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1 Teichm\"uller space
The Teichm\"uller space $T(R)$ of a Riemann surface $R$ is the set of all equivalence
classes $[f]$ of quasiconformal homeomorphisms $f$ on $R$ . Here we say that two
quasiconformal homeomorphisms $f_{1}$ and $f_{2}$ on $R$ are equivalent if there exists
a conformal homeomorphism $h$ : $f_{1}(R)arrow f_{2}(R)$ such that $f_{2}^{-1}\mathrm{o}h\mathrm{o}f_{1}$ is ho-
motopic to the identity. All homotopies are consider to be relative to the ideal
boundary at infinity. A distance between two points $[f_{1}]$ and $[f_{2}]$ in $T(R)$ is
defined by $d([f_{1}], [f_{2}])=(1/2)\log K(f)$ , where $f$ is an extremal quasiconformal
homeomorphism in the sense that its maximal dilatation $K(f)$ is minimal in
the homotopy class of $f_{2}\circ f_{1}^{-1}$ . Then $d$ is a complete distance on $T(R)$ which
is called the Teichm\"uller distance.

The quasiconformal mapping class is the homotopy equivalence class $[g]$ of
quasiconformal automorphisms $g$ of a Riemann surface, and the quasiconformal
mappiing class group $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ of $R$ is the set of all quasiconformal mapping
classes on $R$ . Every element $[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)$ induces a biholomorphic automor-
phism $[g]_{*}$ of $T(R)$ by $[f]\mapsto[f\circ g^{-1}]$ , which is also isometric with respect to
the Teichm\"uller distance. Let $\mathrm{A}\mathrm{u}\mathrm{t}(T(R))$ be the group of all biholomorphic
automorphisms of $T(R)$ . Then we have a homomorphism

$\iota$ : $\mathrm{M}\mathrm{C}\mathrm{G}(R)arrow \mathrm{A}\mathrm{u}\mathrm{t}(T(R))$

given by $[g]\mapsto[g]_{*}$ . It is proved in [2] that the homomorphism $\iota$ is injective
(faithful) for all Riemann surfaces $R$ of non-exceptional type. See also [6] and
[19] for other proofs. Here we say that a Riemann surface $R$ is of exceptiond
type if $R$ has finite hyperbolic area and satisfies $2g+n\leq 4$ , where $g$ is the
genus of $R$ and $n$ is the number of punctures of $R$ . The homomorphism $\iota$ is also
surjective for all Riemann surfaces $R$ of non-exceptional type. The proof is a
combination of the results of [1] and [18]. See [10] for a survey of the proof.

Deflnition 1.1 We say that a subgroup $G\subset \mathrm{M}\mathrm{C}\mathrm{G}(R)$ acts at a point $p\in T(R)$

discontinuously if the following equivalent conditions are satisfied:

(a) there exists a neighborhood $U$ of $p$ such that the number of elements
$[g]\in G$ satisfying $[g]_{*}(U)\cap U\neq\emptyset$ is finite.
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(b) there exist no distinct elements $[g_{n}]\in G$ such that $d([g_{n}]_{*}(p),p)arrow \mathrm{O}$ as
$narrow\infty$ ,

(c) the orbit $G(p)$ is a discrete set and the stabilizer subgroup Stab$c(p)$ is
finite.

Set
$\Omega(G)=$ {$p\in T(R)|G$ acts at $p$ discontinuously}.

We call $\Omega(G)$ the region of discontinuity of $G$ . By definition, $\Omega(G)$ is an open
subset on $T(R)$ . For a Riemann surface $R$ of analytically finite type, the quasi-
conformal mapping class group $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ acts on $T(R)$ discontinuously, namely
$\Omega(\mathrm{M}\mathrm{C}\mathrm{G}(R))=T(R)$ (see Section 8 in [14]). However, for a Riemann surface of
analytically infinite type, the action of $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ is not discontinuous, in general.

On the basis of this fact, Gardiner and Lakic [16] considered the special case
as follows. For the standard middle-thirds Cantor set $\mathrm{C}$ in the unit interval as a
subset of the complex sphere $\hat{\mathbb{C}}$ , the pure mapping class group $P(\hat{\mathbb{C}}-\mathrm{C})$ of the
complement $\hat{\mathbb{C}}-\mathrm{C}$ of the Cantor set $\mathrm{C}$ is the set of all elements $[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(\hat{\mathbb{C}}-\mathrm{C})$

such that $g$ fixes all points of C. Then they proved the following.

Proposition 1.2 ([16]) For the complement $\hat{\mathbb{C}}-\mathrm{C}$ of the middle-thiruls Cantor
set $\mathrm{C}$ , the pure mapping class group $P(\hat{\mathbb{C}}-\mathrm{C})$ acts on the Teichm\"uller space
$T(\hat{\mathbb{C}}-\mathrm{C})$ discontinuously.

We extend Proposition 1.2 for general Riemann surfaces. First we define the
pure mapping class group for all Riemann surfaces.

Deflnition 1.3 The pure mapping class group $P(R)$ of a Riemann surface $R$ is
the set of all quasiconformal mapping classes $[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)$ such that $g$ fixes
all topological (Stoilow) ends of $R$ .

We also define a condition on Riemann surfaces in terms of hyperbolic ge-
ometry.

Deflnition 1.4 We say that a Riemann surface $R$ has the bounded geometry if
$R$ satisfies the following three conditions:

(i) the lower bound condition: the injectivity radius at any point of $R$ except
cusp neighborhoods are uniformly bounded away from zero.

(ii) the upper bound condition: there exists a subdomain $R^{*}$ of $R$ such that
the injectivity radius at any point of $R^{*}$ is uniformly bounded from above
and that the simple closed curves in $R^{*}$ carry the fundamental group of
$R$ .

(iii) $R$ has no ideal boundary at infinity, namely the Fuchsian model of $R$ is of
the first kind.

The bounded geometry condition is quasiconformally invariant, and every
non-universal normal cover of a Riemann surface of analytically finite type has
the bounded geometry. The complement of the Cantor set also satisfies the
bounded geometry.

Now we state our theorem.
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Theorem 1.5 Let $R$ be a Riemann surface that has the bounded geometry and
has more than two topological ends. Then the pure mapping class group $P(R)$

acts on the Teichm\"uller space $T(R)$ discontinuously.

2 Proof of theorem
A proof of Theorem 1.5 is given in [11]. In this section, we explain our approach
to the proof. First we define a stationary subgroup of the quasiconformal map-
ping class group, which is a generalization of the mapping class group of a
topologically finite Riemann surface.

Deflnition 2.1 A subgroup $G$ of $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ is said to be stationary if there exists
a compact subsurface $W$ of $R$ such that $g(W)\cap W\neq\emptyset$ for every representative
$g$ of every element of G. Krthermore, an element $[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)$ is said to be
stationary if the cyclic group generated by $[g]$ is stationary.

Remark 2.2 There exists a subgroup $G\subset \mathrm{M}\mathrm{C}\mathrm{G}(R)$ such that each element
of $G$ is stationary but $G$ is not stationary. Indeed, there exists an abstract
countable infinite group $\Gamma$ such that every element of $\Gamma$ is of finite order, and for
any countable group $\Gamma$ , there exists a Riemann surface $R$ such that the group
Conf$(R)$ of all conformal automorphisms of $R$ contains a subgroup $G$ isomorphic
to F. Then we may regard $G$ as a subgroup of $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ . Every element $[g]\in G$

is stationary since it is of finite order. On the other hand, $G$ is not stationary
since Conf$(R)$ acts on $R$ properly discontinuously.

It is known that a sequence of normalized quasiconformal homeomorphisms
whose maximal dilatations are uniformly bounded is sequentially compact in
compact open topology. The stationary property of mapping classes corresponds
to the normalization in this context and hence such a sequence of mapping
classes also has the compactness property if they are uniformly bounded. By
using this observation, we have the following.

Proposition 2.3 Let $R$ be a Riemann surface of non-exceptional type that has
the bounded geometry. Then (i) $\Omega(\mathrm{M}\mathrm{C}\mathrm{G}(R))\neq\emptyset_{i}(\mathrm{i}\mathrm{i})\Omega(G)=T(R)$ for every
stationary subgroup $G$ of $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ .

See [7] and [8] for a proof of Proposition 2.3.

Remark 2.4 There exist Riemann surfaces $R$ such that $\emptyset\neq\Omega(\mathrm{M}\mathrm{C}\mathrm{G}(R))\neq\subset$

$T(R)$ . A typical example is a non-universal normal covering surface of an ana-
lytically finite Riemann surface.

Remark 2.5 There exist a Riemann surface $R$ and a subgroup $G$ of $\mathrm{M}\mathrm{C}\mathrm{G}(R)$

such that $G$ is non-stationary but $\Omega(G)=T(R)$ . See Proposition 3.1 in [12].
In the paper [12], we further constructed a Riemann surface $R$ satisfying the
bounded geometry such that $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ is non-stationary but $\Omega(\mathrm{M}\mathrm{C}\mathrm{G}(R))=$

$T(R)$ .
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By Proposition 2.3 (ii), the following proposition completes a proof of The-
orem 1.5.

Proposition 2.6 If $R$ has more than two topological ends, then the pure map-
ping class group $P(R)$ is stationary.

Prvof. By considering a canonical exhaustion of $R$ by a sequence of compact
subsurfaces, we have a compact subsurface $W$ whose complement consists of
more than two connected components. Since a mapping class $[g]\in P(R)$ pre-
serves each topological end, any representative $g$ of [9] satisfies $g(U)\cap U\neq\emptyset$

for every connected component $U$ of $R-W$. This implies that $g(W)\cap W\neq\emptyset-$

and hence $P(R)$ is stationary.

Remark 2.7 We have an example of another stationary subgroup. For a simple
closed geodesic $c$ on $R$ , let $G_{\mathrm{c}}(R)$ be the set of all elements $[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)$ such
that $g(c)$ is freely homotopic to $c$ . Then $G_{c}(R)$ is stationary. See [13].

In the last of this section, we define a subgroup of the pure mapping class
group.

Deflnition 2.8 A quasiconformal mapping class $[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)$ is said to be
eventually trivial if there exists a compact subsurface $V_{g}$ of $R$ with geodesic
boundary such that, for each connected component $W$ of $R-V_{g}$ , the restriction
$g|W$ : $Warrow R$ is homotopic to the inclusion map $id|_{W}$ : $Warrow R$ . The eventually
trivial mapping class group $E(R)$ is the set of all eventually trivial mapping
classes.

Since $E(R)$ is a subgroup of $P(R)$ , Theorem 1.5 yields that $E(R)$ acts on
$T(R)$ discontinuously if a Riemann surface $R$ has the bounded geometry and
has more than two topological ends. However we see that the assumption on
the number of ends can be removed as follows.

Theorem 2.9 Let $R$ be an analytically infinite Riemann surface having the
bounded $\mathit{9}^{eomet}w$ . Then the eventually trivial mapping class group $E(R)$ acts
on the Teichm\"uller space $T(R)$ discontinuously.

We prove Theorem 2.9 in [11].

3 Asymptotic Teichm\"uller space
In this section, we consider the asymptotic Teichm\"uller space of a Riemann sur-
face $R$ , which is a quotient space of the Teichm\"uller space. It was introduced in
[17] when $R$ is the upper half-plane and in [2], [3] and [15] when $R$ is an arbitrary
hyperbolic Riemann surface. We say that a quasiconformal homeomorphism $f$

on $R$ is asymptotically conformal if for every $\epsilon>0$ , there exists a compact subset
$V$ of $R$ such that the maximal dilatation $K(f|_{R-V})$ of the restriction of $f$ to
$R-V$ is less than $1+\epsilon$ . We say that two quasiconformal homeomorphisms $f_{1}$
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and $f_{2}$ on $R$ are asymptotically equivalent if there exists an asymptotically con-
formal homeomorphism $h:f_{1}(R)arrow f_{2}(R)$ such that $f_{2}^{-1}\mathrm{o}h\circ f_{1}$ is homotopic
to the identity by a homotopy that keeps every point of the ideal boundary at
infinity fixed throughout. The asymptotic Teichm\"uller space AT$(R)$ with the
base Riemann surface $R$ is the set of all asymptotic equivalence classes $[[f]]$ of
quasiconformal homeomorphisms $f$ on $R$ . The asymptotic Teichm\"uller space
AT$(R)$ is of interest only when $R$ is analytically infinite. Otherwise AT$(R)$ is
trivial, that is, it consists of just one point. Conversely, if $R$ is analytically
infinite, then AT$(R)$ is not trivial. In fact, it is infinite dimensional. Since
a conformal homeomorphism is asymptotically conformal, there is a natural
projection $\pi$ : $T(R)arrow AT(R)$ that maps each Teichm\"uller equivalence class
$[f]\in T(R)$ to the asymptotic Teichm\"uller equivalence class $[[f]]\in AT(R)$ . The
asymptotic Teichm\"uller space AT$(R)$ has a complex manifold structure such
that $\pi$ is holomorphic. See also [4] and [5].

For a quasiconformal homeomorphism $f$ of $R$ , the boundary dilatation of $f$

is defined by $H^{*}(f)= \inf K(f|_{R-E})$ , where infimum is taken over all compact
subsets $E$ of $R$. Furthermore, for a Teichm\"uller equivalence class $[f]\in T(R)$ ,
the $bounda\eta$ dilatation of $[f]$ is defined by $H([f])= \inf H^{*}(g)$ , where infimum
is taken over all elements $g\in[f]$ . A distance between two points $[[f_{1}]]$ and
$[[f_{2}]]$ in AT$(R)$ is defined by $d_{A}([[f_{1}]], [[f_{2}]])=(1/2)\log H([f_{2}\circ f_{1}^{-1}])$ , where
$[f_{2}\mathrm{o}f_{1}^{-1}]$ is a Teichm\"uller equivalence class of $f_{2}\circ f_{1}^{-1}$ in $T(f_{1}(R))$ . Then $d_{AT}$

is a complete distance on AT$(R)$ , which is called the asymptotic Teichm\"uller
distance. For every point $[[f]]\in AT(R)$ , there exists an asymptotically extremal
element $f\mathrm{o}\in[[f]]$ in the sense that $H([f])=H^{*}(f_{0})$ .

Every element $[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)$ induces a biholomorphic automorphism $[g]_{*}$

of AT$(R)$ by $[[f]]\mapsto[[f\mathrm{o}g^{-1}]]$ , which is also isometric with respect to $d_{A}$ . Let
$\mathrm{A}\mathrm{u}\mathrm{t}(AT(R))$ be the group of all biholomorphic automorphisms of AT$(R)$ . Then
we have a homomorphism

$\iota_{A}$ : $\mathrm{M}\mathrm{C}\mathrm{G}(R)arrow \mathrm{A}\mathrm{u}\mathrm{t}(AT(R))$

given by $[g]\mapsto[g]_{*}$ . It is different from the case of $\iota$ : $\mathrm{M}\mathrm{C}\mathrm{G}(R)arrow \mathrm{A}\mathrm{u}\mathrm{t}(T(R))$

that the homomorphism $\iota_{A}$ is not injective, namely $\mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}\neq\{[id]\}$ , unless $R$ is
either the unit disc or a once-punctured disc. Moreover there exists a Riemann
surface $R$ of analytically infinite type such that $\mathrm{M}\mathrm{C}\mathrm{G}(R)=\mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}$ , namely the
action of $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ on AT$(R)$ is trivial. Such a Riemann surface was constructed
in [20]. On the basis of this fact, first we give a sufficient condition for non-trivial
action.

Theorem 3.1 Let $R$ be a Riemann surface of topologically infinite type. Sup-
pose that $R$ satisfies the upper bound condition. Then $\mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}\subset \mathrm{M}\mathrm{C}\mathrm{G}(\neq R)$.

A proof of Theorem 3.1 is given in [9]. In the proof, we show that there exists
a quasiconformal automorphism of $R$ that is not homotopic to any asymptot-
ically conformal automorphism of $R$ if $R$ satisfies the upper bound condition.
Then the base point of AT$(R)$ is not a common fixed point of $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ and
we have the assertion. Since the upper bound condition is quasiconfomally in-
variant, we can apply the same argument for all points $[[f]]\in AT(R)$ to prove
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that there exists a quasiconformal automorphism of $f(R)$ that is not homotopic
to any asymptotically conformal automorphism of $f(R)$ . Thus we have the
following.

Theorem 3.2 Let $R$ be a Riemann surface of topologically infinite type. Sup-
pose that $R$ satisfies the upper bound condition. Then $\mathrm{M}\mathrm{C}\mathrm{G}(R)$ has no common
jfikved points on AT$(R)$ .

Next we characterize the subgroup $\mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}$ . The following theorem gives a
condition for a quasiconformal homeomorphism which does not belong to $\mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}$ .

Theorem 3.3 ([9]) Let $g$ be a quasiconformal automorphism of a Riemann
surface R. Suppose there exists a constant $\delta>1$ such that, for every compact
subset $E$ of $R$ , there is a simple closed geodesic $c$ on $R$ outside of $Esatis\ovalbox{\tt\small REJECT} ng$

either
$\frac{\ell(g(c))}{\ell(c)}\leq\frac{1}{\delta}$ or $\frac{\ell(g(c))}{\ell(c)}\geq\delta$.

Then $g$ is not homotopic to any asymptotically conformal $aut_{omo7}phism$ of $R$ .
In particular, $[g]\not\in \mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}$ .

On the other hand, we have a property of elements of $\mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}$ . We say that
an end is essentid if it does not correspond to a puncture, and we define the
essential pure mapping class group as follows.

Definition 3.4 The essential pure $map\dot{p}ing$ class group $P_{e}(R)$ of $R$ is the set of
all quasiconformal mapping $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{e}\dot{6}[g]\in \mathrm{M}\mathrm{C}\mathrm{G}(R)$ such that $g$ fixes all essential
ends of $R$ .

Clearly $P(R)\subset P_{e}(R)$ . Now we state our theorem.

Theorem 3.5 We have $E(R)\subset \mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}\subset P_{e}(R)$ .

We prove Theorem 3.5 in [11]. We also remark that each inclusion relation
is proper, in general. However it is conjectured that $E(R)=\mathrm{K}\mathrm{e}\mathrm{r}\iota_{A}$ under the
assumption that $R$ satisfies the bounded geometry.

In the last of this section, we consider the dynamics of the geometric auto-
morphisms on AT$(R)$ . Similar to the definition of the region of discontinuity
on Teichm\"uller space, we define the region of discontinuity of $G\subset \mathrm{M}\mathrm{C}\mathrm{G}(R)$ on
the asymptotic Teichm\"uller space as

$\Omega_{A}(G)=$ {$p\in AT(R)|G$ acts at $p$ discontinuously}.

As we have seen in the previous section, every stationary subgroup of the
mapping class group acts on the Teichm\"uller space discontinuously under the
bounded geometry condition. However, on the asymptotic Teichm\"uller space, a
situation is different.

Theorem 3.6 There exists a Riemann surface $R$ having the bounded geometry
and more than two topological ends such that $\Omega_{A}(P(R))\subset_{AT(R)}\neq$ for the pure
mapping class group $P(R)$ .
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Proof. Let $R_{0}$ be a normal cover of a compact Riemann surface of genus
2 whose covering transformation group is a cyclic group $\langle\phi\rangle$ generated by a
conformal automorphism $\phi$ of $R_{0}$ of infinite order. Set $R=R_{0}-\{x\}$ for a point
$x\in R_{0}$ . Then $R$ has the bounded geometry and three topological ends. We see
that there exists a quasiconformal automorphism th of $R$ of infinite order such
that it fixes the three ends and it is coincident with $\phi$ outside a topologically
finite subsurface whose boundary consists of $x$ and two dividing simple closed
geodesics. By a similar argument to the proofs of Proposition 4.3 and Lemmas
4.4 and 4.5 in [9], we can construct a point $p\in AT(R)$ satisfying the following
two properties:

(i) $d_{A}([\psi^{3^{k}}]_{*}(p),p)arrow 0(karrow\infty)$ ;

(ii) $[\psi^{3^{k}}]_{*}\neq[\psi^{3^{m}}]_{*}$ in $\mathrm{A}\mathrm{u}\mathrm{t}(AT(R))$ for every $k\neq m$ .
Then $p\not\in\Omega_{A}(P(R))$ and we have the assertion. $\blacksquare$
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