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SUMS OF FIVE CUBES OF PRIMES

Hiroshi Mikawa and Temenoujka Peneva*

Abstract

Let A, € > 0 be arbitrary. We prove that the number of integers n € (z, z+ H), satisfying some natural conditions,
which cannot be represented as the sum of five cubes of primes is < H(logz) 4, provided that 2%/°*¢ < H < z.

1. Introduction

It has been conjectured that every sufficiently large integer, satisfying some natural congruence
conditions, can be written as the sum of four cubes of primes. While such a result appears to
lie beyond the reach of present methods, Hua [3] has been able to show that every sufficiently
large odd integer is the sum of nine cubes of primes. He also established that almost all integers
neN={neN:n=1(mod 2),n # 0,+2(mod 9), n # 0(mod 7)}, can be expressed
as the sum of five cubes of primes. Here the term ‘almost all’ means that if E(z) denotes
the number of possible exceptions up to z, then E(zr) < z(log z)~4 for a certain constant
A > 0. In 1961, Schwarz (8] refined Hua’s method to demonstrate the last estimate for any
A > 0. In 2000, Ren [7] made a substantial improvement upon the latter result by showing that
E(z) < z'52/153+¢ for any fixed ¢ > 0. Shortly afterward, the constant in the exponent was
sharpened to 35/36 by Wooley [9], and to 79/84 by Kumchev [5].

In the present paper we gain further insight into the problem of representing integers as the
sum of five cubes of primes by averaging over short intervals only. Let A(n) and ¢(n) denote
von Mangoldt’s function and Euler’s function, respectively, and write e(a) = e2™@ for real a.
Following the notation introduced in [7], for a sufficiently large positive number x we define
U = (2/12)'3,

Rm)=_...Y A(ky)...Alks),

K3+ +kd=n
U<k;<2U
o0 q q 5
om =Y 3 (o@D elan/e) e(-an/q),
g=1 a=1 h=1
(a,9)=1 (h,g)=1

and

J(n) = 3‘5/ (u1...us)"3du; ... dug,

, D
where
D ={(u1,...,uq): U3 <uy,...,us < 8U3}

with us = n — uj; — ... — ugq. Our first result states as follows.
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THEOREM 1. Suppose that A, € > 0 and z2/3+¢ < H < z. Then

Y. IR -o(m) I <ae Ha*(logz) ™.
z<n£&+H
ne

We recall that the singular series o(n) is absolutely convergent, and there exists a constant
C such that o(n) > C > 0 for every n € 9 (the reader may refer to Lemmas 8.10 and 8.12 of
Hua’s book [2]). We also note that the singular integral J(n) trivially satisfies the inequality

U? <« J(n) < U?.

' Employing a standard argument, we deduce from Theorem 1 the following
THEOREM 2. Suppose that A, € > 0 and z?/3t¢ < H < z. Then

E(z + H) — E(z) €4 H(logz)™.

The proof of Theorem 1 is based on the Hardy-Littlewood circle method. The integral over
the major arcs is evaluated by classical arguments, while the contribution of the minor arcs is
bounded by adapting the technique of [6], applied to deal with sums of three squares of primes
in short intervals. We also borrow an idea of Kawada [4, §6], which enables us to conveniently
transform the short interval average over the minor arcs. It appears that the constant 2/3 is
the best that our argument could yield.

2. Auxiliary lemmas

Much of our analysis is concerned with the exponential sum

S(a) =Y A(k)e(ak?),

k~U

where k ~ U denotes U < k < 2U. Our first lemma states the famous Vinogradov’s estimate in
a form due to Fujii [1, Lemma 2].

LEMMA 1. Suppose that |o — a/g| < ¢~? with (a,q) = 1. Then
S(e) < U(g™t + qU™3 + U2 Y3%(log qU)1
where C; > 0 and the implied constant are absolute.
In the next lemma we recall the well-known Hua’s estimate {2, Theorem 4.

LEMMA 2. We have .
/0 1S(@)|® da < US(log U)©?,

where Cy > 0 and the implied constant are absolute.
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We introduce the Fejér kernel
K(a)=K(,H)= Y M(m)e(om),
|m|<2H

where

M(m) = M(m, H) = max (1 - %‘-,0).

Then K(a) > 0 for all real o, see for example (4, §6]. We define

@(e)

1/2
/ LIS+ APK@ ds

= TS ARAQ MK - Pealk® - 13)),

k,I~nU

and

(o) =) > ME - Pe(a®® -1%).

k,I~U

In the next statement we collect some properties of the above quantities. Let 73(k) denote, as
usual, the divisor function.

LEMMA 3. For every real a:
(i) 0<®(a)<®0) < U(l+HU?)(logl)?;

(i) 0<¥(a)<¥(0) < UQ+HU?);
(i) There ezists a function E(a), such that ¥(a)? < E(a) and
E() = OU? + HU)+ HU™2 Y c(h)e(ah),

0<|h|<2H
with c(h) < 73(|R)).

PROOF. First we consider (iii). Supposing that 0 < k% — 13, we put k = [ +d and change the
summation variable. Subsequently, [, I+d ~ U and k3—13 = (I+d)3—13 = 312d+3Id?+d>. Since
M (k3 —13) = 0 unless k3 — I3 < 2H, we see that 2H > k3 — I3 = (k—1)(k*+kl+1%) > (k—1)3U?,
or d < HU~2. On writing

M(k® - 13) = M'(L,d),

we find that

Vo) <U+ Y,
d<HU-?

3 M (1, d) e(a(31%d + 31d?))
l

, (1)

where / in Y’ indicates the condition [, + d ~ U. An appeal to Cauchy’s inequality reveals
that

2
U(e)? <« U2+HU? Y
d<HU-2

Y M1, d) e(e(312d + 31d%))
l
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say. The sum above is

= O( Z Z'l)
d<HU-? |
+ 3 ST M1, d) M (m, d) e(a(3d(E? — m?) + 3d*(1 — m)))

d<HU-2 l#m

= OHUT)+ Y, c(h)e(ah),
0<|h{<2H

where

o)=Y, ZZ M'(1,d) M'(m, d) < m3(h]),
d<HU-?
- 3d(l-m )(l+m+d)—

which completes the proof of (iii).
We now turn to (ii). By (1), we trivially have

¥(0) < U + HU™?U,

which delivers the last inequality in (ii), and the other two are obvious. The proof of (i) is
analogous.

3. Proof of Theorem 1

Hereafter we assume that € > 0 is sufficiently small, and U?*¢ « H « U3 so that 1 + HU 2 <
HU? in Lemma 3. We have

R(n) = /01 S(e)%e(—an)da.

Put
L =logz, P=1L5B, Q=2zP?%

where the constant B > 0 will be specified later. Define the set of major arcs 9t as the union
of all intervals {d € R: |ga—a| < Q7'} with 1< a < ¢ < P and (a,q) = 1. Denote the
corresponding set of minor arcs by m = [1/Q,1 + 1/Q]\9. Then,

R(n) = ( /m+ /m ) S(a)®e(—an)da = Rgy(n) + Rm(n),

say. By classical arguments based on the Siegel-Walfisz theorem (see [2], for example), we derive
that for all n € NN (z,z + HJ, in the notation introduced above,

|Ran(n) — o(n) J(n)| <« UPL™472,

provided that B > A + 1. Our choice of the constant B at the end of Section 4.2 satisfies this
inequality, thus yielding the desired bound for the contribution of the major arcs. It remains to
prove that
> |Rm(n)]® <« HU'L™4, 2)
z<n<z+H



which is the objective of the next section.

4. The minor arcs

Employing an argument of Kawada [4, §6], we find that

2
E |Rm(n)]? < 2 Z M(m)'LS(a)5e(—a(z+m))m

z<nlz+H jm|<2H

< /m /m IS@)PIS(B)PIK (B ~ 2)| derd

< Ws, (3)

where
Wi = Wi(H) = /m /m IS(@)FIS(B) K (B — o, H) derd.

Hence our principal task is to bound W5. However, our argument in Section 4.2 reduces the
estimate of W5 to that of Wy and therefore it is convenient to start with the latter quantity.

4.1. The estimate of Ws

First we observe that for any £ € m there exists a rational number a/q such that |£—a/q| < ¢72,
(a,q) =1 and P < ¢ < @, by Dirichlet’s approximation theorem. Since

1S@)BISB)E < IS(@)[*|SB)F + IS(a) PS8,

we have by symmetry,

Wy < A /m 1S(2)|“|S(B)PK (6 — a) dadB
of M2 2 o
< /m 1S(@)|! ( / 15+ 8) K(ﬂ)dﬁ>d
- / 15(c)[48() da
" 1
2(0) (321;1 |S(a')|6) [ 1s@yeaa,

by Lemma 3. Combining Lemmas 1, 2 and 3, we obtain

<

A

Ws = Ws(H) < HUlOP——3/16L6C1+Ca+2 . (4)

4.2. The estimate of Wy

Following the argument from the previous section, we find that

Ws < / 1S(c)|B8(a) da
m

< LAY Y M@E-B)

k, I~U

/ 1S (@) Be(a(k® — 13)) da] .
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An application of Cauchy’s inequality yields

Ws)? < LA0)). > MK - 1)

k, iI~U
< 190) [ [ IS@PISE)¥(8 - o) dads.

mJsm
Another application of Cauchy’s inequality, Lemmas 2 and 3 show that

2
(W)t < LPU(0)? ( / 1S(a)P da')

m

x [ [ 18@FIs@)P¥(a - o) dads
mJsm

/ 1S(o)Pe(alk® — 1) da]

< IL8HU)? (/: 1S(e/)® da')2

2
X ((U2 + H?U9) ( /; 1 1S(a)[® da) + HU‘zJ)

< HUSHT2U*+ UT)LAOE 4 HOUSLAOE, (5)

where 2
J = Z r3(h) '-/ |8 () [Be(ah) da

h<2H m

The estimate of J is reduced to that of Wg. Indeed, by Cauchy’s inequality and Lemma 2, we
find that

/ 1S (a)Be(ah) da

2 o< 3 nwy ( / lS(a’)lsda) py)

h'<2H

< HLAUSL®)? ) M(h, 2H)| / lS(a)Ise(ah)da
|h|<4H m

HulOL2C'2+8W8(2H) , (6)

4H’
Substituting (6) into (5), and recalling (4), we conclude that
(W5)4 <« HAU—= 4 H3U6L202+8(HU10L202+8W8(2H))1/2
< H4U16-—€ + H4U16P—3/32L301+402+13. (7)

since M(h,ZH).—zma.x( Inl )2% for 0 < h < 2H.

On choosing B = 44(A + C; + C; + 4), the inequality (2) follows from (3) and (7). The proof
of Theorem 1 is complete.
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