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Abstract
Takebe Katahiro (建部賢弘, 1664–1739) studied carefully the Suanxue Qimeng (算

学啓蒙) written by Zhu Shijie (朱世傑) in 1299 and learned from this Chinese classic
how to deal with (one-variable) polynomials with numerical coefficients (天元術) Then
he and his master Seki Takakazu (関孝和, ca.1640–1708) developed a method to han-
dle (one-variable) polynomials with variable coefficients (傍書法) and applied this new
method to solve many problems in the Hatsubi $Sanp\overline{\mathit{0}}$ Endan Genkai (発進算法分段諺
解, 1685). Takebe published an annotated translation of the Suanxue Qimeng in 1690 for
mathematical students. For the mathematics of Seki see his collected work (see [1]).

Takebe’s exploit in the real variable calculus was his discovery of the Taylor expan-
sion formula for the inverse trigonometric function $(\arcsin t)^{2}$ . As was described in his
book Tetsujutsu Sankei (秘術算経, 1722) he obtained this result by numerical calculation
without knowing any theory of differentiation and integration as is presented in today’s
textbooks of real variable calculus.

In the Tetsujutsu Sankei we cannot find any notion of the Cartesian plane, which is basic
in the modern advanced calculus, but we can find some primitive ideas of differentiation
and integration.

1) Takebe knew that if a polynomial $P(x)$ takes a maximum value then the derivative
$P’(x)$ vanishes.

2) Takebe could derive the formula of the surface area of a sphere from the formula of
the volume with numerical differentiation.

3) Takebe could derive the formula of the volume of a sphere by the integration by
partition.

’This paper was read at the Sixth International Symposium on the History of Mathematics&Math-
ematical Education Using Chinese Characters (ISHME) August 4-7, 2005, University of Tokyo, Komaba
Campus.
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1Modern Mathematics and Japanese Mathematics
In 1722, Takebe Katahiro $(\ovalbox{\tt\small REJECT}_{\mathrm{p}}^{*}\beta \mathrm{g}\ovalbox{\tt\small REJECT} \mathrm{A})$ wrote the Tetsujutsu Sankei ( $\ovalbox{\tt\small REJECT}’\phi^{arrow}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ , Mathe-

matical Treatise on the Technique of Linkage) to explain how mathematical research could
be done in accordance of one’s inclination, based on 12 examples of mathematical inves-
tigation. We shall consider this monograph and related works of Takebe as an example
of Japanese mathematics in the 18th century.

To understand the situation in perspective we contrast the Japanese mathematics with
modern matbematics.

(The most informative literature on the history of Japanese mathematics is the 5 vol-
umes History of Japanese Mathematics before the Meiji Restoration [5] but it is written
in Japanese. Horiuchi [2] and Ogawa [7] treat some accounts of the history of Japanese
mathematics in western languages. We refer the reader to Martzloff [3] for the history of
Chinese mathematics written in English.)

1.1 Numbers

Although Japanese mathematicians of the 18th century were able to manipulate frac-
tions easily, they did not distinguish the rational and the irrational numbers. For them
the number was something which could be represented and manipulated on an abacus
with eventually infinite length. This means, numbers for Japanese mathematicians were
real numbers represented by (infinite) decimals.

They distinguished exhaustible numbers (finite decimals) and inexhaustible numbers
(infinite decimals). Although they did not hesitate to use inexhaustible numbers, they
felt uneasy and tried to convert infinite decimals into approximate fractions using the
“method of residual division” ($\doteqdot \mathrm{f}\mathrm{f}\mathrm{i}\backslash \mathit{1}\#$, i.e. the Euclidean algorithm).

1.2 Symbols and Suffix Notation

To name mathematical objects, Japanese mathematicians employed Chinese characters
instead of alphabets, for example, the 10 “

$\mathrm{g}\mathrm{a}\mathrm{n}$

” ( $+\mp$ , a set of ordered 10 Chinese char-
acters) and the 12 “

$\mathrm{z}\mathrm{h}\mathrm{i}"$ ($+=*$ , a set of 12 Chinese characters). If these sets were not
sufficient, they employed the ordered set of 28 Chinese characters for constellations.

Like their contemporaries in Europe, Japanese mathematicians of the 18th century were
not able to use the parameter suffix notation to represent general terms of a sequence.

1.3 Cartesian Plane

Japanese mathematicians of the 18th century were ignorant of Cartesian plane, conse-
quently no idea of the graph of a function nor of the tangent. This means they had no
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basis for the notion of differentiation initiated by Newton and Leibniz.

1.4 Numerical Solution of an Algebraic Equation

In Chinese mathematics, an algebraic equation with numerical coefficients could be
solved numerically digit by digit. The equation was represented on a counting board with
counting rods.

This algorithm to find a solution of an algebraic equation had been known since longtime
in the name of generalized division. Its first occurrence was the extraction of the square
and the cubic roots in the Jiuzhang Suanshu ( $f\iota\xi g’\Re$ , Nine Chapters of Arithmetic
Arts) of the Chinese Han Dynasty (ca.l century). The generalized division was described
in detail in the Suanxue Qimeng ( $\mathrm{F}rightarrow\neq\overline{P}g\Leftrightarrow$, Introduction to Mathematics) of Zhu Shijie
$(*\#\Re)$ in the Chinese Yuen Dynasty (1299).

1.5 One Variable Polynomial with Numerical Coefficients

Besides, in the Suanxue Qimeng, Zhu Shijie explained how to represent a one variable
polynomial with numerical coefficients on a counting board and to formulate an algebraic
equation. This method was called the method of celestial element ( $\star\overline{\pi}\mathrm{P}\mathrm{F}’$ , “tianyuan
$\mathrm{s}\mathrm{h}\mathrm{u}$

” in Chinese or “tengen jutsu” in Japanese).
Seki Takakazu $(\ovalbox{\tt\small REJECT}\#\mathfrak{X}0, \mathrm{c}\mathrm{a}.1640- 1708)$ learned this method from the Suanxue Qimeng

and formulated the theory of one variable polynomials with numerical coefficients, which
we call the counting board algebra, in the $Kai$-indai no $h\overline{o}(\mathrm{f}\mathrm{f}\mathrm{l}\ovalbox{\tt\small REJECT} \mathrm{E}\mathrm{Z}\mathrm{V}\mathrm{f}$ , Method for
Solving Hidden Problems) in $\mathrm{c}\mathrm{a}$ .1685. In Chapter 2 of the Tetsujutsu Sankei, Takebe
explained a background of the method of celestial element.

1.6 Side Writing Method

Seki allowed algebraic combinations of symbols as coefficients of polynomials. This
method was called the side writing method ( $\dagger\ovalbox{\tt\small REJECT}\Rightarrow\#,$ “b\={o}sho h\={o}’’ in Japanese). With
this new tool he opened a new horizon in the mathematical research making it possible to
nanipulate polynomials with several variables. (See Chapter 6 of the Tetsujutsu Sankei
and Hatsubi $Sanp\overline{\mathit{0}}$ Endan Genkai.)

1.7 Derived Function of a Polynomial

In Chapter 6 of the Tetsujutsu Sankei, Takebe treated a cubic function (polynomial of
degree 3) and stated a proposition which meant the following: if a polynomial takes an
extreme value at a certain point, then the derived polynomial vanishes at the point.
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As remarked earlier, Takebe did not know the differentiation, how could he state this
proposition in terms of the counting board algebra.

1.8 Numerical Differentiation

In Chapter 8 of the Tetsujutsu Sankei, Takebe used the numerical differentiation to
obtain the formula for the surface area

$S=4\pi r^{2}$

of a sphere with radius $r$ from the formula for the volume

$V= \frac{4\pi r^{3}}{3}$

of the sphere.

1.9 Numerical Integration

In Chapter 9 of the Tetsujutsu Sankei, Takebe examined several ways to calculate the
formulas for the circumference $L=2\pi r$ of a circle with radius $r$ and for the volume
$V= \frac{4\pi r^{3}}{3}$ of a sphere with radius $r$ .

The circumference was approximated by piecewise linear curves to find its length as the
limit of the length of approximate piecewise linear curves.

To find the volume of the sphere he approximated the sphere by a pile of truncated
cones.

1.10 Infinite Series

In Chapter 12 of the Tetsujutsu Sankei, Takebe found the Taylor series expansion of
the inverse trigonometric function

$f(t)=(\arcsin t)^{2}$

and two approximation formulas of $f(t)$ by rational functions.
The meaning of these formulas was explained in detail in Morimoto-Ogawa [4].

2 Chapter 9 of the Tetsujutsu Sankei
In this section we shall examine Chapter 9 of the Tetsujutsu Sankei, which is entitled

“Investigating Numbers Stemming from the Decomposition” and the first chapter in the
3rd Part “Four Examples on Numbers” of the monograph.
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This chapter treats numerical integration and is composed of 4 sections. The 1st section
is an introduction, where Takebe states his understanding about the numerical calcula-
tion. In the following sections, Takebe states two partitioning methods, one to find the
circumference of a circle (the 2nd section) and the other, the volume of a sphere (the
3rd section). Then in the last 4th section, he examines the merits and demerits of these
two methods in relationship to the natural attributes of the respective objects (circle or
sphere.)

We shall present an English translation section by section and provide with some math-
ematical notes to understand succinct statements of Takebe.

2.1 Introductory Section

The first introductory section reads as follows:

If we want to investigate according to principles, there is the rule
of element placement, which unifies all the procedures.

If we want to investigate according to numbers, there is no way
other than the procedure of decomposition; furthermore, there
is no definite rule and the paths to a solution are different according
to thousands of rules. $31\mathrm{a}$

This means, the [procedure of] decomposition is the basis
of determining numbers and discerning principles, the way of inves-
tigation, and the method to find rules and procedures. Therefore,
if we decompose according to the form and attribute and inves-
tigate deeply to determine numbers, we surely understand the rule
and procedure. In this manner, we state its meaning and witness
its importance.

Takebe ProPoses here the procedure of decomposition as a basis of numerical cal-
culation.

2.2 Circumference of a Circle

The 2nd part reads as follows:

If he who decomposes the circumference of a circle cuts the diameter equally
and horizontally into thin slices, seeks the [length of the] right and left oblique
chords cut by the horizontal lines and adds the oblique chords to seek the
[approximate] circular circumference, then the parts of circumference are not
equal even if he cuts the diameter equally.
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Therefore, if he seeks the circumference doubling the sections of the diameter,
these numbers being disobedient to the attribute, he stagnates in determining
the extreme number and never obtain a basis to understand the attribute of

$31\mathrm{b}$

circle.

On the other hand, when he cuts the circumference into the four angular
forms [i.e., by an inscribed square] and further doubling angles [i.e., forming
an inscribed octagon, etc.], the circumference is cut into equal length and the
numbers are obedient to the attribute of circumference.

Therefore, doubling the number of angles and seeking the angular circumfer-
ences at each step, by the repeated application of the procedure of incremental
divisor he can determine the extreme number rapidly and obtain a basis to
understand the attribute of a circle.

Method of equal division of the diameter Mark $n-1$ points of a radius which
divide it into $n$ equal segments. Draw chords perpendicular to the radius through these
$n-1$ points, and join consecutive points on the circle with chords.

The length of this piecewise linear curve $\Gamma$ can be calculated by what Takebe calls the
procedure of the right-angled triangle (i.e., Pythagoras’ Theorem.) Because the length
of the k-th half chord perpendicular to the radius is given by $rh_{k}=r\sqrt{1-(k}/n)^{2}$ , the
length of the k-th chord of $\Gamma$ is equal to $r\sqrt{(1}/n)^{2}+(h_{k}-h_{k-1})^{2}$ . The chords which
approximate the semicircle come in pairs (left and right), so the n-th approximation of
the full circumference is given by

$S_{n}=4r \sum_{k=1}^{n}\sqrt{(1/n)^{2}+(h_{k}-h_{k-1})^{2}}$ .

Doubling the partitioning number $n=2,4,8,$ $\cdots$ , we obtain the following values with
$r=1/2$ . (To apply recursive computation, Japanese mathematicians must have done the
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calculation in this way):

$n$ $S_{n}$ P.I.D.
2 3.03528
4 3.1045
8 3.12854 3.14134700

16 3.13699 3.14156089
32 3.13997 3.14158800
64 3.14102 3.14159191

(P.I.D. stands for the Procedure of Incremental Divisor.)

Procedure of Incremental Divisor In this chapter, Takebe uses extensively the so-
called the procedure of incremental divisor, an acceleration method to find the limit of a
sequence $a_{n}$ .

If the given sequence satisfies $a_{n}=C_{0}+C_{1}s^{n}$ , with $|s|<1$ for $n=1,2,3,$ $\cdots$ , the
extreme value (i.e. the limit) is equal to $C_{0}$ . In this special case, $C_{0}$ can be determined
by $a_{1},$ $a_{2}$ and $a_{3}$ :

$C_{0}= \frac{a_{1}a_{3}-a_{2}^{2}}{a_{1}+a_{3}-2a_{2}}$

If the first $N$ terms of a sequence is given: $a_{n}(n=1,2,3, \ldots, N)$ , we form the first $N-2$
terms of a new sequence $A_{n}(n=3,4,5, \ldots, N)$ :

$A_{n}= \frac{a_{n-2}a_{n}-a_{n-1}^{2}}{a_{n-2}+a_{n}-2a_{n-1}}$

It can be expected the limits of $a_{n}$ and of $A_{n}$ coincide and that the convergence of $A_{n}$ is
$\mathrm{f}\mathrm{a}s$ter than that of $a_{n}$ This procedure was called the procedure of incremental divisor.

Takebe recommended to apply repeatedly this procedure; that is, put further

$B_{n}= \frac{A_{n-2}A_{n}-A_{n-1}^{2}}{A_{n-2}+A_{n}-2A_{n-1}}$ , $n=5,6_{?}\cdots,$ $N-4$ .

Then $B_{n}$ converges to the limit $C_{0}$ of the sequence $a_{n}$ faster, and so on.
This statement can be verified if the original sequence has the following form:

$a_{n}=C_{0}+C_{1}s^{n}+C_{2}s^{2n}+\cdots$ , $n=1,2,3,$ $\cdots$

with some $|s|<1$ .

Method of equal division of the circle Divide the circle equally into 4 parts and con-
nect the dividing points to obtain the inscribed square. Then the length of a side is equal
to $a_{4}=\sqrt{2}r$ and the length of the circumference of the inscribed regular square is equal
to $4a_{4}=4\sqrt{2}r$ . By the procedure of the right angled triangle, the length of a side of the
inscribed regular octagon $a_{8}$ is given as follows: $a_{8}=\sqrt{(r-\sqrt{r^{2}-(a_{4}/2)^{2}})^{2}+(a_{4}/2)^{2}}$ .
This relation holds in general.
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Let $a_{n}$ be the length of a side of the inscribed regular $n$-gone. Then we have

$a_{2n}=\sqrt{(r-\sqrt{r^{2}-(a_{n}/2)^{2}})^{2}+(a_{n}/2)^{2}}$.

If we put $a_{2}=2r$ , this holds even for $n=2$ . Therefore, if we know the length of
the circumference of the inscribed square, we can calculate, recursively, the length of the
circumference of the inscribed regular octagon, 16-gon, 32-gon, 64-gon $\cdots$ . The numerical
calculation with $r=1/2$ gives us

$n$ $na_{n}$ P.I.D.
2 2.000000
4 2.828443
8 3.061467 3.15268277

16 3.121445 3.14223140
32 3.136548 3.14163181
64 3.134033 3.14159509

Comparison of two methods Takebe considers the latter method to be more natural
for a circle. But the numerical calculation by computer shows that there are no significant
difference between them. We are not sure if Takebe really executed the former calculation
or not. In fact, a Japanese mathematician of the late $Edo$ period calculated the length of
circular length using the former method.

2.3 Volume of a Sphere

The 3rd part reads as follows:

He who decomposes the volume of a ball, slices the diameter of the ball equally
and makes each slice into the shape of a circular platform.
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Because the sum of widths of these slices is the sagitta of a arc, we can calculate
the chord of the arc, which we take as the diameters of the upper and the lower
ends of the platform; the width of the slice is the height of the platform.

By the procedure to seek the volume of a circular platform, one finds the
volume of each slice and summing these slices forms the cut out volume. $32\mathrm{a}$

(If he omits the circular coefficient in seeking the volume of a platform, he can
obtain the volume of a square platform.)

Further, doubling the number of slices and seeking the cut out volume at
each step, investigating the obtained numbers to determine the incremental
divisors, according to the procedure, we find the extreme number of the true
volume.

Because this does not disobey the principle of volume seeking, he does not
stagnate in determining the extreme number.

But further investigating deeply, we find that the procedure to find the volume
of a platform seems good as a principle but the numbers do not converge well.

Therefore, multiplying the sum of the square of the upper radius and the
square of the lower radius by the height, and halving this to form the volume
of the tubular slices and adding them up, we form tbe cut out volume of
accumulated tubes.

If, doubling the number of slices and seeking the polyhedral volumes, we apply
the procedure of incremental divisor to determine the extreme number, we can
find the extreme number rapidly even with a very small number of slices. $32\mathrm{b}$

Truly it is not indeed the procedure to find the volume of aplatform to find
the volume of a tabular slice.

This is a miraculous procedure in the decomposition of the volume of a
ball and follows the attribute of the decomposition of the volume of ball.

Volume of a circular platform The formula for the volume of a circular platform is
quoted here. A circular platform is the cone truncated by a plane perpendicular to the
axis. Let $r_{1}$ be the radius of the bottom, $r_{2}$ that of the top, $h$ the height. Then the
volume is given by

$V= \frac{\pi h}{3}(r_{1}^{2}+r_{1}r_{2}+r_{2}^{2})$ .

If $r_{2}=0$ , it coincides with the volume of the circular cone $V=arrow^{\pi hr^{2}};3$ if $r_{1}=r_{2}$ , it coincides
with the volume of a cylinder.
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Approximation by the superposed circular platforms Divide the radius of the
sphere into $n$ segments. Because the radius of the small circle perpendicular to the axis
and passing through the k-th division point is given $r_{k}=r\sqrt{1-(k}/n)^{2}$ , the volume of
the k-th circular platform inscribed in the sphere is given by

$V_{k}= \frac{\pi r}{3n}(r_{k-1}^{2}+r_{k-1}r_{k}+r_{k}^{2})$ .

Therefore, the volume of the hemisphere is approximated by

$V(n)= \frac{\pi r}{3n}\sum_{k=1}^{n}(r_{k-1}^{2}+r_{k-1}r_{k}+r_{k}^{2})$ .

Because the (approximate) value of $\pi$ is known, we calculate numerically $V(n)/\pi$ with
$r=1$ .

Along with $V(n)$ , we also calculate numerically, with $r=1$ , the following

$\overline{V}(n)=\frac{\pi r}{2n}\sum_{k=1}^{n}(r_{k-1}^{2}+r_{k}^{2})$ .

Tfe results are as follows:
$n$ $V(n)/\pi$ P.I.D.
2 0.561004
4 0.635799

$\overline{V}(n)/\pi$ P.I.D.
0.625
0.65625

8 0.657951 0.667271 0.664063 0.66667
16 0.664251 0.666754 0.666016 0.66667
32 0.666005 0.666682 0.666504 0.66667
64 0.666487 0.66667 0.666626 0.66667

As evident from this numerical calculation, $V(n)/\pi$ converges to the extreme value 2/3
sufficiently fast (if we use the Procedure of Incremental Divisor, this convergence becomes
faster.) But $\overline{V}(n)/\pi$ converges much faster to the extreme value (if we use the Procedure
of Incremental Divisor the third term gives an accurate approximation.) Although a
geometrical meaning cannot be given to $\overline{V}(n)$ , this gives a very accurate approximation.
Takebe praised the latter approximation saying this was a “miraculous procedure”.
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Explanation of “miraculous procedure”

Approximating the hemisphere by the circumscriptive circular cylinders, we obtain

$U(n)= \frac{\pi r}{n}\sum_{k=1}^{n}r_{k-1}^{2}$ .

This gives an excessive approximation of the volume of the hemisphere. Approximating
the hemisphere by inscribed circular cylinders, we obtain

$W(n)= \frac{\pi r}{n}\sum_{k=1}^{n}r_{k}^{2}$ .

This gives a deficient approximation of the volume of the hemisphere. By the inclusion
relation of these objects, we have

$W(n)<V(n)<U(n)$ .

$\overline{V}(n)$ is nothing but the average of $W(n)$ and $U(n)$ . By the Procedure of Piling (that is,
the formulas $\sum_{k=1}^{n}k=n(n+1)/2,$ $\sum_{k=1}^{n}k^{2}=n(n+1)(2n+1)/6$ , etc.), we can calculate
exactly $U(n),$ $W(n)$ , and consequently $\overline{V}(n)$ :

$U(n)= \frac{-1+3n+4n^{2}}{6n^{2}}$ , $W(n)= \frac{-1-3n+4n^{2}}{6n^{2}}$ ,

$\overline{V}(n)=\frac{-1+4n^{2}}{6n^{2}}=\frac{2}{3}-\frac{1}{6n^{2}}$ .

Therefore, we have

$\overline{V}(2^{k})=\frac{2}{3}-\frac{1}{6}(\frac{1}{4})^{k}$

In this case, the extreme value can be obtained exactly by the Procedure of Incremental
Divisor. Therefore, only the first 3 terms of $\overline{V}(n)$ are necessary to obtain the extreme
value 2/3.

This passage reveals that Takebe recognized this phenomenon through numerical cal-
culation.

But it does not suggest that both Seki and Takebe had some notion of upper and lower
integrals, used, for example, in today’s Riemann integration.
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2.4 Some Remarks

The last 4th part reads as follows:

In the decomposition of the circle and related objects, we seek to
conform with the form and attribute entirely, and never venture
not to conform with it.

If we cut into slices what should be whittled into shells, we are
disobedient.

When we cut according to the diameter what should be cut ac-
cording the circular circumference, we are disobedient.

When we cut horizontally what we should cut vertically, we are
disobedient.

When we do not obey the form and attribute, even when we
can find the true number, we are slow in searching the extreme num-
ber and have difficulty in understanding the principle of [a solution] $33\mathrm{a}$

procedure.
In order to understand how to obey its form and attribute,

we first discern the principle, determine numbers, and then, relying
on the numbers, we investigate deeply and so attain understanding.

Therefore, if we want to employ the [procedure of] decompo-
sition, we should not concentrate only in seeking the true number
nor lose sight of the principle which distinguishes obedience and
disobedience.

[Closing Remark:] The above [procedure of] decomposition is the inves-
tigation of numbers by principles.

But once we start to investigate according to its form and attribute, we
should recognize that numbers are to be investigated by numbers.

Takebe tried to understand the $\mathrm{f}\mathrm{a}s\mathrm{t}$ or slow convergences by the form and attribute
of the decomposing method and that of the figure. If the form and attributes of these
two are conformable, he said a good result could be expected.

Takebe also thought that, if the form and attribute of a mathematician is conformable
to the attribute of the method of investigation, he could produce a good result. This kind
of reasoning is stated in the concluding chapter of the Tetsujutsu Sankei dealing with the
nature of mathematical investigation.
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