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On Lie algebras of vector fields of manifolds with singularities
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§1. Introduction

In this talk we shall consider Pursell-Shanks type theorem for some manifolds
with singularities.

Let X(M) be the Lie algebra of smooth vector fields on a connected smooth
manifold M with compact support. Then Pursell and Shanks proved the following.

Theorem 1.1  (Pursell-Shanks [PS])

Let M and N be connected smooth manifolds. If X(M) and X(N) are isomorphic
as a Lie algebra, then M and N are diffeomorphic.

There are many analogous results on the Lie algebra >of smooth vector fields
which preserve a geometric structures (c.f. [AM], [BA], [FU], [GP], [GR], [OM],
[KO]). We extended Theorem 1.1 to the case of smooth orbifold.

Theorem 1.2 (K. Abe [AB2])

Let M and N be connected smooth orbifold. If X(M) and X(N) are isomorphic
as a Lie algebra, then M and N are diffeomorphic.

Note that a smooth orbifold is locally diffeomorphisc to the orbit space V/T' of
a representation space V' of a finite group I'. In this paper we consider when I is a
discrete subgroup of SL(2, Z).

§2. Statement of the result

Let H denote the upper half complex plane. Let SL(2, R) be the group of real matrix
with determinant 1. Then SL(2,R) acts on H by the Mdbius as the following.
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Then SL(2, R) acts transitively on H and the isotropy subgroup at i = /-1 is
SL(2,R); = SO(2).

The kernel of the action is Z; = {*1} and PSL(2,R) = SL(2,R)/{£1} acts
effectively on H and

H = SL(2,R)/SO(2).

The action can be extended to the Riemannian sphere € = C U {oo}.
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Then each g € SL(2, R) is conjugate to one of the elements of SO(2) UR; U R;, and
g # +1 is called elliptic, hyperbolic and parabolic if g is conjugate to an element in
SO(2), R, and R,, respectively.

Let I denote a discrete subgroup of SL(2,R). z € H is called elliptic point if
there exits an elliptic element g € I" such that g-2 = z. £ € RU {0} is called cusp
point if there exists a parabolic element g € I" such that g- z = z.

Proposition 2.1 (1) If z is a elliptic point, then T, is a cyclic group which is
conjugate to a cyclic subgroup of SO(2).

(2) If x is a cusp point, then Ty is isomorphic to Z which is conjugate to a
subgroup of the group

rw={i((1) "1’“)|nez} (3k € Z).

Let Er denote the set of all elliptic points in H and Cr be the set of cusp points
of I'. Set H* = HUCT,



We shall give the following topology on H*.
(1) We give the canonical topology on H.
(2) Let z € Cr.
(2.1) If z # oo, then we take all the family of the form

{z} U { the interior of a circle in H tangent to the real axis at z }
as a fundamental system of open neighborhoods of z.
(2.2) If £ = oo, then

{00} UUe0{z € H| Sz > ¢}

as a fundamental system of open neighborhood of the point co. Then I' acts on H*
as a topological transformation group. Set

Rr = H*/F = H/F U Cp/r
Then Ry is a Hausdorff space.

Lemma 2.2  For each = € Cr, there exists an open neighborhood U, of  in H*
such that
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- Take r € Cr. Let 15 : U /Ty «— Rr be a map defined by t(I'z-2) =T -z for
z€ U, Put p=T"z. Then U, = 1,(U;/T;) is an open neighborhood of p in Rr.
For z € Cr, there exist g € SL(2,R) and integer k such that g -z = oo and

gl"mg‘1={:!:((1) nlk)|-nEZ}.

Proposition 2.3  Let pp: U, /Ty — C be a map given by

op(Ta2) = { (2= (g 2) - ST\,

Then @, is homeomorphic to an open subset W, of C.

By Proposition 2.3, the map

Yo=wppoizt: Uy Uy/Te = W,
is regarded as a local coordinate of Rr around p.
Cr = Cr/T

Definition 2.4 f: Rr — R is defined to be smooth if
(1) fomp is smooth, where mp : H — H/T is the natural projection,
(2) for each p € Cr, f o, is smooth.



Definition 2.4 (2) does not depend on the choice of z with ' - z = p.
Let C*(Rr) denote the set of all real valued smooth functions on Rp.

‘Definition 2.5  For discrete subgroups I',T' of SL(2,R), h: Rp — Ry is said
smooth if for each real valued smooth function f: Rrr — R foh is smooth. h is
said diffeomorphic if h and h™! are smooth.

Definition 2.6 A derivation X of C*°(Rr) is called a smooth vector field on Rp
if X vanishes on Cr. Let L(Rr) denote the set of all smooth vector field on Rr and
let X(Rr) be the subalgebra of L(Rr) which consists of vector fields with compact
suport. :

Then we have the following.

Theorem 2.7 LetT" and I' be discrete subgroups of SL(2,R). Then Ry and R
are diffeomorphic if and only if X(Rr) and X(Rr) are isomorphic as a Lie algebra.

§3. Maximal ideals of X(Rr)

In order to pvove Theorem 2.7 we investigate the maximal ideals of X(Rr). Let
I' be a discrete subgroup of SL(2,R). Let Er = Er/T and Cr denote the set of
elliptic singularities and cusp singularities in Rr, respectively. Set S = Er U Cr
which is the set of singularities in Ry. We abbreviate Ry, Sy and Er to R,S and
E, respectively. Let R; = R\ S be the set of regular points of R. For each p € Ry,
set
X(R) ={X € X(R)| X(p) = 0}.

Proposition 3.1  For each p € Ry, there erists a unique mazimal ideal M, of
X(R) which is contained in X,(R). Moreover M, is an infinite codimensional
subalgebra in X(R).

Next we shall find the maximal ideals of X(R) which correspond to the singu-
larities in R. Here we recall the results by Bierstone and Schwarz. Let G be a finite
group and V' be a representation space of G. Let 7 : V — V/G be the natural

projection. Xg(V) denotes the Lie algebra of G-invariant smooth vector fields on V'
with compact support.

Theorem 3.2 (Bierstone [BI} and Schwarz [SC])
The induced map 7, : Xg(V) — X(V/G) is a Lie algebra isomorphism.



(I) For each p € E, take z, € E with T'- @, = p. Let V,, be the linear slice at
zp. Then V;, is a I';,-mdule. Let

(Tz)s X, (Vi) = X(Va, /Ta,) = X(R)

be the natural Lie algebra homomorphism. By Theorem 3.2, for each X € X(R)
there exists Y, € &r, (Vz,) such that (m,,).(Yz,) = X on a neighborhood of p in
R. Let glr, (Vz,) be the set of 'y, -invariant linear endmorphisms. Let

Jp: X(R) — glr, (V)

be the homomorphism defined by J,(X) = j; (Yz,), where j; (Yz,) is the 1-jet of
Y;, at z,.

(II) For p € C there is a chart ¥, : U, = W, C C = R? around the open
neighborhood U, of p in R. Let
Jp: X(R) — gl(2,R)

be the Lie algebra homomorphism defined by J,(X) = 7,(X|u,)-
Combining (I) and (II) we set

JR)= & glp (Vz,) & @ gl(2,R).
pEE peC

Let J: X(R) — J(R) be a Lie algebra homomorphism defined by
JX)=& LX)® & Jy(X).
pEE peC

Lemma 3.3 J is an onto Lie algebra homomorphism. |

Proposition 3.4 If 9M is a mazimal ideal of X(R), then we have the following.
(1) If M is contained in X,(R) for some p € Ry, then M = M,, and M is an
infinite codimensional subalgebra of X(R).

(2) If M ¢ X,(R) for any p € Ry, then there exists a mazimal ideal £ of J(R) such
- that M = J~Y(L), and M is a finite codimensional subalgebra of X(R).



§4. = Stone topology of the maximal ideals
Let R* be the set of all maximal ideals of X (R).

Definition 4.1  The Stone topology on R* is defined by the closure operator C¢
as following.

(1) Cl(g) = ¢
(2) For a subset B of R* with B # 0,

C4(B) = {sm e R*

M>D> N sm'}

m'eB
Let O(S) denote the family of all subsets of S. We define a map
T, ' R* = R UO(S)

by the following way.
(1) For pe Ry, 7, (M,;) =
(2) If MM € R* such that M ¢ Xp(R) for any p € R, then

T= (M) = {p € §| (M) 2 Jp(X(R))}.

Set R} = {M, € R*| p e Ry}.

Proposition 4.2
The map T, : R} — R, s homeomorphic.

Definition 4.3 (End) _
Let A(R,) = {K;|i € I} denote the family of compact subset in R;. For each

K € R(R.), let €k : be the set of connected component of Ry \ K.
[kcamy Cxi € HK,-e.g(Rl) Ck, |
is said to be an end of R, if Ck, C Ck; for any pairi,j € I with K; C K;.
E(Ry) : the set of all ends of R,
For each p € S there exists a unique end &, = []x,cqr,) Ck; in R such that
ﬂ cl(Ck,) = {p}, where cl(C’K ) is the closure of Cx, in R. Set

K;ef(R1)

go(R1) = {8p| pE S}, 721 =R, U 5(R1)



Then R, has the natural topology such that

{Cxu ] CxlK;€ &R}
Ki€f(R1)

is the fundamental system of neighborhood of a point []. ¢ ARy Cki € E(Ry).

Put Ry = Ry U&(R,y). Let &, : R — Rg be the natural map defined by

o forpe R,
" (P) = { & forpe S.

Lemma 4.4  The map K, : R — Ro is a homeomorphism.

§5.  Outline of the proof of Theorem 2.7

Let I', I" be discrete subgroups. Assume that there exists a Lie algebra iso-
morphism & : X(Rr) — X(Rr). We abbreviate Ry, Srv, Erv,... to R',8', F',... ,
respectively. By Propsosition 4.2 we have.

Proposition 5.1
(1) ®,: R* — R™ is homeomorphic.
(2) The compsosition 0y =17, 0®,07;': Ry — R} is homeomorphic.

By Proposition 5.1 we have.

Corollary 5.2  There exists a homeomorphism & : R — R’ which is an extension
of oy such that the following diagram is commutative :

R* @* »> R*

R —— R

Lemma 5.3 Forp € S let U be a neighborhood of p in R such that cl(U)NS =
{r}. Then we have ‘

Ce(r 1 (U) = 7 (cl(V))

From Corollary 5.2, Lemma 5.3 and Lemma 4.4, we have the following.



Proposition 5.4  We can extend the homeomorphism oy : Ry, — R} to the
homeomorphism o : R — R' such that the following diagram is commutative :

'R—Z—"R'

ﬁo = ﬁ/o
Lemma 5.5 Letpe€ R, and X € X(R). Then X, # 0 if and only if
X, X(R)] + M, = X(R).

Corollary 5.6 o,: R, — R] is diffeomorphic.

By the method Koriyama [KO] and Abe [AB1] we can prove that 0 : R — R’
is diffeomorphic.
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