Algebraic independence of the values of certain functions at distinct algebraic points

慶應義塾大学理工学部 田中 孝明 (Taka-aki Tanaka) Faculty of Science and Technology, Keio Univ.

1 Introduction and results

Loxton and van der Poorten [2] obtained the following result: Let

$$F(z) = \sum_{k=0}^{\infty} z^{d^k},$$

where d is an integer greater than 1, and let $\alpha_1, \dots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$. Then the following three properties are equivalent:

- (i) $F(\alpha_1), \ldots, F(\alpha_r)$ are algebraically dependent.
- (ii) $1, F(\alpha_1), \ldots, F(\alpha_r)$ are linearly dependent over the field $\overline{\mathbb{Q}}$ of algebraic numbers.
- (iii) There exist a non-empty subset $\{\alpha_{i_1}, \ldots, \alpha_{i_t}\}$ of $\{\alpha_1, \ldots, \alpha_r\}$, nonnegative integers k_1, \ldots, k_t , roots of unity ζ_1, \ldots, ζ_t , an algebraic number γ with $\alpha_{i_l}^{d^{k_l}} = \zeta_l \gamma$ $(1 \leq l \leq t)$, and algebraic numbers ξ_1, \ldots, ξ_t , not all zero, such that

$$\sum_{l=1}^{t} \xi_{l} \zeta_{l}^{d^{k}} = 0 \quad (k = 0, 1, 2, \ldots).$$

In contrast with this result we consider the power series

$$f(z) = \sum_{k=0}^{\infty} z^{a_k},$$

where $\{a_k\}_{k\geq 0}$ is a linear recurrence of positive integers which is not a geometric progression and which satisfies

$$a_{k+n} = c_1 a_{k+n-1} + \dots + c_n a_k \quad (k = 0, 1, 2, \dots),$$
 (1)

where c_1, \ldots, c_n are nonnegative integers with $c_n \neq 0$. We assume that the polynomial $\Phi(X) = X^n - c_1 X^{n-1} - \cdots - c_n$ associated with (1) satisfies $\Phi(\pm 1) \neq 0$ and the ratio of

any pair of distinct roots of $\Phi(X)$ is not a root of unity. For this power series f(z), the author obtained the necessary and sufficient condition for the numbers $f(\alpha_1), \ldots, f(\alpha_r)$ to be algebraically dependent.

DEFINITION 1. We say that the algebraic numbers $\alpha_1, \ldots, \alpha_r$ with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ are $\{a_k\}_{k \ge 0}$ -dependent if there exist a non-empty subset $\{\alpha_{i_1}, \ldots, \alpha_{i_t}\}$ of $\{\alpha_1, \ldots, \alpha_r\}$, roots of unity ζ_1, \ldots, ζ_t , an algebraic number γ with $\alpha_{i_l} = \zeta_l \gamma$ $(1 \le l \le t)$, and algebraic numbers ξ_1, \ldots, ξ_t , not all zero, such that

$$\sum_{l=1}^{t} \xi_l \zeta_l^{a_k} = 0$$

for all sufficiently large k.

Theorem 1 (A special case of Theorem 2 in [6]). Let $\{a_k\}_{k\geq 0}$ be a linear recurrence satisfying (1). Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \leq i \leq r)$. Then the following three properties are equivalent:

- (i) $f(\alpha_1), \ldots, f(\alpha_r)$ are algebraically dependent.
- (ii) $1, f(\alpha_1), \ldots, f(\alpha_r)$ are linearly dependent over $\overline{\mathbb{Q}}$.
- (iii) $\alpha_1, \ldots, \alpha_r$ are $\{a_k\}_{k\geq 0}$ -dependent.

REMARK 1. In Theorem 1 it is obvious that the property (iii) implies (ii), since $\sum_{l=1}^{t} \xi_{l} f(\alpha_{i_{l}}) \in \overline{\mathbb{Q}}$ if $\alpha_{1}, \ldots, \alpha_{r}$ are $\{a_{k}\}_{k \geq 0}$ -dependent.

REMARK 2. As a special case of the result of Nishioka [4], the three properties (i)–(iii) in Theorem 1 are equivalent also for a gap series $\sum_{k=0}^{\infty} z^{a_k}$ with $\{a_k\}_{k\geq 0}$ an increasing sequence of positive integers such that $\lim_{k\to\infty} a_{k+1}/a_k = \infty$. In the case of our linear recurrence $\{a_k\}_{k\geq 0}$ satisfying (1), we have $\lim_{k\to\infty} a_{k+1}/a_k = \rho$ with $1 < \rho < \infty$.

In what follows, let

$$f(z) = \sum_{k=0}^{\infty} z^{a_k}, \qquad g(z) = \sum_{k=0}^{\infty} \frac{z^{a_k}}{1 - z^{a_k}}, \qquad h(z) = \prod_{k=0}^{\infty} (1 - z^{a_k}).$$

The author proved the following:

Theorem 2 ([7, Theorem 5]). Let $\{a_k\}_{k\geq 0}$ be a linear recurrence satisfying (1). Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ ($1 \leq i \leq r$) such that none of α_i/α_j ($1 \leq i \leq r$) is a root of unity. Then the 3r numbers $f(\alpha_i)$, $g(\alpha_i)$, $h(\alpha_i)$ ($1 \leq i \leq r$) are algebraically independent.

REMARK 3. If $\{a_k\}_{k\geq 0}$ is a geometric progression, namely $a_k=ad^k$ $(k\geq 0)$ for some integers $a\geq 1$ and $d\geq 2$, each of the 3r numbers in Theorem 2 is transcendental by the

theorem of Mahler [3]; however Theorem 2 is not valid in this case, since there exist the following relations over $\overline{\mathbb{Q}}$: Let

$$F(z) = \sum_{k=0}^{\infty} z^{ad^k}, \qquad G(z) = \sum_{k=0}^{\infty} \frac{z^{ad^k}}{1 - z^{ad^k}}, \qquad H(z) = \prod_{k=0}^{\infty} (1 - z^{ad^k}),$$

and let α be an algebraic number with $0 < |\alpha| < 1$. Then

$$F(\alpha) - F(\alpha^d) = \alpha^a, \qquad G(\alpha) - G(\alpha^d) = \frac{\alpha^a}{1 - \alpha^a}, \qquad \frac{H(\alpha)}{H(\alpha^d)} = 1 - \alpha^a,$$

whereas α/α^d is not a root of unity.

REMARK 4. The assumption in Theorem 2 that none of α_i/α_j $(1 \le i < j \le r)$ is a root of unity cannot be removed. For example, suppose that the initial values a_0, \ldots, a_{n-1} are divided by an integer d > 1. Then by the linear recurrence relation (1), a_k is divided by d for any $k \ge 0$. If α_i/α_j is a d-th root of unity for some distinct i and j, then $\alpha_i^{a_k} = \alpha_j^{a_k}$ $(k \ge 0)$ and so the numbers considered in Theorem 2 are algebraically dependent. Even in some cases where a_0, \ldots, a_{n-1} have no common factor, the assumption is also inevitable as shown in the following example:

Let $\{a_k\}_{k\geq 0}$ be a linear recurrence defined by

$$a_0 = 2$$
, $a_1 = 3$, $a_{k+2} = 6a_{k+1} + a_k$ $(k = 0, 1, 2, ...)$.

We put

$$f(z) = \sum_{k=0}^{\infty} z^{a_k}, \qquad g(z) = \sum_{k=0}^{\infty} \frac{z^{a_k}}{1 - z^{a_k}}, \qquad h(z) = \prod_{k=0}^{\infty} (1 - z^{a_k}).$$

Let α be an algebraic number with $0 < |\alpha| < 1$ and let $\zeta = e^{\pi \sqrt{-1}/3} = (1 + \sqrt{-3})/2$. Then

$$2f(\alpha) + f(\zeta \alpha) - f(\zeta^2 \alpha) - 2f(\zeta^3 \alpha) - f(\zeta^4 \alpha) + f(\zeta^5 \alpha) = 0,$$

$$2g(\alpha) + g(\zeta \alpha) - g(\zeta^2 \alpha) - 2g(\zeta^3 \alpha) - g(\zeta^4 \alpha) + g(\zeta^5 \alpha) = 0,$$

and

$$h(\alpha)^2h(\zeta\alpha)h(\zeta^2\alpha)^{-1}h(\zeta^3\alpha)^{-2}h(\zeta^4\alpha)^{-1}h(\zeta^5\alpha)=1,$$

since $a_{2k} \equiv 2 \pmod{6}$ and $a_{2k+1} \equiv 3 \pmod{6}$ for any $k \ge 0$.

The author obtained the necessary and sufficient condition for the 3r numbers $f(\alpha_i)$, $g(\alpha_i)$, $h(\alpha_i)$ $(1 \le i \le r)$ in Theorem 2 to be algebraically dependent:

Theorem 3 ([8]). Let $\{a_k\}_{k\geq 0}$ be a linear recurrence satisfying (1). Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ ($1 \leq i \leq r$). Then the numbers $f(\alpha_i)$, $g(\alpha_i)$, $h(\alpha_i)$ ($1 \leq i \leq r$) are algebraically dependent if and only if the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are $\{a_k\}_{k\geq 0}$ -dependent.

Combining Theorems 1 and 3, we immediately have the following:

Theorem 4 ([8]). Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$. If the numbers $f(\alpha_1), \ldots, f(\alpha_r)$ are algebraically independent, then so are the numbers $f(\alpha_i), g(\alpha_i), h(\alpha_i)$ $(1 \le i \le r)$.

Theorem 4 implies the following:

Theorem 5 ([8]). Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$. Then

trans.
$$\deg_{\mathbb{Q}} \mathbb{Q} \Big(f(\alpha_1), \dots, f(\alpha_r), g(\alpha_1), \dots, g(\alpha_r), h(\alpha_1), \dots, h(\alpha_r) \Big)$$

 $\geq 3 \text{ trans. } \deg_{\mathbb{Q}} \mathbb{Q} \Big(f(\alpha_1), \dots, f(\alpha_r) \Big).$ (2)

The following is an example in which the equality of (2) holds:

EXAMPLE 1. Let $\{a_k\}_{k\geq 0}$ be a linear recurrence defined by

$$a_0 = 1$$
, $a_1 = 2$, $a_{k+2} = 3a_{k+1} + a_k$ $(k = 0, 1, 2, ...)$.

We put

$$f(z) = \sum_{k=0}^{\infty} z^{a_k}, \qquad g(z) = \sum_{k=0}^{\infty} \frac{z^{a_k}}{1 - z^{a_k}}, \qquad h(z) = \prod_{k=0}^{\infty} (1 - z^{a_k}).$$

Let α be an algebraic number with $0<|\alpha|<1$ and let $\omega=e^{2\pi\sqrt{-1}/3}=(-1+\sqrt{-3})/2$. Since $a_{2k}\equiv 1\pmod{3}$ and $a_{2k+1}\equiv 2\pmod{3}$ for any $k\geq 0$, the numbers α , $\omega\alpha$, and α^3 are not $\{a_k\}_{k\geq 0}$ -dependent. Therefore the numbers $f(\alpha), f(\omega\alpha), f(\alpha^3), g(\alpha), g(\omega\alpha), g(\alpha^3), h(\alpha), h(\omega\alpha), h(\alpha^3)$ are algebraically independent by Theorem 3. Noting that $f(\alpha)+f(\omega\alpha)+f(\omega^2\alpha)=0$, $g(\alpha)+g(\omega\alpha)+g(\omega^2\alpha)=3g(\alpha^3)$, and $h(\alpha)h(\omega\alpha)h(\omega^2\alpha)=h(\alpha^3)$, we see that

$$\begin{split} & \operatorname{trans.deg}_{\mathbb{Q}} \mathbb{Q} \Big(f(\alpha), f(\omega \alpha), f(\omega^2 \alpha), f(\alpha^3) \Big) = 3, \\ & \operatorname{trans.deg}_{\mathbb{Q}} \mathbb{Q} \Big(g(\alpha), g(\omega \alpha), g(\omega^2 \alpha), g(\alpha^3) \Big) = 3, \\ & \operatorname{trans.deg}_{\mathbb{Q}} \mathbb{Q} \Big(h(\alpha), h(\omega \alpha), h(\omega^2 \alpha), h(\alpha^3) \Big) = 3, \end{split}$$

and

trans.
$$\begin{split} \deg_{\mathbb{Q}}\mathbb{Q}\Big(f(\alpha),f(\omega\alpha),f(\omega^2\alpha),f(\alpha^3),\\ g(\alpha),g(\omega\alpha),g(\omega^2\alpha),g(\alpha^3),h(\alpha),h(\omega\alpha),h(\omega^2\alpha),h(\alpha^3)\Big) &= 9. \end{split}$$

As shown in Remark 4 or in the example above, it seems complicated to state the necessary and sufficient condition for the values of the Lambert series g(z) and the infinite product h(z) at $\{a_k\}_{k>0}$ -dependent algebraic numbers $\alpha_1, \ldots, \alpha_r$ to be algebraically

independent. In Theorem 6 below we establish an easily confirmable condition under which such values are algebraically independent.

DEFINITION 2. We say that the algebraic numbers $\alpha_1, \ldots, \alpha_r$ with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ are strongly $\{a_k\}_{k \ge 0}$ -dependent if there exist a non-empty subset $\{\alpha_{i_1}, \ldots, \alpha_{i_t}\}$ of $\{\alpha_1, \ldots, \alpha_r\}$, N-th roots of unity ζ_1, \ldots, ζ_t , an algebraic number γ with $\alpha_{i_t} = \zeta_t \gamma$ $(1 \le t)$, and algebraic numbers ξ_1, \ldots, ξ_t , not all zero, such that

$$\sum_{l=1}^{t} \xi_{l} \zeta_{l}^{ma_{k}} = 0, \qquad m = 1, \dots, N-1, \qquad \text{g.c.d.}(m, N) = 1,$$

for all sufficiently large k.

It is clear that, if the algebraic numbers $\alpha_1, \ldots, \alpha_r$ with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ are strongly $\{a_k\}_{k \ge 0}$ -dependent, then they are $\{a_k\}_{k \ge 0}$ -dependent.

The following theorem is more precise than Theorem 4 above.

Theorem 6 ([8]). Let $\{a_k\}_{k\geq 0}$ be a linear recurrence satisfying (1). Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ ($1 \leq i \leq r$). Suppose that the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are not strongly $\{a_k\}_{k\geq 0}$ -dependent. Assume further that $\alpha_1, \ldots, \alpha_\rho$ ($\rho \leq r$) are not $\{a_k\}_{k\geq 0}$ -dependent or equivalently that the numbers $f(\alpha_1), \ldots, f(\alpha_\rho)$ are algebraically independent. Then the numbers $f(\alpha_1), \ldots, f(\alpha_\rho), g(\alpha_1), \ldots, g(\alpha_r), h(\alpha_1), \ldots, h(\alpha_r)$ are algebraically independent.

Using Theorem 6, we have an example in which the strict inequality of (2) holds:

Example 2. Let $\{a_k\}_{k\geq 0}$ be a linear recurrence defined by

$$a_0 = 1$$
, $a_1 = 3$, $a_{k+2} = 3a_{k+1} + a_k$ $(k = 0, 1, 2, ...)$.

We put

$$f(z) = \sum_{k=0}^{\infty} z^{a_k}, \qquad g(z) = \sum_{k=0}^{\infty} \frac{z^{a_k}}{1 - z^{a_k}}, \qquad h(z) = \prod_{k=0}^{\infty} (1 - z^{a_k}).$$

Let α be an algebraic number with $0 < |\alpha| < 1$ and let $\omega = e^{2\pi\sqrt{-1}/3} = (-1 + \sqrt{-3})/2$. Since $a_{2k} \equiv 1 \pmod{3}$ and $a_{2k+1} \equiv 0 \pmod{3}$ for any $k \geq 0$, the numbers α , $\omega\alpha$, $\omega^2\alpha$, and α^3 are not strongly $\{a_k\}_{k\geq 0}$ -dependent and the numbers α , $\omega\alpha$, and α^3 are not $\{a_k\}_{k\geq 0}$ -dependent. Therefore the numbers $f(\alpha)$, $f(\omega\alpha)$, $f(\alpha^3)$, $g(\alpha)$, $g(\omega\alpha)$, $g(\omega^2\alpha)$, $g(\alpha^3)$, $h(\alpha)$, $h(\omega\alpha)$, $h(\omega^2\alpha)$, $h(\alpha^3)$ are algebraically independent by Theorem 6 with $\rho = 3$ and r = 4. Noting that $\omega f(\alpha) - (\omega + 1)f(\omega\alpha) + f(\omega^2\alpha) = 0$, we see that

trans.
$$\deg_{\mathbb{Q}} \mathbb{Q}\Big(f(\alpha), f(\omega \alpha), f(\omega^2 \alpha), f(\alpha^3)\Big) = 3,$$

trans.
$$\deg_{\mathbb{Q}} \mathbb{Q}\Big(f(\alpha), f(\omega \alpha), f(\omega^2 \alpha), f(\alpha^3),$$

 $g(\alpha), g(\omega \alpha), g(\omega^2 \alpha), g(\alpha^3), h(\alpha), h(\omega \alpha), h(\omega^2 \alpha), h(\alpha^3)\Big) = 11,$

and so

$$\begin{aligned} & \operatorname{trans.deg}_{\mathbb{Q}} \mathbb{Q}\Big(f(\alpha), f(\omega\alpha), f(\omega^2\alpha), f(\alpha^3), \\ & g(\alpha), g(\omega\alpha), g(\omega^2\alpha), g(\alpha^3), h(\alpha), h(\omega\alpha), h(\omega^2\alpha), h(\alpha^3) \Big) \\ & > & 3 \operatorname{trans.deg}_{\mathbb{Q}} \mathbb{Q}\Big(f(\alpha), f(\omega\alpha), f(\omega^2\alpha), f(\alpha^3) \Big). \end{aligned}$$

2 Proof of Theorems 3 and 6

Proof of Theorem 3. If the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are $\{a_k\}_{k\geq 0}$ -dependent, then the numbers $f(\alpha_i)$, $g(\alpha_i)$, $h(\alpha_i)$ $(1 \leq i \leq r)$ are algebraically dependent, since so are the numbers $f(\alpha_1), \ldots, f(\alpha_r)$ by Theorem 1 with Remark 1. Conversely, if the algebraic numbers $\alpha_1, \ldots, \alpha_r$ are not $\{a_k\}_{k\geq 0}$ -dependent, then by Theorem 6 with $\rho = r$ the numbers $f(\alpha_i)$, $g(\alpha_i)$, $h(\alpha_i)$ $(1 \leq i \leq r)$ are algebraically independent. This completes the proof of the theorem.

Sketch of the proof of Theorem 6. Suppose on the contrary that the numbers $f(\alpha_1),\ldots,f(\alpha_\rho),g(\alpha_1),\ldots,g(\alpha_r),h(\alpha_1),\ldots,h(\alpha_r)$ are algebraically dependent. There exist multiplicatively independent algebraic numbers β_1,\ldots,β_s with $0<|\beta_j|<1$ $(1\leq j\leq s)$ such that

$$\alpha_i = \zeta_i \prod_{j=1}^s \beta_j^{e_{ij}} \quad (1 \le i \le r), \tag{3}$$

where ζ_1, \ldots, ζ_r are roots of unity and e_{ij} $(1 \le i \le r, 1 \le j \le s)$ are nonnegative integers (cf. Nishioka [5, Lemma 3.4.9]). Take a positive integer N such that $\zeta_i^N = 1$ for any i $(1 \le i \le r)$. We can choose a positive integer p and a nonnegative integer q such that $a_{k+p} \equiv a_k \pmod{N}$ for any $k \ge q$. Let y_{jl} $(1 \le j \le s, 1 \le l \le n)$ be variables and let $\mathbf{y} = (y_{11}, \ldots, y_{1n}, \ldots, y_{s1}, \ldots, y_{sn})$. Define the auxiliary functions

$$f_{i}(\boldsymbol{y}) = \sum_{k=q}^{\infty} \zeta_{i}^{a_{k}} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_{k}})^{e_{ij}} \qquad (1 \leq i \leq \rho),$$

$$g_{i}(\boldsymbol{y}) = \sum_{k=q}^{\infty} \frac{\zeta_{i}^{a_{k}} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_{k}})^{e_{ij}}}{1 - \zeta_{i}^{a_{k}} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_{k}})^{e_{ij}}} \qquad (1 \leq i \leq r),$$

and

$$h_i(\mathbf{y}) = \prod_{k=q}^{\infty} \left(1 - \zeta_i^{a_k} \prod_{j=1}^s (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_k})^{e_{ij}}\right) \qquad (1 \leq i \leq r).$$

Letting

$$\beta = (\underbrace{1,\ldots,1}_{n-1},\beta_1,\ldots,\underbrace{1,\ldots,1}_{n-1},\beta_s),$$

we see by (3) that

$$f_i(\boldsymbol{\beta}) = \sum_{k=q}^{\infty} \alpha_i^{a_k}, \qquad g_i(\boldsymbol{\beta}) = \sum_{k=q}^{\infty} \frac{\alpha_i^{a_k}}{1 - \alpha_i^{a_k}}, \qquad h_i(\boldsymbol{\beta}) = \prod_{k=q}^{\infty} (1 - \alpha_i^{a_k}).$$

Hence the values $f_1(\boldsymbol{\beta}), \ldots, f_{\rho}(\boldsymbol{\beta}), g_1(\boldsymbol{\beta}), \ldots, g_r(\boldsymbol{\beta}), h_1(\boldsymbol{\beta}), \ldots, h_r(\boldsymbol{\beta})$ are algebraically dependent. Let Ω be a multiplicative transformation for the variables $y_{11}, \ldots, y_{1n}, \ldots, y_{s1}, \ldots, y_{sn}$ sending $y_{j1}^{a_k+n-1} \cdots y_{jn}^{a_k}$ to $y_{j1}^{a_k+p+n-1} \cdots y_{jn}^{a_k+p}$ for $j=1,\ldots,s$. Then $f_1(\boldsymbol{y}), \ldots, f_{\rho}(\boldsymbol{y}), g_1(\boldsymbol{y}), \ldots, g_r(\boldsymbol{y}), h_1(\boldsymbol{y}), \ldots, h_r(\boldsymbol{y})$ satisfy the functional equations

$$f_{i}(\boldsymbol{y}) = f_{i}(\Omega \boldsymbol{y}) + \sum_{k=q}^{p+q-1} \zeta_{i}^{a_{k}} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_{k}})^{e_{ij}},$$

$$g_{i}(\boldsymbol{y}) = g_{i}(\Omega \boldsymbol{y}) + \sum_{k=q}^{p+q-1} \frac{\zeta_{i}^{a_{k}} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_{k}})^{e_{ij}}}{1 - \zeta_{i}^{a_{k}} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_{k}})^{e_{ij}}},$$

and

$$h_i(\boldsymbol{y}) = \left(\prod_{k=q}^{p+q-1} \left(1 - \zeta_i^{a_k} \prod_{j=1}^s (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_k})^{e_{ij}}\right)\right) h_i(\Omega \boldsymbol{y}),$$

since $a_{k+p} \equiv a_k \pmod{N}$ for any $k \geq q$. By Mahler's method improved by Kubota [1], at least one of the following two cases arises:

(i) There are algebraic numbers $b_1, \ldots, b_\rho, c_1, \ldots, c_r$, not all zero, and $F(\boldsymbol{y}) \in \overline{\mathbb{Q}}(\boldsymbol{y})$ such that

$$F(\mathbf{y}) = F(\Omega \mathbf{y}) + \sum_{k=q}^{p+q-1} \left(\sum_{i=1}^{\rho} b_i \zeta_i^{a_k} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_k})^{e_{ij}} \right) + \sum_{i=1}^{r} \frac{c_i \zeta_i^{a_k} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_k})^{e_{ij}}}{1 - \zeta_i^{a_k} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_k})^{e_{ij}}} \right).$$

$$(4)$$

(ii) There are rational integers d_1, \ldots, d_r , not all zero, and $G(\boldsymbol{y}) \in \overline{\mathbb{Q}}(\boldsymbol{y}) \setminus \{0\}$ such that

$$G(\boldsymbol{y}) = \left(\prod_{k=q}^{p+q-1} \prod_{i=1}^{r} \left(1 - \zeta_i^{a_k} \prod_{j=1}^{s} (y_{j1}^{a_{k+n-1}} \cdots y_{jn}^{a_k})^{e_{ij}}\right)^{d_i}\right) G(\Omega \boldsymbol{y}).$$
 (5)

Let M > 0 be a sufficiently large integer and let

$$F^{*}(z) = F(z_{1}^{M}, \dots, z_{n}^{M}, \dots, z_{1}^{M^{s}}, \dots, z_{n}^{M^{s}}) \in \overline{\mathbb{Q}}(z_{1}, \dots, z_{n}),$$

$$G^{*}(z) = G(z_{1}^{M}, \dots, z_{n}^{M}, \dots, z_{1}^{M^{s}}, \dots, z_{n}^{M^{s}}) \in \overline{\mathbb{Q}}(z_{1}, \dots, z_{n}) \setminus \{0\}.$$

Then by (4) and (5), at least one of the following two functional equations holds:

$$F^{*}(z) = F^{*}(\Omega z) + \sum_{k=q}^{p+q-1} \left(\sum_{i=1}^{\rho} b_{i} \zeta_{i}^{a_{k}} (z_{1}^{a_{k+n-1}} \cdots z_{n}^{a_{k}})^{E_{i}} + \sum_{i=1}^{r} \frac{c_{i} \zeta_{i}^{a_{k}} (z_{1}^{a_{k+n-1}} \cdots z_{n}^{a_{k}})^{E_{i}}}{1 - \zeta_{i}^{a_{k}} (z_{1}^{a_{k+n-1}} \cdots z_{n}^{a_{k}})^{E_{i}}} \right),$$

$$(6)$$

$$G^{*}(z) = \left(\prod_{k=q}^{p+q-1} \prod_{i=1}^{r} \left(1 - \zeta_{i}^{a_{k}} (z_{1}^{a_{k+n-1}} \cdots z_{n}^{a_{k}})^{E_{i}}\right)^{d_{i}}\right) G^{*}(\Omega z), \tag{7}$$

where Ω sends $z_1^{a_{k+n-1}}\cdots z_n^{a_k}$ to $z_1^{a_{k+p+n-1}}\cdots z_n^{a_{k+p}}$ and $E_i=\sum_{j=1}^s e_{ij}M^j>0$ $(1\leq i\leq r)$ such that $E_i\neq E_{i'}$ if $\alpha_i/\alpha_{i'}$ is not a root of unity, or equivalently $(e_{i1},\ldots,e_{is})\neq (e_{i'1},\ldots,e_{i's})$. By Theorems 1 and 2 of [7], at least one of the following two properties are satisfied:

(i) For any $k \ (q \le k \le p + q - 1)$,

$$\sum_{i=1}^{\rho} b_{i} \zeta_{i}^{a_{k}} X^{E_{i}} + \sum_{i=1}^{r} \frac{c_{i} \zeta_{i}^{a_{k}} X^{E_{i}}}{1 - \zeta_{i}^{a_{k}} X^{E_{i}}} = \sum_{i=1}^{\rho} b_{i} \zeta_{i}^{a_{k}} X^{E_{i}} + \sum_{i=1}^{r} c_{i} \sum_{h=1}^{\infty} (\zeta_{i}^{a_{k}} X^{E_{i}})^{h} \in \overline{\mathbb{Q}}.$$
(8)

(ii) For any $k \ (q \le k \le p + q - 1)$,

$$\prod_{i=1}^{r} (1 - \zeta_i^{a_k} X^{E_i})^{d_i} = \gamma_k \in \overline{\mathbb{Q}}^{\times}.$$
 (9)

If (6) is satisfied, then all the coefficients of the right-hand side of (8) must be zero. Therefore, if $c_i = 0$ $(1 \le i \le r)$, then $\alpha_1, \ldots, \alpha_\rho$ are $\{a_k\}_{k \ge 0}$ -dependent, which contradicts the assumption. If c_1, \ldots, c_r are not all zero, then $\alpha_1, \ldots, \alpha_r$ are strongly $\{a_k\}_{k \ge 0}$ -dependent, which also contradicts the assumption.

If (7) is satisfied, taking the logarithmic derivative of (9), we get

$$\sum_{i=1}^{r} \frac{-d_i E_i \zeta_i^{a_k} X^{E_i - 1}}{1 - \zeta_i^{a_k} X^{E_i}} = 0 \quad (q \le k \le p + q - 1)$$

and so

$$\sum_{i=1}^{r} \frac{d_i E_i \zeta_i^{a_k} X^{E_i}}{1 - \zeta_i^{a_k} X^{E_i}} = \sum_{i=1}^{r} d_i E_i \sum_{h=1}^{\infty} (\zeta_i^{a_k} X^{E_i})^h = 0 \quad (q \le k \le p + q - 1).$$

Therefore $\alpha_1, \ldots, \alpha_r$ are strongly $\{a_k\}_{k\geq 0}$ -dependent in this case by the same way as above. This completes the proof of the theorem.

References

- [1] K.K. Kubota: On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9-50.
- [2] J. H. Loxton and A. J. van der Poorten: Algebraic independence properties of the Fredholm series, J. Austral. Math. Soc. Ser. A 26 (1978), 31-45.
- [3] K. Mahler: Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342–366.
- [4] K. Nishioka, Conditions for algebraic independence of certain power series of algebraic numbers, Compositio Math. 62 (1987), 53-61.
- [5] K. Nishioka: Mahler functions and transcendence, Lecture Notes in Mathematics No. **1631**, Springer, 1996.
- [6] T. Tanaka: Algebraic independence of the values of power series generated by linear recurrences, Acta Arith. 74 (1996), 177-190.
- [7] T. Tanaka: Algebraic independence results related to linear recurrences, Osaka J. Math. 36 (1999), 203-227.
- [8] T. Tanaka: Algebraic independence of the values of power series, Lambert series, and infinite products generated by linear recurrences, Osaka J. Math., to appear.