ %Y -;%ya

.+.
+ % P2 % (y2 — y3)|y2 — y3‘2}

<y — yil? + (v2 — ys)?lv2 — vaf?
for j = 2, 3 (referring to (2.25)), by virtue of the simplicity of the geometric structure of three
body systems.

Referring to (2.25), in order to measure the size of y*¢, we now introduce a family of
functions {k%(y®™*)}asec.a\((2,3)} On Y as follows:

(2.26)

2 2 2
+ +
Ko (ymax) = ’:lh PV B BT )y, — ysl?

q g2 ’ (2.27)
K“min(yamlx) = 0, K(]-:J)(yamax) = Iyl - yj|2: J —_ 2’ 3.

It secems appropriate to think that the size of y(*? is used in order to define the weight
(y2 — y3)? in the definition of k%mex(y%msx), By virtue of this family {x®(y**)}aca\((23)}>
one can know the nearest center of charge for the neutral particle among ¥, y3 and y..: We
define a family of sets {{2°},c.4\((2,3)} 28

° = {yamu € Yomax l na(yam.x) - p#(a) < K,b(ya'“"‘) _ p#(b)

(2.28)
forany b€ A\ {(2,3)} suchthat b#a},

where p#(omin) = 0,

The following proposition is proved in the way quite similar to that in [Gr], [D] and [DG].
We here omit the proof (see [A3]).
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Proposition 2.1, (1) Ifa, b € A\ {(2,3)} satisfy a # b, 125 N (P is a set of measure zero.
Here (2° is the closure of 2°. The family of sets {2* | a € A\{(2,3)}} is afamily of disjoint
open sets in Y “==x gnd one has ‘

U @=ye
acA\{(2,3)}

(2) For yomsx € (2omin gnd j € {2,3},

ly1 — ysl* 2 0
holds.
(8) For yoms= € (2omax,
(¥2 = y3)2|yz — wsl* < P
holds.
(4) If ko (yo=ex) 2 (p = p*)/2 and K09 (y==) < 202 with j € {2,3}, then

(y2 — y3)?|ya — y3|® > 2%,
&

2
-l 2
v = wl” 2 Ty

hold for k € {2,3} such that k # j.

Next we fix a function ¢ € C§°(Y*=+*) such that supp ¢ C {y“"‘“ € Y Omax | yomx|; < o}
with a sufficiently small ¢ > 0,

v 20, /Y ) p(y*e=) dy*=> = 1.

Then we define
.
Fay™™) = (1w # Q) (), Tiyoms) = — @) 229)
DR { i)
beA\{(2,3)}

fora € A\ {(2,3)}, where 1. is the characteristic function of the set £2°.
The following proposition can also be shown in the same way as in [Gr], by virtue of Propo-
sition 2.1. So we omit the proof.

Proposition 2.2. 7,(y°==), a € A\ {(2,3)}, are all bounded smooth functions on Y *= with
bounded derivatives. One has

Y ) =1L

acA\{(2,3)}



Moreover, there exists a ¢ > 0 such that the following holds: For y*™* € supp fo,,, and
Jj€{2,3},

1
ly1 — y;1* > §P2
holds. For y*™* € supp fa,aes
(v2 — ys)2ly2 — usl® < 20°
holds. For y*= € suppfjq,; with j € {2,3},
(y2 — y3)2|y2 — ys|* > 2%,
2 ¢
- > 1
=" 2 ey
hold for k € {2, 3} such that k # j.

Next we will construct an original operator of a conjugate operator for H: We put

dmax) — Yo .
R =) @30

with a parameter R > 0. We note that g, r is a smooth function on Y%= and

18%ga,m(y"=)| < CaB™'*! (3 — y3) ™" @31
holds. Then we introduce an operator Ag, as follows: We put
Ar= ), Gar(y"™)A%gar(y™), 2.32)
a€A\{(2,3)}

where A%min = A%mex_ This definition is an extension of that of conjugate operator in the case
where N = 2 and L = 1. We will often abbreviate g, g(y***) as g, & below. One can check
easily the fact that Ar does commute with k;..,1. Then we denote by Ap, the reduced operator
of U AgU* which acts on H. Nelson’s commutator theorem guarantees the self-adjointness of
Ag. Then we see that (Hy + 1)~2i[Hy, Ag](H, + 1)~! is bounded on H and

(Ho +1)Yi[Ho, Ap)(Ho + 1)~
3
= (Hy+ 1) {2 (ﬁo -U (Z HU}) U‘) } (Hy+1)™! (2.33)
j=2
+O(R™),

which is an important estimate in order to prove the Mourre estimate for A

Now we need the following lemma concerned with i[V, AR]. We here state an outline of its
proof only (see [A3] for details).
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Lemma 2.3. (Ho + 1)~%[V, Ag|(Ho + 1)™" is bounded on H.

Outline of the proof. First we consider the charged-charged pair potential V;3. Since

, -1 -
i[Vas, AR] = '2‘&29(1,2),1%{14 1(Dy,) - VVas}ga2).r

! 1 (2.34)
+ 55 909R{AT (D) VVas}ga,3),r;
we obtain
(Ho +1)7i[Vas, Arl(Ho + 1) = O(R™*¥) (2.35)
by virtue of Proposition 2.2.

Next we consider neutral-charged pair interactions V;; with j € {2,3}. It is sufficient to
deal with V} only. By a straightforward computation, we have

i[Via, Ap] =i[Va2, AL
+ 9(1,3),R{(’7£3 Y- écl '2}) -VVi2}9a,3),r
+ omin R{ (V0 — 18 - VVi2} oo,k
+ o R{ (V2 — 72 . VW2 ok

by virtue of 3_,¢ 4\ ((2:3)) 9o.r = 1. By virtue of Proposition 2.2 and (V),, we have

[(VVi2) (01 — ¥2)90,3),8 (") £ CR™MHM) (g, — yg) =0+,
(VVa2) (41 = ¥2) G, R(Y7™)| £ CR™UH#) (g — yg) ~0144),
Then we obtain
(Ho + 1) 90,8 r{UOE = vE U - VVis}gag,(Ho + 1)
= O(R™*4),
(Ho + 1) o r{U (Y = 72U - VVia} gopur(Ho + 1)
= O(R~(*#),
On the other hand, for y®=** € SUPP Ga,yex,Rs

(2.36)

(237

(2.38)

ly2 — ysl* < 20°R? (2.39)
holds by virtue of Proposition 2.2. Using (2.39) and
VVizlgg) + VVi2lpg(0)r = VVig
with Br(0) = {r € R? | |r| < R}, we see that

(Ho + 1) gopun RAIU (23 — 782U . VVi2}omeer(Ho + 1) 72

R O, (2.40)



where K is compact on H, because 1 BCO(O;yamax)(ﬁo + 1)~! is compact on H for Cp > 0
(see e.g. [AHS2]), where B, (0; Yomex) = {yomax g Yomex | |yamax|; < Cp}. Here we used
the simplicity of the geometric structure of three body systems in order to get the compactness
of Kr. Therefore we obtain

(Ho+ 1)72i[Vig, Ag](Ho + 1)

R . . (2.41)
= (Ho + 1)71i[Vip, UAMDU*)(Hy + 1) + O(R™) + K.
This completes the proof. O

By virtue of this Lemma 2.3, one can prove that Agisa conjugate operator for H at A >
inf © for sufficiently large R > 0, by following e.g. the argument of [FH]. For details, see
[A3].

3 The case whered = 3

In this section, we state a construction of a conjugate operator for H only, because the proof
of the Mourre estimate is quite similar to the one for the case where d = 2. Throughout this
section, we assume the condition (V).

Let Cp = {ck(1),...,ck(#(Ck))} for a = {C1,C3} € A, where #(C4) is the number of
the elements in the cluster C. The configuration space Z°* is defined by

#(Cx)
Y Mapzan = 0}’

Z% = {(zck(l), ooy Za(pcry) € REOY
=1

which is equipped with the metric defined by

#(Ch)

60 =Y mymraniaw K=<

=1

for { = (z,(1), -+ » Zeui(ny) € R¥W and { = (Zoy(r), - - » Zacricny)) € RO, Wealso
define two subspaces Z2 and Z, of Z%= by

Z°% = {z € Z/%max

Z my2z; = 0 for each cluster Cj, € a}, 2y = 2= 7%,

leCy

and write 2% = wﬁz and z, = m .z for z € Z%, where L and ), are the orthogonal
projections of Z%=x onto Z° and Z,, respectively. One can identify Z° with Z% @ Z,

Let A > inf 6. We will define the original operator A of a conjugate operator A for the
reduced Hamiltonian A at A: We first introduce a Graf partition of unity {¢a}aca on Zom
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such that ¢,(z%m=) € C°°(Z°m=x) with bounded derivatives, 0 < (,(2%*) < 1, on supp(,
|zj — 2| > 6, holds for any pair (j, k) ¢ a with some §; > 0, on supp {, |2%|; < J; holds
with some &, > 0, and Y. , (2 = 1. Then we introduce an operator Ap, as follows: We put

= 1
AR = —((Za"‘”‘, Dzomnx) + (Dzﬂmu, zam”‘))

+GGA§M}<"( (°“‘“y3)) A (’R(%—“—)) G.1)

zﬂmnx A zam.x
+ max Bl o\ ax YV ’
. (R(yz - ys)) A (R(yz - ya))
where D,amax = —iV jomex, A% and Ap, are the same as the one defined in §2. This definition is

an extension of that of conjugate operator in the case where N — L = L = 1. One can check
easily the fact that Ap does commute with kiota1. Then we denote by Ap the reduced operator
of UARU* which acts on . Then we see that (H, + 1)~1i[Hy, Ag](Ho + 1)~! is bounded on
H and

| (Ho + 1) Yi[Ho, Ap](Ho +1)!

= (Ho+ 1) {2 (ﬁo -U (23: H{i}) U‘) } (Hy+ 1) (3.2)
j=2

+O(R™),
which is an important estimate in order to prove the Mourre estimate for A.

Then we obtain the following lemma concerned with [V Ap] as in §2, which is the key in
order to obtain the Mourre estimate (1.13). We here omit the proof, because it is quite similar
to the one of Lemma 2.3.

Lemma 3.1. (Hy + 1)"14[V, Ag](Hy + 1)~ is bounded on H.
As in §2, one can prove that Ap is a conjugate operator for H at A > inf © for sufficiently
large R > 0, by virtue of this Lemma 3.1 and the HVZ theorem

Oess(H) = [inf 6, 0). (3.3)

Remark. The difference in the construction of a conjugate operator for H between the two
cases where d = 2 and where d = 3 seems to be caused by the difference in the quantum scat-
tering picture with a constant magnetic field between them, by virtue of L = 2, as mentioned
in [A2]: In terms of the sets of indices of wave operators A4 which should be expected in the
quantum scattering theory, one has

={(2,3)} G A\ {amax} = As,
since charged particles and clusters are bound in the plane perpendicular to the constant mag-
netic field B as mentioned in §1.
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