goooboooobgon
1511 0 2006 O 45-54

THE PRIME NUMBER THEOREM
FOR RANKIN-SELBERG L-FUNCTIONS

Jianya Liv! and YANGBO YE?

ABSTRACT

In this article, we survey and announce a recent unconditional proof of the
prime number theorem for Rankin-Selberg L-functions attached to automorphic
cuspidal representations of GL, over Q. Applications of this prime number
theorem to Selberg’s orthogonality conjecture and factorization of automorphic
L-functions will be given. :

2000 MATHEMATICS SUBJECT,.CLASSIFICATION: 11F70, 11M26, 11M41.

1. PROBLEMS CONCERNING AUTOMORPHIC L-FUNCTIONS

Let 7 be an irreducible unitary cuspidal representation of GL,(Qa), and s = o + it € C.
The global L-function attached to 7 is given by products of local factors for o > 1 (Godement
and Jacquet [5]):

L(S, 7T) = H Lp(s, wp)’
p

®(s,7) = Loo(s, Moo ) L(s, ),
where
' T/ _ (@ d)\ 1
Lp(s, Wp) = ,1;——.'[1(1 '-"—"“p, ) )
and m
Loo(3,e0) = [ Tie(s + 1n(3))-
j=1

Here [g(s) = 7~*/2T'(s/2), and a,(p,j) and u(j), j = 1,...,m, are complex numbers as-
sociated with 7, and 7, respectively, according to the Langlands correspondence. Denote
by

a‘ﬂ'(pk) = Z a'rr(pvj)k (11)
. 1<j<m '
the Fourier coefficients of 7. Then for o > 1, we have

%logL(s, ) = —'; ﬂn)n;‘;ﬂ-@-, : (1.2)
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where A(n) is the von Mangoldt function: A(p*) = logp, and = 0 elsewhere. If 7’ is an
automorphic irreducible cuspidal representation of GLy(Qa), we define L(s,n’), an(p,i),
pir (4), and an(p*) likewise, for i = 1,...,m’. If 7 and 7’ are equivalent, then m = m/ and
{ax(p, )} = {aw(p,1)} for any p. Hence, by (1.1), ar(n) = a(n) for any n = p*, when 7 = =’

The Rankin-Selberg L-function L(s, 7 x #') was developed by Jacquet [7], Jacquet, Piatetski-
Shapiro, and Shalika (8], Shahidi [29], and Moeglin and Waldspurger [19], where 7 and 7’ are
automorphic irreducible cuspidal representations of GLy, and GL,,, respectively, with unitary
central characters. In our case, this (finite-part) L-function is defined by

L(s,mx#) = HLp(s,ﬂ'p X ),
P

where

Jj=lk

O an(p,g)an (9, k)
Ly(s,mp X 7, =HH( s ,p:r ) )
The Archimedean local factor Loo (s, oo X 7o,

) is defined by

m m
Loo(8, oo X ho) = [ | T] TR(s + taxir (4, k))

J=1k=1
where the complex numbers p, 7 (7, k) satisfy the trivial bound
Re prx#(j, k) > —1.
Denote
(8,7 X 7') = Loo(8, oo X #ho)L(s,m x ).
Also, we have for o > 1 that

:i% log L(s,7m x #') = — Z A(n)a”f:)a"' (n).

n=1

(1.3)

The Prime Number Theorem (PNT) for Rankin-Selberg L-functions is the following

Problem 1.1 (PNT for Rankin-Selberg L-functions). Let 7 and 7’ be irreducible

unitary cuspidal representations of GLm(QA) and GLqpy (Qa), respectively. Determine the as-
ymptotic behavior of

> A(n)an(n)an(n). (1.4)

n<z

PNT with 7 and 7’ being homomorphlc cusp forms has been studied by several authors.
Rankin [25] proved a PNT for 7 & 7/ being homomorphic cusp forms for the modular group,
Perelli (24] generalized this to arithmetic progressmns while Lauringikas and Matsumoto [13]
proved a PNT in arithmetic progressions for 7 = 7' being homomorphic cusp forms for congru-
ence groups. Ichlhara (6] established a PNT in arithmetic progressmns for homomorphic cusp
forms 7 and 7/, not necessarily equivalent.

A statement easier than Problem 1.1 is the Selberg Orthogonality Conjecture (SOC); see
Selberg {28] and Ram Murty [22] [23].
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Conjecture 1.2 (SOC). Let m and 7’ be given as in Problem 1.1. Then

A(n)ar(n)ax(n) [ logz+O(1) if 7w =
Z n —{ o) - if ' % .

n<z

Problem 1.1 can be compared with the classical PNT

> A(n) ~ g, (1.5)
n<z
while SOC is similar to Mertens’ theorem that
A ’ ‘
-—gi)- = logz + O(1). (1.6)

n<z
1t is known that (1.6) is weaker than (1.5).
The following statement is still weaker than SOC.
Conjecture 1.3 (Weighted SOC). Let © and 7’ be given as in Problem 1.1. Then

A x(n)an logz +O(1) ifn =m;
}:(1~Z') (n)a (:)a (n) ={ Oo%la;-i- 1 :§Z,¥: (1.7)

n<z

Rudnick and Sarnak [26] proved Conjecture 1.3 in the case m’ = 7, and then deduced
Conjecture 1.2 in the case 7' & 7, using the fact that the left side of (1.7) is a sum of non-
negative terms. ‘

2. WEIGHTED SOC AND FACTORIZATION OF AUTOMORPHIC L-FUNCTIONS
In [15] and [16], we proved Conjecture 1.3 in the case 7’ ¥ .

Theorem 2.1. For any automorphic irreducible cuspidal representations = and ' of
GL.,(Qa) and GLyy(Qy), respectively,

Z (1-__ _"2’_) A(n)a,,(n)&,,z (n) <1, (2.1)

T n

. nLz
if w is not equivalent to ='.

In fact, when 7 and 7’ are not twisted equivalent, i.e., when 7 3 7' ® a** for any ¢ € R, where
a(g) = | det(g)], (2.1) was proved in [15]. In the remaining case when m = m’ and & 7' @™
for some non-zero 7y € R, (2.1) was established in [16]. ‘

It is a far-reaching conjecture of Langlands [12] that the most general L-function is indeed
the L-function L(s,II) attached to an automorphic representation II of GL,, over an algebraic
number field. It was further conjectured that this L(s,II) is equal to a product of L-functions
L(s, ;) attached to automorphic irreducible cuspidal representations m; of GLm; over Qina
unique way:

L(S, II) =L(8,W1)L(Sv7rk) (22)

These L(s,;) are called principal or primitive L-functions over Q in the sense that they are
supposed to be L-functions that cannot be factorized further. They are believed to be the
building blocks of all L-functions.
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A known special case of the unique factorization (2.2) is for II being an automorphic ir-
reducible cuspidal representation of GL, over a cyclic algebraic number field F, when II is
invariant under the action of the Gal(F/Q). According to Arthur and Clozel [1], such a rep-
resentation II is the base change of 7 ® 7, where 7 is an automorphic irreducible cuspidal
representation of GLy, over Q, and 7 is any idele class character of Q trivial on N F/Q(FY). In
terms of L-functions, we have the factorization

L(s,10) = [[ L(s, 7 @)
n

uniquely.

In [16], we proved the uniqueness of the factorization in (2.2). That is, if any general L-
function can be written as a product of principal L-functions L(s, ;) for GLp; over Q, we
showed that this factorization is unique.

Theorem 2.2. Let m; and 7}, j =1,...,k, i = 1,...,l, be automorphic irreducible cuspi-
dal representations of GLy,,(Q4) and GLpyy; (Qa) with unitary central characters, respectively.
Then

L(s,m) - L(s,mx) = L(s,m}) - - - L(s, ) (2.3)
cannot hold, if there is a m; that is not equivalent to any .
By taking k = 1, Theorem 2.2 implies that L(s,71) cannot be factorized further.

Corollary 2.3. The L-function L(s,n) attached to an automorphic irreducible cuspidal
representation 7 of GLm(Qa) cannot be factorized into L(s, }) - - - L(s,w]) nontrivially, where
m; is an automorphic irreducible cuspidal representation of GLm: (Qa) with unitary central
.chamcter

Unique factorization of L-functions in the Selberg class (Selberg [28]) was studied by Conrey
and Ghosh [2] and Ram Murty [22], under SOC. For automorphic L-functions, Ram Murty [23]
proved that L(s,) is primitive, i.e., cannot be factorized further, when « is an automorphic
irreducible cuspidal representation of GLy(Qa), under the Generalized Ramanujan Conjecture
(GRC, Conjecture 3.1 below). Our Theorem 2.2 and Corollary 2.3 are unconditional.

3. PNT anp SOC unNDER GRC

In this section, we will need GRC.

Conjecture 3.1 (GRC). Let w be an irreducible unitary cuspidal representation of
GLn(Qa). For any unramified p, we have

lax(p, 5)| = 1.

Note that in Conjecture 3.1, we do not include the Archimedean Ramanujan conjecture,
Re pr(j) = 0.
As a consequence of GRC, we proved in [17] the following PNT. Denote a(g) = | det(g)|.

48

Theorem 3.2. Assume GRC. Let © and ©’ be irreducible umtary cuspidal representations

of GL(Qa) and GLyy (Qy), respectively. Assume that w and 7 are self contragredient: m = 7
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and © =2 7. Then

> A()ax(n)am (n)
n<zc
L1+
¥ 0 exp(fc\/l@@}
if 7' 2 7 ®|det|"™ for some 1 € R;
O{z exp(—c+/logz)}
if ' ¥ 7 Q@|det|* for anyt € R.

Il

Here and throughout, ¢ is a positive constant, not necessarily the same at each occurrence.

Corollary 3.3. Assume GRC. Let w and ' be given as in Theorem 8.2. We have

A(n)ay(n)a,
e
T logz + ¢; + O{exp(—cv/logz)}
if ™' =

' _ :
={ Tl fig T2T O{GXP( cvIogz)}
if Ter® |det [i™ for some T € R*;

c2 + O{exp(—cy/Togz)}
L ifm 7 ®|det|® for anyt € R.

. Here c1 and cy are constants depending on w and n':

/

(L 1N r _,
cl_hr%(-—L—(s-i-ll,wxw)—;) -1, cz———f(l,wxw).

§—!

A remarkable feature of this corollary is that it describes the orthogonality of a,(n) and
an(n) in three cases with different main terms. It is thus in a more precise form than Selberg’s
Conjecture 1.2. Moreover, one can see from the last case of Corollary 3.3 that the Dirichlet
series on the right side of (1.3) converges to L'/L(s,7 x #') on Re 8 = 1, when 7 and =’ are
not twisted equivalent.

Note that in Theorem 3.2 and Corollary 3.3, we have to assume that 7 & 7 and 7’ = 7.
This is because a standard zero-free region of the type of de la Vallée Poussin is only available
for self contragredient representations (Moreno [20] [21], Sarnak [27],and Gelbart, Lapid, and
Sarnak [3]). On the other hand, our Theorems 2.1 and 2.2, together with Corollary 2.3, hold
for all representations, not necessarily self contragredient, as we did not use zero-free regions
in their proofs.

4. SOC witHout GRC

In [14], we proved SOC without GRC. To this end, we firstly proved the following weighted
PNT. ' ‘ '
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Theorem 4.1. Let w and ' be irreducible unitary cuspidal representations of GLy(Qa)
and GLy(Qy), respectively. Assume that w and 7' are self contragredient. Then

1-2 An)agz(n)a(n
2( 2) A(n)an(n)am (n)
14470
(1 ¥ 15’78'0)(2 T 'l:T()) + O{.’l: exp(_C\/ Iog E)}
if ¥ €7 Q®a'™ for some 19 € R;
O{z exp(—cy/Togz)}
ifm’ 2r®a® for anyt €R.

I

If 0 =0,ie if 7 =7, then ay(n) = ay(n), and hence Theorem 4.1 states that

Z (1 --.Z:;-)A(n)|a,.,,('n,)|2 = % + O{z exp(—c+/log z)}. (4.1)

n<z

Now A(n)|ar(n)|? is non-negative. By a classical argument of de la Vallée Poussin, we can
remove the weight 1—n/z from (4.1), to get the following PNT for automorphic representations.

Corollary 4.2. Let © be as in Theorem 4.1. Then

Z A(n)|ax(n)]* = z + O{z exp(—cy/log z)}.

n<z

In general, we could not remove the weight 1 — n/z from Theorem 4.1. But similar to
Theorem 4.1, in [14] we established

Z (1 _ 2) A(n)ar(n)a,(n)

o T n

( logz + ¢1 + O{exp(—cvIogz)}
fn' m
'™ _
=] ol Ty T o2 + Ofexp(~cviogz)} (4.2)

if 7’/ & 7 @ o™ for some 7y € R%;

c2 + O{exp(—cvlogz)}

{ if 7' % v ® o for any t € R.

Here c; and c; are as in Corollary 3.3. This is more precise than Conjecture 1.3.

Using Corollary 4.2 and an idea of Landau [11], we were able to remove the weight 1 — n/z
from (4.2), to get SOC.

Corollary 4.3. Conjecture 1.2 is true, provided that © and ' are self contragredient.

The reason that we can remove 1 — n/z from (4.2) is that now the main term is of order
log z when 7’ & 7, which is substantially bigger than the O(1) of the case of 7’ % .



5. PNT witHout GRC

The classical Perron’s formula gives us a formula for a sum of complex numbersa,,1 < n < z,
in terms of their Dirichlet series -
Q
f)=3 %
n=1
and bounds for individual terms an. Let A(z) > 0 be non-decreasing such that a, < A(n),
and let
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B(o) = i '%gl , (6.1)

for o > 04, the abscissa of absolute convergence of Y oo, an/n®. Then the classical Perron’s
formula (see e.g. Titchmarsh [30]) states that, for ' = [z] +1/2,b > 0, and T' > 4,

b4-iT b
nZ: an = E;Ir'{ o f(s)i—ds +0 (____A(2m)7:1v logx) + O(—w ?(b) )». (5.2)

When applying (5.2) to the Riemann zeta-function or Dirichlet L-functions, bounds for a,
pose no problem. When applying this formula to other automorphic L-functions, however,
bounds for a, often require an assumption of GRC. Examples include our Theorem 3.2. In
proving Theorem 3.2 by (5.2), we start from (1.3), and let

= A)ax (n)an (n),  F(s) = — (o, X 7). (5.3)

Therefore, by Rudnick and Sarnak [26], the upper bound function A(n) for |an| can be taken
as

A(n) = nl—l/(m2+1)—1/(m'2+1)' , (5.4)

Obviously, (5.4) will make the first O-term in (5.2) too big. If we assume GRC, then instead
of (5.4), we can take

A(n) = mm/logn,
from which we deduce Theorem 3.2.

In [18], we proved a revised version of Perron’s formula (Theorem 5.1 below). Different
from the classical (5.2), the new Perron formula produces a formula for ), ., an in terms of

a sum of |a,| over a short interval. While bounding individual Fourier coefficients |ar(n)| of

an automorphic cuspidal representation is hard and may require GRC, estimation of a sum of
|ax(n)| can usually be done by the Rankin-Selberg method. The new Perron’s formula thus
allows us to prove certain results for automorphic L-functions without assuming GRC.

Theorem 5.1. Let {a,}32, be complez numbers and let the series f(s) = Y ne) an/n° be

absolutely convergent for o > o,. Let B(o) be as in (5.1). Then, for z = [z} +1/2,b > 0, and
T >4,

1 b+iT
Zan = .57-1’—1. f(S)—dS-I-O{ Z Ianl}
nz ; z—z/VT<n<z+z/VT
z°B(b)
+o{Z=2 — }



We remark that Theorem 5.1 can be used to derive the classical PNT. In fact, taking a, =

A(n), we have
1
) |an| < log ) 1< f—%f
z—z/VT<n<z+z/VT z—z/VT<n<e+z/VT
and, for o > 0, =1,

B(o) = Z ATEn) -

-1
n=1
Therefore, Theorem 5.1 with b =1+ 1/log z gives
bHT o (s)y & zlogx
Saw= g [ (T o5}

We can take T = exp(+/Iogz). The classical PNT now follows from the zero-free region of the
Riemann zeta-function and a standard contour-integration argument.

As another application, we proved in [18] a prime number theorem (Theorem 5.2) uncondi
tionally for Rankin-Selberg: L-functions L(s, 7 x #’), by removing the assumption of GRC in
Theorem 3.2.

Theorem b5.2. In Theorem 8.2, the assumption of GRC can be removed.

To prove Theorem 5.2, we apply Corollary 4.2 to obtain a bound for the short sum

Y. A <y

z<n<T+y

for y > zexp(—cylogz). Let a, be as in (5.3); then for the above y,

E el « { ¥ amamr}{ T amleror}”

z<n<z+y z<n<z+y z<n<lz+y
< ¥
Now let T = exp(v/Iogz). Then
T
> lan| € —=. (5.5)
z—z/VT<n<z+z/VT \/-f
On the other hand,
a (n)|ar(n 2y1/2 an(n)|*y1/2
B( )__E:i nl {2: )IW N } {2: |W( } (5£)
n=1 n=1 n=1 -

By Corollary 4.2,

iw = / =a{ 3" Aln)las(m)?}

n=1 nsu

* du ® 1
= /1 a-;+/1‘ Fd’r(u), (5.7)
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where r(u) <« uexp(—cy/logu). The last integral in (5.7) is O(1), while the first one is O{1/(c—
1)}. Consequently (5.6) gives us

B(o) < ;-i—l (5.8)

Without loss of generality, we may assume z = [z] + 1/2. Now we may apply Theorem 5.1
with b=1+1/logz and T = exp(v/Iogz) to }_, <. an. By (5.5) and (5.8), we get

b4+iT L

Z an 2m - {-—-—-(s,vr X w’)}——ds + O{z exp(—cy/log z)}. (5.9)

n<z

Now we can shift the contour in (5.9) to the left, apply the zero-free region of Moreno [20]
[21), Sarnak [27], and Gelbart, Lapid, and Sarnak (3], and estimate the resulting sums over
zeros and poles. Theorem 5.2 then follows.

Corollary 5.3. In Corollary 3.8, the assumption of GRC can be removed.
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