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FACTS ON PAC FIELDS AND STABLE FIELDS

RBRFRLRBAR  KEHE (IKUO YONEDA)
DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

1. INTRODUCTION

In this exposition, we show the following two fact.

e Duret’s result: Any PAC non-separably closed field has the indepen-
dent property. [D] |
e Scanlon’s result : Any infinite stable field of characteristic p > 0 is
separably closed in finite extensions of degree divided by p, and contains
F,. [S] ’ '
As the independence proerty implies unstable, any PAC stable field is separa-
bly closed. (It is still open whether stable fields are separably closed or not.)
This note is organaized as follows. In section 2, we review classical field the-
ory and the definition of PAC fields. For showing Duret’s result, we consider
separable extensions of PAC fields, in section 3, Kummer extension case, in
section 4, Artin-Schreier extension case. Combining Propositions in section
3,4, we show Duret’s result in section 5. Scanlon’s results are in section 6.

2. BASIC FACTS ON VARIETIES AND FIELDS

Let k be a subfield of K, and let k be the smallest algebraically closed field
containing k. When k C k', k" are fields, and k' and k" are linearly over k, we
write k' |, k"

We begin with the basic fact on galois extensions.

Fact 2.1. Suppose that k'/k is galois extension and k"/k is an extension.
Then k' | K" iff &' Nk" = k.

Proof. Suppose that k' N k" = k. To show the linear disjointness, we may
assume that k' = k(a). Let p(z) = Il1<i<n(z — a;) be the minimal polynomial
of a over k, where [k’ : k] =n. Then a; € k' because k' /k galois. And we may
assume that the minimal polynomial g(z) of a over k” is of form Il ;< (z—a;),
where m = [k”(a) : kK"]. Asa; €K' NK"(i =1,...m), q(z) € k[z], p(z) = q(z)
and [k(a) : k] = [k"(a) : k"] follow. O

We summarize the relation between fields and Zariski closed sets.

Fact 2.2. Let V be a k-irreducible Zariski closed set.



(1) V is defined over k iff k(V) |, k7.
(2) V is absolutely irreducible iff k(V) Nk, =k iff (V) L, ks
(3) V is an affine variety over k iff k(V) is a reqular emtenszon of k.

Proof. Let a € V be generic over k. So k(V)(= k[X]/I(V)Nk[X]) = k(a) and
I(V) = I(a/k). |
(1): As V is definable over k in ACF, by considering the definition field, we
see that V is defined over k'/P*. So, I(V) is generated by I (a/kl/Pm). Now,
V' is defined over k iff I(V) is generated by I(a/k) iff I(a/k'/P) is generated
by I(a/k) iff k(a) |, k/7~, as desired.

(2): The following are eqmvalent

(a) V is absolutely irreducible. (b) I(a/k'/*™) generates I(a/k).

(c) KYP%(@) L /e k-
Claim. (¢)= k(@) Nk, =k = (a).

First implication: k C k(V) Nk, C k/7” Nk, = k. Second implication :
By Fact 2.1, k(@) |, ks, so I(a/k) genarates I(a/k,). Let b € V be k-

generic. Then I(a/k,) = I(b/k,) follows, so V is invariant over galois actions,
as desired.

(3): (=) As V is defined over k, and £ = (k,)"/*", k,(V) L, k by (1). By
(2), (V) L, ks, s0 k(V) L, k follows. («) As k(V) | k and k(V) |, ki,
we see k(V) |, k'/?”. By (1) (2), the conclusion follows. | O

Fact 2.3. Let K/k be separable extension of degree n. Let V be an affine
variety over K. Then there ezists an affine variety V over k such that

(1) V ~p V™, where L is the galois closure of K over k,
(2) there is a bijeciton between V(K) and V (k).

Proof. Let by, bs,...,b, be a linear bases of K over k and let fi,...,fm €
K[Xi,..., X be generators of I(V) N K[Xy,..., Xj]. We prepare | X n-many
variables (Y ;)1<i<i1<j<n- Let g € K[Y14,..., Y] be the polynomial replaced
fi by X; = ¥1<j<nY; jb5. As b; are bases, there exist g;,; € k[Y3,1,. .., Y] such
that g; = X1<j<ngi;0;. Let V be the k-Zariski closed set defined by the ideal
generated by {g;; : 1 < i <m,1 < j < n}. Note that if (a1, ...,a,,) € V(k),
then (Sigcnt sy . Sigygntishs) € V(K).

As K /k is finite and separable there exists o € K such that k(a) = K. Let
(1 < i < n) be all the k-conjugates of @ = a; and let o; € Aut(k/k) be such
that 0;(a) = a;. Then L = k(ay,...,qy,) is the galois closure of K over k.

Claim. V ~; 0y(V) x ... X on(V).
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Let B = (0j(b))1<jk<n € Ma(L). Put =B.-| | (@=
T | Yni

1,...,n), where (Y11, ,Yin) € V.

As zj; = X1<k<n¥rio; (br), (Zj1,---,Zq) € a;(V).

Now, we show that B € GL,(L): If not, there exists ¢;,...,c, € k such that
(c1,...,¢n) #(0,...,0) and Xi<i<ncioi(bi) for any 1 < k < n. Then we have

EISiSnCiUilK =0.

For any a = ¥1<k<naibr, where a; € k,
(Z1<i<n€i0i)(Bi<k<n@ibr) = Li<i<nB1<k<nCit0i(bk) = Li<k<nk L1<i<nCioi(bk) =
0.
Recall Dedekind Theorem: Let K, K’ be fields and o; : K — K’ be isomor-
phisms. Suppose that £1<i<n0;0;|K =0and a; € K’. Thenag; =+-- =a, =0.
The proof of Dedekind Theorem: Othewise, take 0 # a4, ..., a, € K’ such that
Y1<i<n@i0i|K = 0 and n is minimal. Clearly n > 2. We have two equations
as follows. ¥j<;i<nai0i(a)oi(b) = 0, X1<i<naioi(a)o,(b) = 0 for any a,b € K.
Take b € K such that 01(b) # on(b). Put b; = a;(0i(b) — 0,(b)). Then
Yi<i<n-1bioi(a) = 0 and b; # 0, a contradiction.
So, by Dedekind Theorem, ¢; = ... = ¢, = 0, a contradiction.

As B € GL,(L), B gives an injection from V to a3(V) x ... x ,(V). Note
that B sends V (k) to a3 (V(K)) ... x a,(V(K)), so there is an injection from
V(k) to V(K).

Yii T
Y2i. Z2;

Finally, we check its surjectivity. Put = B~!. , Where
Yni Lni

(11, ., Zwm) € (V) x ... x 0p(V). Put e;; = ¢ij(¥11,---,¥m). Then We
show ¢;; =0 for 1 <i<m,1<j<n.

AsQi(Y11,-- -, Yin) = Tigicnijbi, 0(Qi) = E1<jcn@ijo(b;). So, Bigjcneijor(b;) =
Uk(Qi)(ylla ceyYin) = Uk(Pi)(ﬂ?kl, e ,$k1) =0. (By Tri = ZISjgnyijo'k(bj) and
the definition of Q;.) ‘



€1 0

Therefore B = . As B € GL,(L), the conclusion follows.
€in 0

By considering points under Gal(L/k), we see that B maps V (k) to V(K).

O

Definition 2.4. We say that a field k is PAC (pseudo algebraically closed), if
any absolutely irreducible k-affine variety has a k-rational point.

Proposition 2.5. Let k be PAC, and let K /k be algebraic separable extension.
Then K is PAC.
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Let V be absolutely irreducible K-affine variety. By considering the defi-

nition field of V, we may assume K /k is finite. By Fact 2.3, there exists an
k-affine variety V =~ V", where n = deg(K /k) and L is the galois closure. As

V is absolutely irreducible, so is V. As k is PAC, so V(k) # 0. By Fact 2.3
again, V(K) # 0 follows. O

Lemma 2.6. Let k be PAC, and let I be an absolutuly prime ideal in k[X;, . ..,
Suppose that g(X1,...,X,) € k[X1,...,X,]— 1. Then there is @ € k such that
ac€Z(I)-Z(g).

X.].

Proof. Let K =Q(k[Xy,..., X,)/I) =k(Xy,...,X,), where 7 : k[Xy,..., Xpn] =

k[X1,..., X,]/T and 7(X;) = X;. We define ¢ : k[X4,..., X,, Y] = K as fol-
lows. <p|k idk, p(Xi) = X; and p(Y) = e . k[Xy,..., X)) C
1, -

R := k[Xy,...,Xn,Y]/ker(p) = im(p) C K, so Q(R) K. As K/k is a
regular extension, ker(¢) is absolutely prime. As k is PAC, there is @ € k such
that a € Z(ker(p)). Then Y - g(Xq, ..., Xn) — 1 € ker(yp) and I C ker(y) and
g(a) # 0, so the conclusion follows. O

The next is an easy lemma of basic ring theory, and will be used in this
note.

Lemma 2.7. Let R be an integral domain, and let k = Q(R) be the quo-
tient field. Let f1(X),... fo(X) € R[X] be monic non-constant polynomials.
Suppose that [k(ay,...,a,) : k] = II? ,deg(f;), where fi(c;) = 0. THEN
I'=(fi(X1),..., fa(Xn))Rix,,..x.) 15 @ prime ideal and I N R = {0}.

Proof. By our assumption, we see that f; is irreducible over k(ap = 1,.. ., a4-1)
fori=1,...,n. Then we have

k(al, ceey an) g k[Xl, ceny Xn]/<f1(X1), coey fn(Xn)>k[X1,...,Xn]'
Claim. A:= R[Xy,...,X,]/I is an integral domain.



As A = R[Xi]/{f1) ®r ... ®r R[X,]/{f,) and each R[X,]/(f;} & Rla] is
finitely genarated R-module, A is a flat R-module. As0 -+ R — k,0 — RQ®p
A=A Ek®rA=kQ®r (R[Xh n]/(fl(Xl) . ’fn( ))R[Xh ,Xn)) =
k[Xla ce Xn]/(fl(Xl)’ afu( ))k[XI: wXn] = k(al, 7an) as desired. Let
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¢ : A= k(ay,...,0,) be the above monomorphism and let 7 : R[X;,..., X,] —

A be tha canonical epimorphism. Then ¢ o 7|R = idg. For a € RN I,
a=(pom)(a) = ¢(0) = 0. O

3. ARGUMENTS ON KUMMER EXTENSIONS

In this section, p is a prime number and we consider fields whose character-
istics are different from p. We recall the following. ‘

Fact 3.1. (1) Suppose that k contains the primitive root of unity, and k
does not have the solution of X? — a € k[X]. Let a be the solution of
XP —a € k[X]. Then X? — a is irreducible, and k(c)/k is a galois
extension and Gal(k()/k) is cyclic of order p and given by o — af},
where 1 =0,1,...,p—1 and £p is the primitive p-th root of unity. So,
Gal(k(a)/k) Rp, where Ry, is the group of the p-th roots of unity.
(2) Suppose that ch(k) is prime to n. Suppose that k contains the primitive
n-root of unity. If L/k is cyclic of degree n, then L is a Kummer
ezxtension.

Lemma 3.2. Suppose that k contains the primitive root of unity. Let o; be
the solution of XP — a; € k[X] fori=1,...,n. If k(o) does not have the
solution of XP —a; fori=1,...,n, then k(oy,...,on)/k is a galois extension
and Gal(k(ay,...,on)/k) = Ry

Proof. By Lemma 2.7, we see that k(ai,...,a,)/k is a galois extension of
degree p*. And, for any ¢ € Gal(k(ay,...,a,)/k), we have 25%')' € R, for

any ¢ = 1,...,n. So, the conclusion follows. O

Lemma 3.3. Suppose that k contains the primitive root of unity, and k is the
fraction field of a uniquely factorized domain A. Let a; € A(i = 1,...,n) be
of form a; = gF*h;, where g; is prime, g; is the ezponent of a; in the pmme gi
and (p,q;) = 1. Suppose that g; are distinct and g; is not a factor of a;(i # 7).

Let ; be a root of XP — a;. Then o; & k(ag;) fori=1,...,n

Proof. We show this by induction on the n. For n = i; suppose not, then
there exist a,b € A such that these are prime to each other and
a?l = g‘lh h]bp .

So, b must be a unit, in particular, the exponent of a®? in g; must be ¢;, a
contradiction.



From nton+1; Let K’ = k(ay,...,0n_1,an41), then [K', k] = p™ by induction
hypothesis. And put K = k(o,...,a,). By way of contradiction, suppose
that o1 € K. Then K’ C K and [K,k] = p", so K = K'. Let o € Aut(K/k)
be such that o(o;) = 4(i = 1,...,n — 1) and (o) = €a,, by using induction
hypothesis. Let N be such that o(ant1) = &Noy, .. Put

a = aﬁ—Nan+1 € K.
Note that o(a) = ()P No(any1) = P Na2 NN, ) = a.

Claim. K =k(ay,...,0n-1,a) follows, so o = idg, a contradiction.
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We have of = a2 Na,,; = g (g "V he=Nhy,,y). Puth = g Vhe-Nh, .y,

Then g, is not a factor of h. (Otherwise, g, is a factor of A2~V moreover,

of a,.) Let a; ., = gl h. Ask(ay,...,an-1,a) € K and gy,...,gn—1 are not
any factor of h, by induction hypothesis, the claim follows. O

Proposition 3.4. Let A =k[Y3,...,Yy]. Let f; € k[Y3,...,Yu], (i =1,...,n)
be of form f; = g} h;, where, in A, g; is prime, ¢; is the exponent of a; in the
prime g; and (p,q;) = 1. Suppose that g; are distinct and g; is not a factor
of f;(i # j) in A. Then the ideal I generated by {XF — f;:i=1,...,n} in
E[X1,...,Xn, Y1,...,Yn] is absolutely prime, and I Nk[Y1,...,Yn] = {0}.

Proof. Note that K := Q(A) = k(Y3,...,Y.,) contains the primitive p-th root.
So, by Lemma 3.3, we have o; & K(a.;) for i = 1,...,n, where «; is any root
of XP — f;. By Lemma 3.2, [K(oy,...,q,) : K] = p" follows. By Lemma 2.7,
the ideal generated by {X? — f;:i=1,...,n} in k[X1,..., Xn, Y1,..., Y] is
prime, so the proposition is proven. ' O

Proposition 3.5. Let k C K. Suppose that k is PAC and contain the prim-
itive p-th root of unity, and there is o € k such that no roots of XP — o is in
K. Let (a;)ic, be distinct elements of k. Let ¢(z,y) = 22(2? = = +y). Then
for any disjoint finite subsets I, J C w, '

K £33\ e(z,a) A \ ~¢(z, 7).
i€l jeJ
So, Th(K) has the independence property.

Proof. Let A = k[(Xi)ie1us, Y] and P be the ideal generated by { XP—(Y +a;) :
i € ITU{X} —a(Y +a;) : j € J} in A. By Proposition 3.4, we see that P is
absolutely prime, and ‘B N k[Y] = {0}. So, by PAC of k and 2.6 we see that
there exist (¢;)iequsd C k such that

ecl—(d+a;)=0foreachiel

o ¢f —a(d+a;) =0 for each j € J

ed+aj#0foreachjeJ



So, we have that, for each i € I
K ;: QD(d, a’i)'
Claim. This d € k is the desired element for our statement.

Suppose not, so there exists j € J such that K = ¢(d, a;). Thus we can
find ¢j € K such that ¢ — (d + a;) = 0. But we have that ¢; = a(d + a;).

c. c.
So, we get that a = (—c%)" and Z,’- € K, a contradiction. O
J J

4. ARGUMENTS ON ARTIN-SCHREIER EXTENSIONS

In this section, we consider fields of characteristic p. We recall the following.
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Fact 4.1. (1) Suppose that k does not have the solution of X* — X —a €

k[X]. Let a be the solution of X? —a € k[X]. Then X? — X —a is
irreducible over k, and k(a)/k is a galois extension and Gal(k(a)/k)
is cyclic of order p and given by o — a + n, where n € F,. So,
Gal(k(c)/k) =2 Fy.

(2) If L/k is cyclic of degree p, then L is an Artin-Schreier extension.

Lemma 4.2. Let o; be the solution of XP — X — a; € k[X] fori=1,...,n.
If k(a«;) does not have the solution of XP — X — a; for i = 1,...,n, then
k(a,...,on)/k is a galois extension and Gal(k(ay, ..., an)/k) = (Fp, +)".

Proof. By Lemma 2.7, we see that k(ay,...,an)/k is a galois extension of
degree p*. And, for any ¢ € Gal(k(o,...,as)/k), we have o(a;) — ;s € Fy
for any i = 1,...,n. And, for 0,7 € Gal(k(a,...,on)/k), (coT)(a) —a =
o((t(a) —a)+a)—a = (r(a) —a+o(a)) — a. So, the conclusion follows. [1

Lemma 4.3. Let a;,b; € k(i = 1,...,n) be such that (a;)i<n are linearly
independent over F,. Let a; be a root of X? — X — (a;Y + b;). Then o; &
kE(Y,ag) fori=1,...,n.

Proof. We show this by induction on the n. For n = 1; suppose not, then
there exist r, s € k[Y] such that these are prime to each other and
r T

(;)p —g =Y +b
So, we have
(1) (a1Y + b1)8p :‘T(T‘p—l - Sp—l)
(2) : P = sp_l (’l" + (a.,-Y + bl)s)

By (1), 7 | (a1Y + b,)s?, and by (2), s | rP. As s,t are prime to each other, we

see s € k and 7 | (a;Y + by). Since a;Y + b; = (g)p - -::, we see r € k[Y] \ k.



As 7| (a;Y + by), there exists t € k™ such that g = t(a;Y + b1). So, we have

aY +b; = (g)l’ - % = tP(afY? + b%) — t(a;Y + b1), contradiction.

From n to n+1; Let K’ = k(Y, a1,...,0n_1,0n41), then [K',k(Y)] = p" by
induction hypothesis. And put K = k(Y, a4, ..., ay,). By way of contradiction,
suppose that a1 € K. Then K’ C K and [K,k] = p", so K = K'. Let
o € Aut(K/k(Y)) be such that o(e;) = (¢ = 1,...,n—1) and o(an) = an+1
by using induction hypothesis. As (0(an41) — @nt1)? — (0(@nt1) — Ont1) =
a1Y +b; — (a1Y + b1) =0, so let N = o(ont1) — any1.€ Fy.

Put

a=~—Noy, + a4 € K.
Note that o(a) = —No(a,) + 0(ans1) = =N(an + 1) + (an41 + N) = .

Claim. K =k(ay,...,0n-1,) follows, so 0 =idk, a contradiction.

We have o —a = (= N)Pa2 +af 1+ Nap — any1 = —N(of —an) + (0h 41 —
an+1) = "N(any + bn) + (an+1Y + bn.+1) = ("‘Nan + a/nTl)Y+ (_an + bn+1)-
On the other hand, ay,...,a,_1, —Na, + a,-; are linearly independent over
F,. By induction hypothesis, the claim follows. O

Remark 4.4. In the proof of Lemma 4.3, working over k[Y}, we see that
o € k(Y,ay) fori=1,.

Proposition 4.5. Let a;, b,' € k(i=1,...,n) be such that (a;)i<n are linearly
independent over F,. Then the ideal I generated by {X] — X; — (&Y + by) :
i=1,...,n} ink[Y, Xi,...,X,) is absolutely prime, and I Nk[Y] = {0}.

Proof. Let a; be the root of XF — X; — (a;Y +b;) for i = 1,...,n. By Remark

7? and Lemma 4.2, [k(Y, 0, ..., ay) : k(Y)] = p" follows. And the statement
~ follows from Fact 2.7. O

Proposition 4.6. Let k C K. Suppose that k is PAC, and there is o € k such
that no roots of X? — X — « is in K. Let (a;)icw be Fp-linearly independent
elements of k. Let ¥ (z,y) = 32(2P — z = z - y). Then for any disjoint finite
subsets I,J C w,

K k= E]z(/\z,b(z,a.-) A /\ —(z,a;)).
il - jes
So, Th(K) has the independence property.
Proof. Let A = k[(X;)ierus, Y] and B be the ideal generated by {X¥ — X; —
a;Y 11 € ITU{X} — X; — (a;Y + ) : j € J} in A. By Proposition 4.5, we see
that B is absolutely prime. So, by PAC of k¥ and 2.6 we see that there exist
(¢i)ierusd C k such that
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e —ci—da; =0foreachi e[
o cf —cj—(daj+a)=0foreach j€J

Clearly d € k*. Now, we have that, for each 7 € I
K = 9(d, a).
Claim. This d € k is the desired element for our statement.

Suppose not, so there exists j € J such that K |=1(d, a;). Thus we can find
¢; € K such that ¢ — ¢j — da; = 0. But we have that ¢} —¢; — (da; + @) =0.
So, we get that o = (¢; — ¢})? — (¢; — ¢;) and ¢; — ¢; € K, a contradiction. O

5. DURET’S THEOREM
We begin with the following classical fact.

Fact 5.1. Let k C K, L. Suppose that k is relatively algebraicclly closed in K,

and L is a separable finite extension of k. THEN L is relatively algebraically
closed in KL.

Proof. Let L = k(a). We need to show that if b € K(a) is algebraic over L,
then b € L.

Claim. b is separable over k, so there exists c € K (a) such that k(a,b) = k(c).

The proof of the claim: Let f € k[X] be the minimal polynomial of a over
k. Then f is also irreducible over K and [K(a) : K] = [k(a) : k]. (If not, there
exists g € K[X] such that g | f. But, for any o € Aut(K /k) we have o(g) | f.
So, we see that any coefficients in g is in kNK =k, a contradiction.)

So we see that K(a)/K is finite and separable. In paricular, b is separable
over K. By considering the minimal polynomial of b over k, and the above
arugument, we see that b is separable over k.

As k is relatively algebraically closed in K, So we have [k(c) : k] = [K(c) :
K}, [k(a) : k] = [K(a) : K]. We have K(a) = K(c), so [k(a) : k] = [k(c) : k]
follows. Since k(a) C k(c), b € k(c) = k(a), as desired. O

Theorem 5.2. Let k C K. Suppose that k is PAC, relatively algebraically
closed in K, and non-separably closed. Then Th(K) has the independence
property. In particular, PAC and non-separably closed closed fields have the
independence property. | |

As k is not separably closed, there exists a galois extension L. Let p be a
prime number such that p | [L : k]. Let k' be the fixed field by a subgroup of
Gal(L/k), of order p. So, L/k' is a galois extension of degree p, and k'/k is
separable. Let L = k'().
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e Kummer case i.e. ch(k) #p

To apply Proposition 3.5, we add the primitive p-th root £ to k'. Let kg =
k'(€), Lo = L(€).

Claim. Lg/ko is a galois extension of degree p.

Clearly, we have Ly = ko(c), so [Lo : ko] < p follows. As ko-conjugates of
a are k'-conjugates of a, so we see Lo/ko is galois. As Gal(ko/k') < (Z/pZ)*,
we see [ko : k'] < p—1. Then we have

[Lo : k') = [Lo : L)[L : k') = [Lo : Llp = [Lo : kolko : ¥'].

So p| [Lo : ko], this claim is proven.

By Fact 3.1, there ex1sts B € ko such that Ly = ko(ﬁ ). As k'/k and ko/K'
are finite separable ko/k is finite separable. Let kg = k() and Put Ko = K ().
As k is relatively algebraically closed in K and ko/k is separable, by Fact 5.1,
we see that kg is relatively algebraically closed in K. In partlcular ﬂ ? € K.
And kg is PAC by Proposition 2.5.

Now we can apply Proposition 3.5 with respect to Ko/ko. So, Th(K"') has the
independence property. As K is interpretable in K’ by using K-linear base of
K', the conclusion follows. So, we finish the Kummer case.

o Artin-Schreier case, i.e. ch(k) = p.

By Fact 4.1, there exists § € k' such that L = k'(dp), where dy is a root of
XP— X —0. Let K' = KK'. As k is relatively algebraically closed in K, and
k'/k is separable, k' is is relatively algebraically closed in K’ and k' is PAC by
Fact 5.1 and Proposition 2.5. In particular, o ¢ K'. So, By Proposition 4.6,
we see that Th(K') has the independence property. As K is interpretable in
K', the conclusion follows. ]

6. SCANLON’S RESULT ON INFINITE STABLE FIELDS
In this section, let K be an infinite stable field of characteristic p > 0.

Proposition 6.1. The Artin-Schereier map o : x — 1P — = is an onto endo-
morphism of K. In particular, K" — K = K and Fpn C K for anyn < w.

Proof. Our statement is elementary, we assume that K is sufficiently saturated
for using compactness theorem. Put :

o0
k.= ﬂ K7,

n=1

Note that k is perfect. For any y € K, yo(K) is a definable subgroup of K¥,
defined by 3z(y(2 — 2) = ). By stability, there exist a;(= 1),...,a, € k*
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such that

I:= ﬂ ac(K) =na¢a(K).

a€kX

Claim. o(K) 2 K?" for some n < w.
Let G < (K*)™*! be an affine additive subgroup over k, defined by

n
(Z1,...,2Zn,Y) EG & /\y = a;(zf — ;).

i=1
Clearly dim(G) = 1. As k is perfect, we see the connected component G°
is field-theoretically defined over k. So, G° & G, or GL;, we see G(k) is
infinite. In particular, there exist (z,,...,z,,y) € G(k) such that y € k*, so
0 #y € N, aio(k). As INk is non-zero ideal of k, we see k C I C o(K). By
compactness, we have o(K) 2 K?" for some n < w.

Claim. Leta € K and let o € K be such that " = o — a. Then o? " € K.
Therefore K = o(K).

Clearly, we have o(a? ") = a € K, so K(o® ")/K is separable. But, clearly
this extension is purely inseparable, so this claim holds. O

Theorem 6.2. (1) F,CK..
(2) There is no finite separable extension L of K with p|[L : K].

Proof. (1): Put k = K NF,. By Proposition 6.1, k is infinite. As k CF,, k is
PAC by the Lang-Weil estimates. Note that k is relatively algebraically closed
in K. If F, € K, then F,, is a proper separable extension of k. By Theorem
5.2, K would have independence property, this contaradicts stability.

(2): Suppose not. Let M be the Galois closure of L over K. As[L: K]|[M : K],
take a subgroup G < Gal(M/K) of order p. Then M is a Galois extension
of Fix(G) of degree p, so an Artin-Schrejer extension. On the other hand,
Fix(G) is a finite extension, interpretable in K, so it is stable. This contradicts
Proposition 6.1.
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