On Lie algebras of vector fields of manifolds with singularities

信州大学・理学部 阿部 孝順 (Kōjun Abe)
Faculty of Science, Shinshu University
e-mail: kojnabe@gipac.shinshu-u.ac.jp
アビームコンサルティング株式会社
藤原 卓 (Suguru Fujiwara)
ABeam Consulting Ltd

§1. Introduction

In this talk we shall consider Pursell-Shanks type theorem for some manifolds with singularities.

Let $\mathcal{X}(M)$ be the Lie algebra of smooth vector fields on a connected smooth manifold M with compact support. Then Pursell and Shanks proved the following.

Theorem 1.1 (Pursell-Shanks [PS])

Let M and N be connected smooth manifolds. If $\mathcal{X}(M)$ and $\mathcal{X}(N)$ are isomorphic as a Lie algebra, then M and N are diffeomorphic.

There are many analogous results on the Lie algebra of smooth vector fields which preserve a geometric structures (c.f. [AM], [BA], [FU], [GP], [GR], [OM], [KO]). We extended Theorem 1.1 to the case of smooth orbifold.

Theorem 1.2 (K. Abe [AB2])

Let M and N be connected smooth orbifold. If $\mathcal{X}(M)$ and $\mathcal{X}(N)$ are isomorphic as a Lie algebra, then M and N are diffeomorphic.

Note that a smooth orbifold is locally diffeomorphise to the orbit space V/Γ of a representation space V of a finite group Γ . In this paper we consider when Γ is a discrete subgroup of $SL(2, \mathbb{Z})$.

§2. Statement of the result

Let \mathcal{H} denote the upper half complex plane. Let $SL(2, \mathbf{R})$ be the group of real matrix with determinant 1. Then $SL(2, \mathbf{R})$ acts on \mathcal{H} by the Möbius as the following.

For
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$
, $z \in \mathcal{H}$,

$$g \cdot z = \frac{az+b}{cz+d}.$$

Then $SL(2, \mathbf{R})$ acts transitively on \mathcal{H} and the isotropy subgroup at $i = \sqrt{-1}$ is

$$SL(2, \mathbf{R})_i = SO(2).$$

The kernel of the action is $\mathbf{Z}_2 = \{\pm 1\}$ and $PSL(2, \mathbf{R}) = SL(2, \mathbf{R})/\{\pm 1\}$ acts effectively on \mathcal{H} and

$$\mathcal{H} \cong SL(2, \mathbf{R})/SO(2)$$
.

The action can be extended to the Riemannian sphere $\bar{C} = C \cup \{\infty\}$.

For
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$
, $z \in \overline{\mathfrak{C}}$,

$$g \cdot z = \left\{ egin{array}{ll} rac{az+b}{cz+d} & (z
eq -rac{d}{c}, \infty) \ \infty & (z = -rac{d}{c}, z = d = 0) \ rac{a}{c} & (z = \infty) \end{array}
ight.$$

Set

$$R_1 = \left\{ \pm \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) \mid a > 0 \right\}$$

and

$$R_2 = \left\{ \pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \right\}.$$

Then each $g \in SL(2, \mathbf{R})$ is conjugate to one of the elements of $SO(2) \cup R_1 \cup R_2$, and $g \neq \pm 1$ is called *elliptic*, hyperbolic and parabolic if g is conjugate to an element in SO(2), R_1 and R_2 , respectively.

Let Γ denote a discrete subgroup of $SL(2,\mathbf{R})$. $z \in \mathcal{H}$ is called *elliptic point* if there exits an elliptic element $g \in \Gamma$ such that $g \cdot z = z$. $x \in \mathbf{R} \cup \{\infty\}$ is called *cusp* point if there exists a parabolic element $g \in \Gamma$ such that $g \cdot z = z$.

Proposition 2.1 (1) If z is a elliptic point, then Γ_z is a cyclic group which is conjugate to a cyclic subgroup of SO(2).

(2) If x is a cusp point, then Γ_x is isomorphic to \mathbf{Z} which is conjugate to a subgroup of the group

$$\Gamma_{\infty} = \left\{ \pm \begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix} | n \in \mathbf{Z} \right\} \quad (\exists k \in \mathbf{Z}).$$

Let E_{Γ} denote the set of all elliptic points in \mathcal{H} and C_{Γ} be the set of cusp points of Γ . Set $\mathcal{H}^* = \mathcal{H} \cup C_{\Gamma}$,

We shall give the following topology on \mathcal{H}^* .

- (1) We give the canonical topology on \mathcal{H} .
- (2) Let $x \in C_{\Gamma}$.
 - (2.1) If $x \neq \infty$, then we take all the family of the form $\{x\} \cup \{$ the interior of a circle in \mathcal{H} tangent to the real axis at $x \}$ as a fundamental system of open neighborhoods of x.
 - (2.2) If $x = \infty$, then

$$\{\infty\} \cup \cup_{c>0} \{z \in \mathcal{H} | \Im z > c\}$$

as a fundamental system of open neighborhood of the point ∞ . Then Γ acts on \mathcal{H}^* as a topological transformation group. Set

$$\mathcal{R}_{\Gamma} = \mathcal{H}^*/\Gamma = \mathcal{H}/\Gamma \cup C_{\Gamma}/\Gamma$$

Then \mathcal{R}_{Γ} is a Hausdorff space.

For each $x \in C_{\Gamma}$, there exists an open neighborhood \tilde{U}_x of x in \mathcal{H}^* Lemma 2.2 such that

$$\Gamma_x = \{ \gamma \in \Gamma | \ \gamma \cdot \tilde{U}_x \cap \tilde{U}_x \neq \emptyset \}.$$

Take $x \in C_{\Gamma}$. Let $\iota_x : \tilde{U}_x/\Gamma_x \hookrightarrow \mathcal{R}_{\Gamma}$ be a map defined by $\iota_x(\Gamma_x \cdot z) = \Gamma \cdot z$ for $z \in \tilde{U}_x$. Put $p = \Gamma \cdot x$. Then $U_p = \iota_x(\tilde{U}_x/\Gamma_x)$ is an open neighborhood of p in \mathcal{R}_{Γ} . For $x \in C_{\Gamma}$, there exist $g \in SL(2, \mathbf{R})$ and integer k such that $g \cdot x = \infty$ and

$$g\Gamma_{\mathbf{x}}g^{-1} = \left\{ \pm \left(\begin{array}{cc} 1 & nk \\ 0 & 1 \end{array} \right) \mid n \in \mathbf{Z} \right\}.$$

Proposition 2.3 Let
$$\varphi_p: \tilde{U}_x/\Gamma_x \to \mathbf{C}$$
 be a map given by
$$\varphi_p(\Gamma_x z) = \begin{cases} \exp(\frac{2\pi\sqrt{-1}}{k}(g \cdot z)) & (z \in \tilde{U}_x \setminus \{x\}), \\ 0 & (z = x). \end{cases}$$

Then φ_p is homeomorphic to an open subset W_p of C.

By Proposition 2.3, the map

$$\psi_p = \varphi_p \circ \iota_x^{-1} : U_p \to \tilde{U}_x / \Gamma_x \to W_p$$

is regarded as a local coordinate of \mathcal{R}_{Γ} around p.

$$\bar{C}_{\Gamma} = C_{\Gamma}/\Gamma$$

 $f: \mathcal{R}_{\Gamma} \to \mathbf{R}$ is defined to be smooth if Definition 2.4

- (1) $f \circ \pi_{\Gamma}$ is smooth, where $\pi_{\Gamma}: \mathcal{H} \to \mathcal{H}/\Gamma$ is the natural projection,
- (2) for each $p \in \bar{C}_{\Gamma}$, $f \circ \psi_p^{-1}$ is smooth.

Definition 2.4 (2) does not depend on the choice of x with $\Gamma \cdot x = p$. Let $C^{\infty}(\mathcal{R}_{\Gamma})$ denote the set of all real valued smooth functions on \mathcal{R}_{Γ} .

Definition 2.5 For discrete subgroups Γ, Γ' of $SL(2, \mathbf{R})$, $h : \mathcal{R}_{\Gamma} \to \mathcal{R}_{\Gamma'}$ is said smooth if for each real valued smooth function $f : \mathcal{R}_{\Gamma'} \to \mathbf{R}$ $f \circ h$ is smooth. h is said diffeomorphic if h and h^{-1} are smooth.

Definition 2.6 A derivation X of $C^{\infty}(\mathcal{R}_{\Gamma})$ is called a smooth vector field on \mathcal{R}_{Γ} if X vanishes on C_{Γ} . Let $\mathcal{L}(\mathcal{R}_{\Gamma})$ denote the set of all smooth vector field on \mathcal{R}_{Γ} and let $\mathcal{X}(\mathcal{R}_{\Gamma})$ be the subalgebra of $\mathcal{L}(\mathcal{R}_{\Gamma})$ which consists of vector fields with compact suport.

Then we have the following.

Theorem 2.7 Let Γ and Γ' be discrete subgroups of $SL(2, \mathbf{R})$. Then \mathcal{R}_{Γ} and $\mathcal{R}_{\Gamma'}$ are diffeomorphic if and only if $\mathcal{X}(\mathcal{R}_{\Gamma})$ and $\mathcal{X}(\mathcal{R}_{\Gamma'})$ are isomorphic as a Lie algebra.

§3. Maximal ideals of $\mathcal{X}(\mathcal{R}_{\Gamma})$

In order to prove Theorem 2.7 we investigate the maximal ideals of $\mathcal{X}(\mathcal{R}_{\Gamma})$. Let Γ be a discrete subgroup of $SL(2,\mathbf{R})$. Let $\bar{E}_{\Gamma}=E_{\Gamma}/\Gamma$ and \bar{C}_{Γ} denote the set of elliptic singularities and cusp singularities in \mathcal{R}_{Γ} , respectively. Set $\mathcal{S}_{\Gamma}=\bar{E}_{\Gamma}\cup\bar{C}_{\Gamma}$ which is the set of singularities in \mathcal{R}_{Γ} . We abbreviate \mathcal{R}_{Γ} , \mathcal{S}_{Γ} and \bar{E}_{Γ} to \mathcal{R} , \mathcal{S} and \bar{E} , respectively. Let $\mathcal{R}_{1}=\mathcal{R}\setminus\mathcal{S}$ be the set of regular points of \mathcal{R} . For each $p\in\mathcal{R}_{1}$, set

$$\mathcal{X}_p(\mathcal{R}) = \{ X \in \mathcal{X}(\mathcal{R}) | X(p) = 0 \}.$$

Proposition 3.1 For each $p \in \mathcal{R}_1$, there exists a unique maximal ideal \mathcal{M}_p of $\mathcal{X}(\mathcal{R})$ which is contained in $\mathcal{X}_p(\mathcal{R})$. Moreover \mathcal{M}_p is an infinite codimensional subalgebra in $\mathcal{X}(\mathcal{R})$.

Next we shall find the maximal ideals of $\mathcal{X}(\mathcal{R})$ which correspond to the singularities in \mathcal{R} . Here we recall the results by Bierstone and Schwarz. Let G be a finite group and V be a representation space of G. Let $\pi: V \to V/G$ be the natural projection. $\mathcal{X}_G(V)$ denotes the Lie algebra of G-invariant smooth vector fields on V with compact support.

Theorem 3.2 (Bierstone [BI] and Schwarz [SC]) The induced map π_* : $\mathcal{X}_G(V) \to \mathcal{X}(V/G)$ is a Lie algebra isomorphism. (I) For each $p \in \overline{E}$, take $x_p \in E$ with $\Gamma \cdot x_p = p$. Let V_{x_p} be the linear slice at x_p . Then V_{x_p} is a Γ_{x_p} -mdule. Let

$$(\pi_{x_p})_*: \mathcal{X}_{\Gamma_{x_p}}(V_{x_p}) \to \mathcal{X}(V_{x_p}/\Gamma_{x_p}) \hookrightarrow \mathcal{X}(\mathcal{R})$$

be the natural Lie algebra homomorphism. By Theorem 3.2, for each $X \in \mathcal{X}(\mathcal{R})$ there exists $Y_{x_p} \in \mathcal{X}_{\Gamma_{x_p}}(V_{x_p})$ such that $(\pi_{x_p})_*(Y_{x_p}) = X$ on a neighborhood of p in \mathcal{R} . Let $\mathfrak{gl}_{\Gamma_{x_p}}(V_{x_p})$ be the set of Γ_{x_p} -invariant linear endmorphisms. Let

$$J_p:~\mathcal{X}(\mathcal{R}) o \mathfrak{gl}_{\Gamma_x}(V_{x_p})$$

be the homomorphism defined by $J_p(X) = j_{x_p}^1(Y_{x_p})$, where $j_{x_p}^1(Y_{x_p})$ is the 1-jet of Y_{x_p} at x_p .

(II) For $p \in \bar{C}$ there is a chart $\psi_p : U_p \to W_p \subset \mathbf{C} = \mathbf{R}^2$ around the open neighborhood U_p of p in \mathcal{R} . Let

$$J_p:~\mathcal{X}(\mathcal{R}) \to \mathfrak{gl}(2,\mathbf{R})$$

be the Lie algebra homomorphism defined by $J_p(X) = j_p^1(X|_{U_p})$. Combining (I) and (II) we set

$$J(\mathcal{R}) = \underset{p \in \bar{E}}{\oplus} \ \mathfrak{gl}_{\Gamma_x}(V_{x_p}) \ \oplus \ \underset{p \in \bar{C}}{\oplus} \ \mathfrak{gl}(2, \mathbf{R}).$$

Let $J: \mathcal{X}(\mathcal{R}) \to J(\mathcal{R})$ be a Lie algebra homomorphism defined by

$$J(X) = \mathop{\oplus}_{p \in \bar{E}} \ J_p(X) \oplus \mathop{\oplus}_{p \in \bar{C}} \ J_p(X).$$

Lemma 3.3 J is an onto Lie algebra homomorphism.

Proposition 3.4 If \mathfrak{M} is a maximal ideal of $\mathcal{X}(\mathcal{R})$, then we have the following. (1) If \mathfrak{M} is contained in $\mathcal{X}_p(\mathbf{R})$ for some $p \in \mathcal{R}_1$, then $\mathfrak{M} = \mathcal{M}_p$, and \mathfrak{M} is an infinite codimensional subalgebra of $\mathcal{X}(\mathcal{R})$.

(2) If $\mathfrak{M} \not\subset \mathcal{X}_p(\mathbf{R})$ for any $p \in \mathcal{R}_1$, then there exists a maximal ideal \mathfrak{L} of $J(\mathcal{R})$ such that $\mathfrak{M} = J^{-1}(\mathfrak{L})$, and \mathfrak{M} is a finite codimensional subalgebra of $\mathcal{X}(\mathcal{R})$.

§4. Stone topology of the maximal ideals

Let \mathcal{R}^* be the set of all maximal ideals of $\mathcal{X}(\mathcal{R})$.

Definition 4.1 The Stone topology on \mathbb{R}^* is defined by the closure operator $\mathcal{C}\ell$ as following.

- (1) $\mathcal{C}\ell(\phi) = \phi$,
- (2) For a subset B of \mathbb{R}^* with $B \neq \emptyset$,

$$\mathcal{C}\ell(B) = \left\{ \mathfrak{M} \in \mathcal{R}^* \,\middle|\, \mathfrak{M} \supset \bigcap_{\mathfrak{M}' \in B} \mathfrak{M}' \right\}.$$

Let $\mathcal{O}(S)$ denote the family of all subsets of S. We define a map

$$\tau_{\mathcal{R}}: \mathcal{R}^* \to \mathcal{R}_1 \cup \mathcal{O}(\mathcal{S})$$

by the following way.

- (1) For $p \in \mathcal{R}_1$, $\tau_{\mathcal{R}}(\mathcal{M}_p) = p$.
- (2) If $\mathfrak{M} \in \mathcal{R}^*$ such that $\mathfrak{M} \not\subset \mathcal{X}_p(\mathcal{R})$ for any $p \in \mathcal{R}_1$, then

$$\tau_{\mathcal{R}}(\mathfrak{M}) = \{ p \in \mathcal{S} | J(\mathcal{M}) \not\supset J_{p}(\mathcal{X}(\mathcal{R})) \}.$$

Set $\mathcal{R}_1^* = \{ \mathcal{M}_p \in \mathcal{R}^* | p \in \mathcal{R}_1 \}.$

Proposition 4.2

The map $\tau_{\mathcal{R}}: \mathcal{R}_1^* \to \mathcal{R}_1$ is homeomorphic.

Definition 4.3 (End)

Let $\mathfrak{K}(\mathcal{R}_1) = \{K_i | i \in I\}$ denote the family of compact subset in \mathcal{R}_1 . For each $K \in \mathfrak{K}(\mathcal{R}_1)$, let \mathfrak{C}_K : be the set of connected component of $\mathcal{R}_1 \setminus K$.

$$\prod_{K_i \in \mathfrak{K}(\mathcal{R}_1)} C_{K_i} \in \prod_{K_i \in \mathfrak{K}(\mathcal{R}_1)} \mathfrak{C}_{K_i}$$

is said to be an end of \mathcal{R}_1 if $C_{K_i} \subset C_{K_j}$ for any pair $i, j \in I$ with $K_j \subset K_i$. $\mathcal{E}(\mathcal{R}_1)$: the set of all ends of \mathcal{R}_1

For each $p \in \mathcal{S}$ there exists a unique end $\mathcal{E}_p = \prod_{K_i \in \mathcal{R}(\mathcal{R}_1)} C_{K_i}$ in \mathcal{R}_1 such that $\bigcap_{K_i \in \mathcal{R}(\mathcal{R}_1)} cl(C_{K_i}) = \{p\}$, where $cl(C_{K_i})$ is the closure of C_{K_i} in \mathcal{R} . Set

$$\mathcal{E}_0(\mathcal{R}_1) = \{\mathcal{E}_p | p \in \mathcal{S}\}, \quad \bar{\mathcal{R}}_1 = \mathcal{R}_1 \cup \mathcal{E}(\mathcal{R}_1).$$

Then $\bar{\mathcal{R}}_1$ has the natural topology such that

$$\{C_{K_j} \cup \prod_{K_i \in \mathfrak{K}(\mathcal{R}_1)} | C_{K_i} | | K_j \in \mathfrak{K}(\mathcal{R}_1)\}$$

is the fundamental system of neighborhood of a point $\prod_{K_i \in \mathfrak{K}(\mathcal{R}_1)} C_{K_i} \in \mathcal{E}(\mathcal{R}_1)$.

Put $\bar{\mathcal{R}}_0 = \mathcal{R}_1 \cup \mathcal{E}_0(\mathcal{R}_1)$. Let $\kappa_{\mathcal{R}}: \mathcal{R} \to \bar{\mathcal{R}}_0$ be the natural map defined by $\kappa_{\mathcal{R}}(p) = \left\{ \begin{array}{ll} p & \text{for } p \in \mathcal{R}_1 \\ \mathcal{E}_p & \text{for } p \in \mathcal{S}. \end{array} \right.$

Lemma 4.4 The map $\kappa_{\mathcal{R}}: \mathcal{R} \to \bar{\mathcal{R}}_0$ is a homeomorphism.

§5. Outline of the proof of Theorem 2.7

Let Γ , Γ' be discrete subgroups. Assume that there exists a Lie algebra isomorphism $\Phi: \mathcal{X}(\mathcal{R}_{\Gamma}) \to \mathcal{X}(\mathcal{R}_{\Gamma'})$. We abbreviate $\mathcal{R}_{\Gamma'}, \mathcal{S}_{\Gamma'}, \bar{E}_{\Gamma'}, \dots$ to $\mathcal{R}', \mathcal{S}', \bar{E}', \dots$, respectively. By Propsosition 4.2 we have.

Proposition 5.1

- (1) $\Phi_*: \mathcal{R}^* \to \mathcal{R}'^*$ is homeomorphic.
- (2) The composition $\sigma_1 = \tau_{\mathcal{R}'} \circ \Phi_* \circ \tau_{\mathcal{R}}^{-1} : \mathcal{R}_1 \to \mathcal{R}'_1$ is homeomorphic.

By Proposition 5.1 we have.

Corollary 5.2 There exists a homeomorphism $\bar{\sigma}: \bar{\mathcal{R}} \to \bar{\mathcal{R}}'$ which is an extension of σ_1 such that the following diagram is commutative:

Lemma 5.3 For $p \in \mathcal{S}$ let U be a neighborhood of p in \mathcal{R} such that $cl(U) \cap \mathcal{S} = \{p\}$. Then we have

$$\mathcal{C}\ell(\tau_{_{\mathcal{R}}}^{-1}(U))=\tau_{_{\mathcal{R}}}^{-1}(cl(U))$$

From Corollary 5.2, Lemma 5.3 and Lemma 4.4, we have the following.

Proposition 5.4 We can extend the homeomorphism $\sigma_1: \mathcal{R}_1 \to \mathcal{R}'_1$ to the homeomorphism $\sigma: \mathcal{R} \to \mathcal{R}'$ such that the following diagram is commutative:

Lemma 5.5 Let $p \in \mathcal{R}_1$ and $X \in \mathcal{X}(\mathcal{R})$. Then $X_p \neq 0$ if and only if

$$[X, \mathcal{X}(\mathcal{R})] + \mathcal{M}_p = \mathcal{X}(\mathcal{R}).$$

Corollary 5.6 $\sigma_1: \mathcal{R}_1 \to \mathcal{R}'_1$ is diffeomorphic.

By the method Koriyama [KO] and Abe [AB1] we can prove that $\sigma: \mathcal{R} \to \mathcal{R}'$ is diffeomorphic.

References

- [AM] I. Amemiya, Lie algebra of vector fields and complex structure, Jour. Math, Soc. Japan, 27(1975), 545-549.
- [AB1] K. Abe, Pursell-Shanks type theorem for orbit spaces of G-manifolds, Publ. Res. Inst. Math. Sci., 18(1982), 265-282.
- [AB2] K. Abe, On Lie algebras of Vector Fields on Smooth Orbifolds, Publ. RIMS, Kyoto Univ. 22(1986), 465-485.
- [BA] A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and its Applications 400, Kluwer Academic Publishers, Dordrecht, (1997).
- [BI] E. Bierstone, Lifting isotopies from orbit spaces, Topology, 14(1975), 245-252.
- [FU] K. Fukui, Pursell-Shanks type theorem for free G-manifolds, Publ. Res. Inst. Math. Sci., 17(1981), 249-265.
- [GP] J. Grabowski and N. Poncin, Lie algebraic characterization of manifolds, Cetral European Sci. Jour. Math., 2(2005), 811-825.

- [GR] J. Grabowski, Isomorphisms and ideals of the Lie algebras of vector fields, Invent. math., 50(1978), 13-33.
- [KO] A. Koriyama, On Lie algebras of vector fields with invariant submanifolds, Nagoya J.Math., 55(1974), 91-110.
- [OM] H. Omori, Infinite dimensional Lie transformation groups, Lecture Notes in Math., 427 Springer-Verlag (1976).
- [PS] L. E. Pursell and M. E. Shanks, The Lie algebra of a smooth manifold, Proc, Amer. Math. Soc., 5(1954), 468-472.
- [SC] G. W. Schwarz, Smooth invariant function under the action of a compact Lie group, Topology, 14 (1975), 63-68.