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Abstract

Let $A,$ $\epsilon>0$ be arbitrary. We prove that the number of integers $n\in(x,x+H]$ , satisfying some natural conditions,
which cannot be represented as the sum of five cubes of primes is $\ll H(\log x)^{-A}$ , provided that $x^{2/s+\epsilon}\leq H\leq x$ .

1. Introduction

It has been conjectured that every sufficiently large integer, satisfying some natural congruence
conditions, can be written as the sum of four cubes of primes. While such a result appears to
lie beyond the reach of present methods, Hua [3] has been able to show that every sufficiently
large odd integer is the sum of nine cubes of primes. He also established that almost all integers
$n\in$ ’Yt $=$ { $n\in \mathrm{N}$ : $n\equiv 1$ (mod 2), $n\not\equiv 0,$ $\pm 2$ (mod 9), $n\not\equiv 0$ (mod 7)}, can be expressed
as the sum of five cubes of primes. Here the term (almost all’ means that if $E(x)$ denotes
the number of possible exceptions up to $x$ , then $E(x)\ll x(\log x)^{-A}$ for a certain constant
$A>0$ . In 1961, Schwarz [8] refined Hua’s method to demonstrate the last estimate for any
$A>0$ . In 2000, Ren [7] made a substantial improvement upon the latter result by showing that
$E(x)\ll x^{152/153+\epsilon}$ for any fixed $\epsilon>0$ . Shortly afterward, the constant in the exponent was
sharpened to 35/36 by Wooley [9], and to 79/84 by Kumchev [5].

In the present paper we gain further insight into the problem of representing integers as the
sum of five cubes of primes by averaging over short intervals only. Let $\Lambda(n)$ and $\varphi(n)$ denote
von Mangoldt’s function and Euler’s function, respectively, and write $e(\alpha)=e^{2\pi i\alpha}$ for real $\alpha$ .
Following the notation introduced in [7], for a sufficiently large positive number $x$ we define
$U=(x/12)^{1/3}$ ,

$R(n)= \sum_{k_{1^{+\cdot+}}^{\mathrm{s}_{U<h\leq}}}..\cdots\sum_{k_{5}^{\theta}=n,2U}$

A $(k_{1})\ldots$ A $(k_{5})$ ,

$\sigma(n)=\sum_{q=1}^{\infty}\sum_{(\begin{array}{l}aa,q\end{array})}^{q}(\varphi(q)^{-1}(h,q)=1\sum_{h=1}^{q}e(ah^{3}/q))^{5}e(-an/q)$
,

and
$J(n)=3^{-5} \int_{D}(u_{1}\ldots \mathrm{u}_{5})^{-2/3}du_{1}\ldots du_{4}$ ,

where
$D=\{(u_{1}, \ldots,u_{4}):U^{3}<u_{1}, \ldots,u_{5}\leq 8U^{3}\}$

with $u_{5}=n-u_{1}$ –. . . $-u_{4}$ . Our first result states as follows.
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THEOREM 1. Suppose that $A,$ $\epsilon>0$ and $x^{2/3+\epsilon}\leq H\leq x$ . Then

$\sum_{x<n\leq x+H}|R(n)-\sigma(n)J(n)|^{2}<<_{A,\epsilon}Hx^{4/\mathrm{s}}(\log x)^{-A}$
.

$n\in\Re$

We recall that the singular series $\sigma(n)$ is absolutely convergent, and there exists a constant
$C$ such that $\sigma(n)\geq C>0$ for every $n\in\Re$ (the reader may refer to Lemmas 8.10 and 8.12 of
Hua’s book [2] $)$ . We also note that the singular integral $J(n)$ trivially satisfies the inequality

$U^{2}\ll J(n)\ll U^{2}$ .

Employing a standard argument, we deduce from Theorem 1 the following

THEOREM 2. Suppose that $A,$ $\epsilon>0$ and $x^{2/3+\epsilon}\leq H\leq x$ . Then

$E(x+H)-E(x)<<_{A},{}_{C}H(\log x)^{-A}$ .

The proof of Theorem 1 is based on the Hardy-Littlewood circle method. The integral over
the major arcs is evaluated by classical arguments, while the contribution of the minor arcs is
bounded by adapting the technique of [6], applied to deal with sums of three squares of primes
in short intervals. We also borrow an idea of Kawada [4, \S 6], which enables us to conveniently
transform the short interval average over the minor arcs. It appears that the constant 2/3 is
the best that our argument could yield.

2. Auxiliary lemmas

Much of our analysis is concerned with the exponential sum

$S( \alpha)=\sum_{\mathrm{k}\sim U}\Lambda(k)e(\alpha k^{3})$
,

where $k\sim U$ denotes $U<k\leq 2U$ . Our first lemma states the famous Vinogradov’s estimate in
a form due to Rijii [1, Lemma 2].

LEMMA 1. Suppose that $|\alpha-a/q|\leq q^{-2}$ with $(a, q)=1$ . Then

$S(\alpha)\ll U(q^{-1}+qU^{-3}+U^{-1/2})^{1/32}(\log qU)^{C_{1}}$ ,

where $C_{1}>0$ and the implied constant are absolute.

In the next lemma we recall the well-known Hua’s estimate [2, Theorem 4].

LEMMA 2. We have
$\int_{0}^{1}|S(\alpha)|^{8}$ $do_{t}\ll U^{5}(\log U)^{C_{2}}$ ,

where $C_{2}>0$ and the implied constant are absolute.
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We introduce the Fej\’er kernel

$K( \alpha)=K(\alpha, H)=\sum_{|m|\leq 2H}M(m)e(\alpha m)$
,

where
$M(m)=M(m,H)= \max(1-\frac{|m|}{2H},$ $0)$ .

Then $K(\alpha)\geq 0$ for all real a, see for example [4, \S 6]. We define

$\Phi(\alpha)=\int_{-1/2}^{1/2}|S(\alpha+\beta)|^{2}K(\beta)d\beta$

$=$
$\sum_{k,l\sim}\sum_{U}\Lambda(k)\Lambda(l)M(k^{3}-l^{3})e(\alpha(k^{3}-l^{3}))$

,

and
$\Psi(\alpha)=\sum_{k,l\sim}\sum_{U}M(k^{3}-l^{3})e(\alpha(k^{3}-l^{3}))$

.

In the next statement we collect some properties of the above quantities. Let $\tau_{3}(k)$ denote, as
usual, the divisor function.

LEMMA 3. For every $r\mathrm{r}l\alpha$ :

(i) $0\leq\Phi(\alpha)\leq\Phi(0)\ll U(1+HU^{-2})(\log U)^{2}$ ;

(ii) $0\leq\Psi(\alpha)\leq\Psi(0)\ll U(1+HU^{-2})$ ;

(iii) There enists a $function—(\alpha)$ , such that $\Psi(\alpha)^{2}\ll---(\alpha)$ and

$—( \alpha)=O(U^{2}+H^{2}U^{-3})+HU^{-2}\sum_{0<|h|\leq 2H}c(h)e(\alpha h)$
,

with $c(h)\ll\tau_{3}(|h|)$ .

PROOF. First we consider (iii). Supposing that $0<k^{3}-l^{3}$ , we put $k=l+d$ and change the
summation variable. Subsequently, $l,$ $l+d\sim U$ and $k^{3}-l^{3}=(l+d)^{3}-l^{3}=3l^{2}d+3ld^{2}+d^{3}$ . Since
$M(k^{3}-l^{3})=0$ unless $k^{3}-l^{3}<2H$ , we see that $2H>k^{3}-l^{3}=(k-l)(k^{2}+kl+l^{2})>(k-l)3U^{2}$,
or $d<HU^{-2}$ . On writing

$M(k^{3}-l^{3})=M’(l, d)$ ,

we find that
$\Psi(\alpha)\ll U+\sum_{d<HU^{-2}}|\sum_{\iota}M’(l, d)e(\alpha(3l^{2}d’+3ld^{2}))|$ , (1)

where ‘ in $\sum’$ indicates the condition $l,$ $l+d\sim U$ . An appeal to Cauchy’s inequality reveals
that

$\Psi(\alpha)^{2}$ $<<$ $U^{2}+HU^{-2} \sum_{d<HU^{-2}}|\sum_{l}M’(l,d)e(\alpha(3l^{2}d+3ld^{2}))|^{2}$
’

$=$ $—(\alpha)$ ,
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say. The sum above is

$=$ $o( \sum_{d<HU^{-2}}\sum_{l}1)/$

$+ \sum_{d<HU^{-2}}\sum_{l\neq}\sum_{m}M’(l,d)M’(m,d)e(\alpha(3d(l^{2}-m^{2})+3d^{2}(l-m)))\prime\prime$

$=$
$O(HU^{-2}U)+ \sum_{0<|h|\leq 2H}c(h)\mathrm{e}(\alpha h)$

,

where
$c(h)= \sum_{d<HU^{-2}}$

$\sum_{l,3d(l-m)(l},\sum_{m,+m+d)=h}M’(l,d)M’(m,d)\ll\tau_{3}(|h|)\prime\prime$

,

which completes the proof of (iii).
We now turn to (ii). By (1), we trivially have

$\Psi(0)\ll U+HU^{-2}U$,

which delivers the last inequality in (ii), and the other two are obvious. The proof of (i) is
analogous.

3. Proof of Theorem 1

Hereafter we assume that $\epsilon>0$ is sufficiently small, and $U^{2+\epsilon}\ll H\ll U^{3}$ so that $1+HU^{-2}\ll$

$HU^{-2}$ in Lemma 3. We have

$R(n)= \int_{0}^{1}S(\alpha)^{5}e(-\alpha n)d\alpha$ .

Put
$L=\log x$ , $P=L^{B}$ , $Q=xP^{-2}$ ,

where the constant $B>0$ will be specified later. Define the set of major arcs spt as the union
of all intervals {a $\in \mathrm{R}$ : $|q\alpha-a|\leq Q^{-1}$ } with $1\leq a\leq q\leq P$ and $(a, q)=1$ . Denote the
corresponding set of minor arcs by $\mathrm{m}=[1/Q, 1+1/Q]\backslash \mathfrak{M}$ . Then,

$R(n)=( \int_{\mathfrak{M}}+\int_{\mathrm{m}})S(\alpha)^{5}e(-\alpha n)d\alpha=R_{\mathfrak{M}}(n)+R_{\mathrm{m}}(n)$ ,

say. By classical arguments based on the Siegel-Walfisz theorem (see [2], for example), we derive
tfat for all $n\in \mathfrak{R}\cap(x, x+H]$ , in the notation introduced above,

$|R_{\mathfrak{M}}(n)-\sigma(n)J(n)|\ll U^{2}L^{-A/2}$ ,

provided that $B\geq A+1$ . Our choice of the constant $B$ at the end of Section 4.2 satisfies this
inequality, thus yielding the desired bound for the contribution of the major arcs. It remains to
prove that

$\sum_{x<n\leq x+H}|R_{\mathrm{m}}(n)|^{2}\ll HU^{4}L^{-A}$
, (2)
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which is the objective of the next section.

4. The minor arcs

Employing an argument of Kawada [4, \S 6], we find that

$\sum_{x<n\leq x+H}|R_{\mathrm{m}}(n)|^{2}$

$\leq$ 2 $\sum_{|m|\leq 2H}M(m)|\int_{\mathrm{m}}S(\alpha)^{5}e(-\alpha(x+m))d\alpha|^{2}$

$\ll$ $\int_{\mathrm{m}}\int_{1\mathfrak{n}}|S(\alpha)|^{\mathrm{b}}|S(\beta)|^{5}|K(\beta-\alpha)|d\alpha d\beta$

$\ll$ $W_{5}$ , (3)

where
$W_{l}=W_{l}(H)= \int_{\mathrm{m}}\int_{\{\mathfrak{n}}|S(\alpha)|^{1}|S(\beta)|^{l}K(\beta-\alpha,H)d\alpha d\beta$ .

Hence our principal task is to bound $W_{5}$ . However, our argument in Section 4.2 reduces the
estimate of $W_{5}$ to that of $W_{8}$ and therefore it is convenient to start with the latter quantity.

4.1. The estimate of $W_{8}$

First we observe that for any $\xi\in \mathrm{m}$ there exists a rational number $a/q$ such that $|\xi-a/q|\leq q^{-2}$ ,
$(a, q)=1$ and $P\leq q\leq Q$ , by Dirichlet’s approximation theorem. Since

$|S(\alpha)|^{8}|S(\beta)|^{8}\ll|S(\alpha)|^{14}|S(\beta)|^{2}+|S(\alpha)|^{2}|S(\beta)|^{14}$ ,

we have by symmetry,

$W_{8}$ $\ll$ $\int_{\mathrm{m}}\int_{\mathrm{m}}|S(\alpha)|^{14}|S(\beta)|^{2}K(\beta-\alpha)d\alpha d\beta$

$\ll$ $\int_{\mathrm{m}}|S(\alpha)|^{14}(\int_{-1/2}^{1/2}|S(\alpha+\beta)|^{2}K(\beta)d\beta)d\alpha$

$=$ $\int_{\mathrm{m}}|S(\alpha)|^{14}\Phi(\alpha)d\alpha$

$\ll$ $\Phi(0)(,\sup_{\alpha\in \mathrm{m}}|S(\alpha’)|^{6})\int_{0}^{1}|S(\alpha)|^{8}d\alpha$ ,

by Lemma 3. Combining Lemmas 1, 2 and 3, we obtain

$W_{8}=W_{8}(H)<<HU^{10}P^{-3/16}L^{6C_{1}+C_{2}+2}$ . (4)

4.2. The estimate of $W_{6}$

Following the argument from the previous section, we find that

$W_{5}$ $\ll$ $\int_{\mathrm{m}}|S(\alpha)|^{8}\Phi(\alpha)d\alpha$

$<<$ $L^{2} \sum_{k,l\sim}\sum_{u}M(k^{3}-l^{3})|\int_{\mathrm{m}}|S(\alpha)|^{8}e(\alpha(k^{3}-l^{3}))d\alpha|$ .
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An application of Cauchy’s inequality yields

$(W_{5})^{2}$ $<<$ $L^{4} \Psi(0)\sum_{k,l\sim}\sum_{U}M(k^{3}-l^{3})|\int_{\mathrm{m}}|S(\alpha)|^{8}e(\alpha(k^{3}-l^{3}))d\alpha|^{2}$

$\ll$ $L^{4} \Psi(0)\int_{\mathrm{m}}\int_{\mathrm{m}}|S(\alpha)|^{8}|S(\beta)|^{8}\Psi(\beta-\alpha)d\alpha d\beta$ .

Another application of Cauchy’s inequality, Lemmas 2 and 3 show that

$(W_{5})^{4}$ $\ll$ $L^{8} \Psi(0)^{2}(\int_{\mathrm{m}}|S(\alpha’)|^{8}d\alpha’)^{2}$

$\cross\int_{\mathrm{m}}\int_{\mathrm{m}}|S(\alpha)|^{8}|S(\beta)|^{8}\Psi(\beta-\alpha)^{2}d\alpha d\beta$

$\ll$ $L^{8}(HU^{-1})^{2}( \int_{0}^{1}|S(\alpha’)|^{8}d\alpha’)^{2}$

$\cross((U^{2}+H^{2}U^{-3})(\int_{0}^{1}|S(\alpha)|^{8}d\alpha)^{2}+HU^{-2}J)$

$\ll$ $H^{4}U^{16}(H^{-2}U^{4}+U^{-1})L^{4C_{2}+8}+H^{3}U^{6}L^{2C_{2}+8}J$ , (5)

where
$J= \sum_{h\leq 2H}\tau_{3}(h)|\int_{\mathrm{m}}|S(\alpha)|^{8}e(\alpha h)d\alpha|^{2}$

The estimate of $J$ is reduced to that of $W_{8}$ . Indeed, by Cauchy’s inequality and Lemma 2, we
find that

$J^{2}$ $<<$ $\sum_{h’\leq 2H}\tau_{3}(h’)^{2}(\int_{\mathrm{m}}|S(\alpha’)|^{8}d\alpha^{J)^{2}}\sum_{h\leq 2H}|\int_{\mathrm{m}}|S(\alpha)|^{8}e(\alpha h)d\alpha|^{2}$

$\ll$ $HL^{8}(U^{5}L^{C_{2}})^{2} \sum_{|h|\leq 4H}M(h, 2H)|\int_{\mathrm{m}}|S(\alpha)|^{8}e(\alpha h)d\alpha|^{2}$

$=$ $HU^{10}L^{2C_{2}+8}W_{8}(2H)$ , (6)

since $M(h, 2H)= \max(1-\frac{|h|}{4H},$ $0) \geq\frac{1}{2}$ for $0<h\leq 2H$ .

Substituting (6) into (5), and recalling (4), we conclude that

$(W_{5})^{4}$

$<<\ll$
$H^{4}U^{16\epsilon}H^{4}U^{16\epsilon}+H^{4}U^{16}P^{-3/32}L^{3C_{1}+4C_{2}+13}=+H^{3}U^{6}L^{2C_{2}+8}(HU^{10}L^{2C_{2}+8}.W_{8}(2H))^{1/2}$

(7)

On choosing $B=44(A+C_{1}+C_{2}+4)$ , the inequality (2) follows from (3) and (7). The proof
of Theorem 1 is complete.
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