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1. Introduction

Suppose $K$ is a knot in $S^{3}$ , and $E(K)$ denotes the exterior of $K$ . Define a -manifold $M(K)$

to be $\partial(E(K)\cross D^{2})$ . This 4-manifold has the same fundamental group as $E(K)$ , but it is not
aspherical. In a talk at the RIMS Conference “Methods of Transformation Group Theory”,
May 2006, I announced that the TOP surgery obstruction theory works for normal maps to
$M(K)$ . Later I extended the result to the cases of non-split links and non-split subcomplexes
of a triangulation. Actually if $X$ is a connected compact orientable 3-manifold with nonempty
boundary such that the assembly map $A$ : $H_{4}$ ($X$ ; L.) $arrow L_{4}(\pi_{1}(X))$ is injective, then we have
the same conclusion for $M=\partial(X\cross D^{2})$ .

Then I learned from Jim Davis that, if the 3-manifold $X$ is aspherical, the following theorem
of Qayum Khan [3] can be applied to these examples to show that the surgery obstruction theory
works even in the $PL=DIFF$ category for normal maps to $M$ :

Theorem. (Khan) Suppose $M$ is a closed connected orienta$blePL\mathit{4}$-manifold with fundament$al$

group $\pi$ such that the assembly map

$A:H_{4}(\pi;\mathrm{L}.)arrow L_{4}(\pi)$

is injective, or more generally the 2-dimension$al$ componen$t$ of its prime 2 $lo$calization

$\kappa_{2}$ : $H_{2}(\pi;\mathbb{Z}_{2})arrow L_{4}(\pi)$

is injective. Then any degree 1 normal map $(f, b)$ : $Narrow M$ With vanishing surgery obstruction
in $L_{4}(\pi)$ is normally bordant to a homotopy equivalence $Marrow M$ .

So I decided to change the statement. Let $X$ be as above. $X$ has a handle decomposition,
and a handle decomposition produces a $CW$-spine $B$ of $X:X$ is a mapping cylinder of some map
$\partial Xarrow B$ . The mapping cylinder structure induces a strong deformation retraction $q:Xarrow B$.
Compose this with the projection $X\cross D^{2}arrow X$ and restrict it to the boundary to get a map
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$p:M=\partial(X\cross D^{2})arrow B$ . It turns out that, for any choice of the spine $B$ , this map $p:Marrow B$

is $UV^{1}$ (see [4] for the definition of $UV^{1}$ -maps). So the following observation of Hegenbarth and

Repovs [2] based on [5] can be applied to $p:Marrow B$ , if the assembly map is injective.

Theorem. (Hegenbarth-Repov\v{s}) Let $M$ be a closed oriented TOP 4-manifold and $p$ : M– $B$

$be$ a $UV^{1}$ -map to a fin$iteCW$-complex such $th\mathrm{a}t$ the assembly map

$A$ : $H_{4}(B;\mathrm{L}.)arrow L_{4}(\pi_{1}(B))$

is injective. Then the following holds: if $(f, b)$ : $Narrow M$ is a degree 1 TOP normal map with

trivial surgery obstruction in $L_{4}(\pi_{1}(M))$ , then $(f, b)$ is TOP $n$ormally bordant to a $p^{-1}(\epsilon)-$

homotopy $eq$uivalence $f’$ : $N’arrow M$ for any $\epsilon>0$ . In particular $(f, b)$ is TOP normally bordant

to a homotopy equivalence.

For example, we have

Theorem. If $X$ is a compact connected orientable Haken 3-manifold with boundary and $B$

is any $CW$-spine of $X$ , then there is a $UV^{1_{-}}m\mathrm{a}pp$ : $M(X)arrow B$ , and the assembly $m\mathrm{a}p$

$A:H_{4}$ ( $B$ ; L.) $arrow L_{4}(\pi_{1}(B))$ is an isomorphism. Therefore, if $(f, b):Narrow M$ is a degree 1 TOP

normal map with trivial surgery $0$bstruction in $L_{4}(\pi_{1}(M))$ , then $(f, b)$ is TOP normally bordant
to a $p^{-1}(\epsilon)$-homotopy equivalence $f’$ : $N’arrow M$ for any $\epsilon>0$ .

See [8] for details.

In the talk at RIMS, I used an ideal cell decomposition of link complements to construct a
spine for $X=E(K)$ . This is now obsolete. But it may be of some interest, so I will discuss the

construction in this note.

2. Ideal Cell Decomposition of Link Complements

Let $K$ be a knot in $S^{3}$ . We show that $S^{3}-K$ decomposes into ideal 3-cells ( $=3$-cells whose

vertices are removed). The following construction works equally well when $K$ is a link.

Identify $S^{3}$ with $S^{2}\cross(-\infty, \infty)\cup\{\pm\infty\}$ , and consider a knot projection to $S^{2}\cross 0$ , with $n$

crossings. We assume that $n\geq 1$ and that $K$ stays in $S^{2}\cross 0$ except at the overcrossings as in

the next picture:
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Consider the dual graph of the knot diagram:

The dual graph and the knot diagram together decompose $S^{2}\cross 0$ into $4n$-many quadrangles $R_{i}$ .
One such quadrangle is indicated in the picture above. Roughly speaking, $R\cross(-\infty, \infty)-K$

are the desired ideal 3-cells:

Unfortunately their union is not $S^{3}-K$ , but $S^{3}-\{\pm\infty\}-K$ . So pick an intersection point
of $K$ and the dual graph, and dig tunnels from that point $\mathrm{t}\mathrm{o}\pm\infty$ along the edges. This affects
four of the 3-cells as in the picture below and gives a decomposition of $S^{3}-K$ into ideal cells:
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Remark. A $\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{t}/\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}$ complement has a decomposition into ideal tetrahedra. Discussions on
this topic can be found in $[1][6][7][9]$ , but these are all quite technical.

The dual spine of the ideal cell decomposition can be defined in the following way: Take

one point from each 1-cell; the union of these points is the dual spine of the 1-skeleton and there

is a collapsing map from the 1-skeleton to the spine. Next, take one point from the interior of
each 2-cell, and take the topological join of the point and the the spine of the boundary. The

union of these joins is the spine of the 2-skeleton. The collapsing map of the 1-skeleton extends
to the collapsing map of the 2-skeleton to the spine. Finally, take one point ffom the interior of

each 3-cell, take the join of the point and the spine of the boundary. The union of these joins

is the desired spine $B$ , and the collapsing map of the 2-skeleton extends to a collapsing map
$q$ : $S^{3}-Karrow B$ .
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