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1. INTRODUCTION

For a fixed integer $n\geq 2$ , let $\mathbb{C}^{n}$ denote the Euclidean space of complex dimension
$n$ and let $B=B_{n}$ denote the open unit ball in $\mathbb{C}^{n}$ . For $1\leq p<\infty$ , the pluriharmonic
Bergman space $b^{\mathrm{p}}=b^{\mathrm{p}}(B)$ is the set of all complex-valued pluriharmonic functions $\varphi$

on $B$ such that
$|| \varphi||_{p}=\{\int_{B}|\varphi|^{p}dV\}^{1/p}<\infty$

where $V$ denotes the Lebesgue volume measure on $B$ . For $1\leq p\leq\infty$ , let $L^{p}=L^{\mathrm{p}}(V)$

be the Lebesgue spaces on $B$ . Since $b^{2}$ is a closed subspace of $L^{2}$ , it is a Hilbert space.
Since each point evaluation is a bounded linear functional on $b^{2}$ , for each $z\in B$ ,

there exists a unique function $R_{z}\in b^{2}$ which has the reproducing property:

(1.1) $\varphi(z)=\int_{B}\varphi(w)\overline{R_{z}(w)}dV(w)$ $(z\in B)$

for all $\varphi\in b^{2}$ . More explicitly, the kernel $R_{z}$ is given by (see [5])

(1.2) $R_{z}(w)= \frac{1}{(1-w\cdot\overline{z})^{n+1}}+\frac{1}{(1-z\cdot\overline{w})^{n+1}}-1$

for $z,$ $w\in B$ . Here, $z\cdot\overline{w}=z_{1}\overline{w^{1}}_{1}+\cdots+z_{n}\overline{w}_{n}$ denotes the Hermitian inner product
on $\mathbb{C}^{n}$ . Rom the explicit formula of $R_{z}$ , one can see that

(1.3) $|R_{z}(w)| \leq\frac{C}{|1-z\cdot\overline{w}|^{n+1}}$ $(z, w\in B)$

so that $R_{z}\in L^{\infty}$ .
Associated with the kernel function $R_{z}$ is the integral operator

(1.4) $R \psi(z)=\int_{B}\psi(w)R_{z}(w)dV(w)$ $(z\in B)$

which takes $L^{p}$-functions into pluriharmonic functions on $B$ . In fact, $R$ is the Hilbert
space orthogonal projection from $L^{2}$ onto $b^{2}$ and $R$ is a bounded projection $\mathrm{h}\mathrm{o}\mathrm{m}L^{p}$

onto $b^{p}$ for $1<p<\infty$ . The integral transform can be extended to $\mathcal{M}$ , the space of
all complex Borel measures on $B$ . That is to say, for each $\mu\in \mathcal{M}$ , the integral

$R \mu(z)=\int_{B}R_{z}(w)d\mu(w)$ $(z\in B)$
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defines a function pluriharmonic on $B$ .
For $\mu\in \mathcal{M}$ , the Toeplitz operator $T_{\mu}$ with symbol $\mu$ is defined by

$T_{\mu}f=R(fd\mu)$

for $f\in b^{2}\cap L^{\infty}$ . In case $d\mu=\varphi dV$ , we write $T_{\mu}=T_{\varphi}$ . Note that $T_{\mu}$ is defined on
a dense subset of $b^{2}$ , because bounded pluriharmonic functions form a dense subset
of $b^{2}$ . A Toeplitz operator $T_{\mu}$ is called positive if $\mu\in \mathcal{M}$ is a positive (finite) Borel
measure (we will simply write $\mu\geq 0$).

From now on, we let A denote the measure on $B$ defined by
$d\lambda(z)=R_{z}(z)dV(z)$ .

The purpose this lecture is to announce a recent joint work with Choi concerning
characterizations of positive Toeplitz operators of Schatten-Herz type (we will define
this in the Section 5) in terms of averaging functions and Berezin transforms of symbol
functions. Details of proofs will appear elsewhere.

We will often abbreviate inessential constants involved in inequalities by writing
$X<Y\sim$ for positive quantities $X$ and $Y$ if the ratio $X/Y$ has a positive upper bound.
Also, we write $X\approx Y$ if $X<Y\sim$ and $Y\leq X$ .

2. AVERAGING FUNCTIONS AND BEREZIN TRANSFORMS

In this section we define averaging functions and Berezin transforms and briefly
review their properties.

For $\mu\in \mathcal{M}$ , its Berezin transform $\mu\sim$ is a function on $B$ defined by

$\mu(\sim z)=\int_{B}|r_{z}(w)|^{2}d\mu(w)$ $(z\in B)$

where
$r_{z}= \frac{R_{z}}{||R_{z}||_{2}}$

is the normalized reproducing kernel. For $\varphi\in L^{1}$ , we define $\tilde{\varphi}=\overline{\mu}$ where $d\mu=\varphi dV$ .
The notion of Berezin transform can be extended to non-integrable functions which
belong to some weighted Lebesgue spaces. See Proposition 4.5 below.

Fix $z\in B$ . Let $P_{z}$ be the orthogonal projection of $\mathbb{C}^{n}$ onto the subspace $\langle z\rangle$

generated by $z$ , and let $Q_{z}=I-P_{z}$ be the projection on the orthogonal complement
of $\langle z\rangle$ . To be quite explicit, $P_{0}=0$ and

$P_{z}(w)= \frac{w\cdot\overline{z}}{|z|^{2}}z$ $ifz\neq 0$ .

For $z,$ $w\in B,$ $z\neq 0$ , define

$\varphi_{z}(w)=\frac{z-P_{z}(w)-(1-.|z|^{2})^{\frac{1}{2}}Q_{z}(w)}{1-w\overline{z}}$ .

Each $\varphi_{z}$ is a biholomorphic self-map of $B$ and $\varphi_{z}\circ\varphi_{z}$ is the identity on $B$ . Note that

$1-| \varphi_{z}(w)|^{2}=\frac{(1-|z|^{2})(1-|w|^{2})}{|1-z\cdot\overline{w}|^{2}}$ $(z, w\in B)$ .
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See Section 2 of [5] for details.
The pseudo-hyperbolic ball $E_{r}(z)$ with center $z\in B$ and radius $r\in(\mathrm{O}, 1)$ is defined

by
$E_{r}(z)=\varphi_{z}(rB)$ .

Since $\varphi_{z}$ is an involution, $w\in E_{r}(z)$ if and only if $|\varphi_{z}(w)|<r$ . It is known that

$|E_{r}(z)|\approx(1-|z|^{2})^{n+1}$ .

Here, and in what follows, we write $|E|=V(E)$ for all Borel sets for $E\subset B$ . For
$\mathrm{r}\in(\mathrm{O}, 1)$ fixed, the averaging function $\mu_{r}\wedge$ is defined by

$\mu_{r}(\wedge z)=\frac{\mu[E_{r}(z)]}{|E_{r}(z)|}$ $(z\in B)$ .

Also, we let $\mu_{r}\wedge=\varphi_{r}\wedge$ for $d\mu=\varphi dV$ .
The estimate of the kernel function along the diagonal is easily seen. Namely, it is

straightforward from (1.2) to see that

(2.1) $R_{z}(z)=||R_{z}||_{2}^{2}\approx(1-|z|)^{-n-1}$

for $z\in B$ . This estimate continues to hold even for points staying sufficiently close
to the diagonal in the sense that there exists some $r_{0}\in(0,1)$ for which we have

(2.2) $R_{z}(w)\approx(1-|z|)^{-n-1}$

whenever $z\in B$ and $w\in E_{r_{0}}(z)$ (see Lemma 2.1 of [2]). The following proposition says
that averaging functions over balls of small radii are dominated by Berezin transforms.
This consequence will be useful for our purpose.

Proposition 2.1. Given $r\in(0, r_{0})$ , there exits a constant $C_{r}$ such that $\mu_{r}\wedge\leq C_{r}\mu\sim$

for $\mu\geq 0$ .

The following proposition comes from Lemma 3.1 of [2].

Proposition 2.2. Given $r,$ $s\in(0,1)$ , there exists a constant $C_{r,S}$ such that $\mu_{r,s}\wedge\leq$

$C_{r}\overline{(\bigwedge_{s}_{\mu})_{r}\bigwedge}$ for $\mu\geq 0$ .
Using subharmonicity and Fubini $‘ \mathrm{s}$ theorem, we get the following: given $r\in(\mathrm{O}, 1)$ ,

there is a constant $C_{r}$ such that

$\int_{B}fd\mu\leq C_{r}\int_{B}f\mu_{r}d\wedge V$

for all $f\geq 0$ subharmonic on $B$ and $\mu\geq 0$ .
The next proposition is an immediate consequence of the above estimate.

Proposition 2.3. Given $r\in(\mathrm{O}, 1)$ , there exists a constant $C_{r}$ such that $\mu\sim\leq C_{r}\overline{(\bigwedge_{r}_{\mu})\bigwedge}$

for $\mu\geq 0$ .
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3. SCHATTEN CLASSES AND HERZ SPACES

In this section we introduce Schatten classes and Herz spaces. We first recall
Schatten class operators. For a compact operator $T$ on $b^{2}$ , let $\{s_{m}(T)\}$ be the nonzero
eigenvalues with multiplicity of $|T|=(T^{*}T)^{1/2}$ arranged so that the sequence is non-
increasing, where $\tau*$ denotes the Hilbert space adjoint of $T$ . This sequence is called
the singular value sequence of $T$ . For $1\leq p<\infty$ , we say that $T$ is a Schatten p-class
operator if the singular value sequence $\{s_{m}(T)\}$ belongs to $\ell^{p}$ . Let $S_{p}$ be the space of
all Schatten p–class operators on $b^{2}$ . The space $S_{p}$ is then a Banach space equipped
with the norm

$||T||_{S_{\mathrm{p}}}= \{\sum_{m}|s_{m}(T)|^{p}\}^{1/p}$

See [6], for example, for more information and related facts. Also, we denote by $S_{\infty}$

the class of all bounded linear operators on $b^{2}$ and let $||T||s_{\infty}$ denote the operator
norm $||T||$ of $T\in S_{\infty}$ .

The following proposition, taken from Theorem 3.13 of [2], expresses the character-
ization for a positive Toeplitz operator to be a member of the Schatten class $S_{p}$ . Note
that the case $p=\infty$ gives characterizations for boundedness, which is also included
in Proposition 3.2 below. We did so for easier reference later.
Proposition 3.1. Let 1 $\leq p\leq\infty_{f}r\in(0,1)$ and $\mu\geq 0$ . Then the following
conditions are equivalent:

(a) $T_{\mu}\in S_{p}$ .
(b) $\tilde{\mu}\in L^{p}(\lambda)$ .
(c) $\mu_{r}\in L^{p}\wedge(\lambda)$ .

Moreover, the equivalences $||T_{\mu}||_{S_{\mathrm{p}}}\approx||\mu|\sim|_{L^{\mathrm{p}}(\lambda)}\approx||\mu_{r}|\wedge|_{L^{p}(\lambda)}$ hold.

We also mention that corresponding characterizations for boundedness and com-
pactness come from Theorem 3.9 and Theorem 3.12 of [2]. Here, $L_{0}$ denote the space
of all bounded functions $f$ on $B$ such that $f(z)arrow \mathrm{O}$ as $|z|arrow 1$ .
Proposition 3.2. Let $r\in(0_{\backslash }. 1)$ and $\mu\geq 0$ . Then the following conditions are
equivalent:

(a) $T_{\mu}$ is bounded (compact) on $b^{2}$ .
(b) $\mu\in L^{\infty}\sim(L_{0})$ .
(c) $\mu_{r}\in L^{\infty}\wedge(L_{0})$ .
(d) The inclusion $J_{\mu}$ : $b^{2}\subset L^{2}(\mu)$ is bounded (compact).

Moreover, the equivalences $||T_{\mu}||\approx||\mu|\sim|_{L}\infty\approx||\mu_{r}|\wedge|_{L}\infty\approx||J_{\mu}||^{2}$ hold.

The above proposition yields the following result.
Proposition 3.3. Let $\mu\in \mathcal{M}$ and assume that $T_{|\mu|}$ is bounded on $b^{2}$ . Then $T_{\mu}\dot{i}$

bounded on $b^{2}$ and
$||T_{\mu}||\leq C||T_{|\mu|}||$

for some constant $C$ independent of $\mu$ . If, in addition, $T_{|\mu|}$ is compact on $b^{2}$ , then $T_{\mu}$

is also compact on $b^{2}$ .
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Finally, we recall the Herz spaces on the ball. We let

$A_{m}=\{z\in B : r_{m}\leq|z|<r_{m+1}\}$

where $r_{m}=1-2^{-m}$ for each integer $m\geq 0$ . We will write $\chi_{m}$ for the characteristic
function of $A_{m}$ for each $m$ . Also, given $\mu\in \mathcal{M}$ , we let $\mu\chi_{m}$ stand for the restriction
of $\mu$ to $A_{m}$ for each $m$ . Let a be real and $1\leq p,$ $q\leq\infty$ . Then the Herz space $\mathcal{K}_{q}^{p,\alpha}$ is
the space consisting of all functions $f\in L_{1}^{p_{\mathrm{O}\mathbb{C}}}(V)$ such that

$||f||_{\mathcal{K}_{q}^{\mathrm{p},\alpha=}}||\{2^{-m\alpha}||f\chi_{m}||_{L^{\mathrm{p}}}\}||_{\ell^{q}}<\infty$.

Equipped with the norm above, the space $\mathcal{K}_{q}^{p,\alpha}$ is a Banach space.
Given 7 real, let $V_{\gamma}$ denote the weighted measure on $B$ defined by

$dV_{\gamma}(z)=(1-|z|^{2})^{\gamma}dV(z)$ .

Let $1\leq p<\infty$ and $\alpha$ real. Then, given $m\geq 0$ , we have $1-|z|^{2}\approx 2^{-m}$ for $z\in A_{m}$

and thus we obtain

$2^{-m\alpha}||f \chi_{m}||_{L^{\mathrm{p}}}=\{\int_{A_{m}}(2^{-m\alpha}|f(z)|)^{p}dV(z)\}^{1/p}$

$\approx\{\int_{A_{m}}(1-|z|^{2})^{\alpha p}|f(z)|^{p}dV(z)\}^{1/p}$

$\approx||f\chi_{m}||_{L^{\mathrm{p}}(V_{\alpha \mathrm{p}})}$

and this estimate is uniform in $m$ . It follows that

(3.1) $||f||_{\mathcal{K}_{\mathrm{q}}^{p,\alpha\approx}}||\{||f\chi_{m}||_{L^{\mathrm{p}}(V_{\alpha \mathrm{p}})\}||_{\ell^{q}}}$

for $1\leq q\leq\infty$ . In particular, since $\lambda\approx V_{-n-1}$ , we have

$||f||_{\mathcal{K}_{q}^{\rho,-(n+1)/p}}\approx||\{||f\chi_{m}||_{L^{p}(\lambda)}\}||_{\ell^{q}}$

and this estimate is easily seen to be valid even for $p=\infty$ . So, equipped with the
norm of $\mathcal{K}_{q}^{\mathrm{p},-(n+1)/p}$ , the space $\mathcal{K}_{q}^{\mathrm{p}}(\lambda)$ is precisely the same as $\mathcal{K}_{q}^{\mathrm{p},-(n+1)/p}$ for the full
range $1\leq p,$ $q\leq\infty$ . Also, note that

(3.2) $\mathcal{K}_{p}^{p}(\lambda)\approx L^{p}(\lambda)$

for $1\leq p\leq\infty$ . That is, these two spaces are the same as sets and have equivalent
norms as Banach spaces.

Note that H\"older’s inequality holds in the Herz space as follows:

(3.3) $| \int_{B}f\overline{g}dV|\leq||f||_{\mathcal{K}_{q}^{\mathrm{p},\alpha}}||g||_{\mathcal{K}_{q}^{\mathrm{p}’,-\alpha}}$

,

for functions $f\in \mathcal{K}_{q}^{p,\alpha}$ and $g\in \mathcal{K}_{q}^{p’,-\alpha}$, for the full range $1\leq p,$ $q\leq\infty$ and arbitrary ct
real (see [1] for details). Here, and in what follows, $p’$ is the conjugate exponent of $p$ .
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4. VARIOUS MAPPING PROPERTIES

For our main result (Theorem 5.2) in the next section, we need to establish various
mapping properties of the Berezin transform. We begin with the Herz norm estimates
of the kernel function. For that purpose, we need the following fact (see Proposition
1.4.10 of [5] $)$ . Here $dS$ is the surface area measure on $\partial B$ , the boundary of $B$ .

Lemma 4.1. For-l $<\alpha<\infty$ and $c$ real, let

$J_{c}(z)= \int_{\partial B}\frac{dS(\zeta)}{|1-z\cdot\overline{\zeta}|^{n+\mathrm{c}}}$

and
$I_{\alpha,c}(z)= \int_{B}\frac{(1-|w|)^{\alpha}}{|1-z\cdot\overline{w}|^{n+1+\alpha+c}}dV(w)$

$forz\in B$ . Then the following estimates hold:

$J_{\mathrm{c}}(z)\approx I_{\alpha,\mathrm{c}}(z)\approx\{$

1 if $c<0$

$\frac{\log\frac{1}{11-|z|^{2}2)^{c}}}{(\mathrm{l}-|z|}$ $ififc=0c>0$

as $|z|arrow 1$ .

Lemma 4.2. Let $1\leq p,$ $q\leq\infty$ and assume $-1/p<\alpha<2(n+1)-(n+1)/p$ . Then
there exists a constant $C=C_{\alpha,p,q}$ such that

$||R_{z}^{2}||_{\mathcal{K}_{q}^{p,\alpha}} \leq\frac{C}{\{1-|z|)^{2(n+1)-(n+1)/p-\alpha}}$

for $z\in B$ .
The following proposition ensures that the Berezin transform continuously takes

the Herz spaces $\mathcal{K}_{q}^{p}(\lambda)$ into $L^{\infty}$ .
Proposition 4.3. Let $1\leq p,$ $q\leq\infty$ . There exists a constant $C=C_{p,q}$ such that

$||\tilde{\varphi}||_{L\infty}\leq C||\varphi||_{\mathcal{K}_{q}^{\mathrm{p}}(\lambda)}$

for functions $\varphi\in \mathcal{K}_{q}^{p}(\lambda)$ .

As a corollary we see that Toeplitz operators with $\mathcal{K}_{q}^{p}(\lambda)$-symbols are compact when
$q$ is finite.
Corollary 4.4. Let $1\leq p\leq\infty,$ $1\leq q<\infty$ and $\varphi\in \mathcal{K}_{\mathrm{q}}^{p}(\lambda)$ . Then $T_{\varphi}$ is compact on
$b^{2}$ .

We now turn to the boundedness of the Berezin transform on the spaces $\mathcal{K}_{q}^{p,\alpha}$ for
certain range of parameters. As a preliminary step we establish the boundedness of
the Berezin transform on the weighted Lebesgue spaces $L^{p}(V_{\gamma})$ . We actually prove a
more general version in the same way as Theorem 1.9 of [3].

Given a and $\beta$ real, we let

$\Psi_{\alpha,\beta}f(z)=(1-|z|^{2})^{\alpha}\int_{B}\frac{f(w)}{(1-z\cdot\overline{u|})^{n+1+\alpha+\beta}}dV_{\beta}(w)$
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and

for $z\in B$ .

$\Phi_{\alpha,\beta}f(z)=(1-|z|^{2})^{\alpha}\int_{B}\frac{f(w)}{|1-z\cdot\overline{w}|^{n+1+\alpha+\beta}}dV_{\beta}(w)$

Proposition 4.5. Let $1\leq p<\infty$ and $\alpha,$ $\beta_{f}\gamma$ be real. Then the folloutng conditions
are equivalent:

(a) $\Psi_{\alpha,\beta}$ is bounded on $L^{p}(V_{\gamma})$ .
(b) $\Phi_{\alpha,\beta}$ is bounded on $L^{p}(V_{\gamma})$ .
(c) $-p\alpha<\gamma+1<p(\beta+1)$ .

The following shows that $\mathcal{K}_{q}^{p,\alpha}$-boundedness of the Berezin transform.
Proposition 4.6. Let $1\leq p<\infty,$ $1\leq q\leq\infty$ and $\alpha$ be real. $If-(n+1)-1/p<$
$\alpha<1/p’$ , then the Berezin transform is bounded on $\mathcal{K}_{q}^{p,\alpha}$ . In particular, the Berezin
transform is bounded on $\mathcal{K}_{q}^{p}(\lambda)$ .

Let $\mathfrak{M}_{+}$ be the class of all positive (possibly infinite) measurable functions on $B$ .
Also, note that the Berezin transform takes $\mathfrak{M}_{+}$ into itself.

The following lemma is needed for the proof of the implication $(\mathrm{b})\Leftrightarrow(\mathrm{c})$ in our
main result(Theorem5.2).
Lemma 4.7. Let $f\in \mathfrak{M}_{+}$ . Then

$||f \chi_{k}||_{L^{\infty}}\sim\sim<\sum_{m=0}^{\infty}\frac{||f\chi_{m}||_{L}\infty}{2^{|m-k|}}$ , $k=0,1,$ $\ldots$

5. MAIN RESULTS

In this section we state our main result Theorem 5.2 and observe some conse-
quences. We start with a simple covering lemma. A straightforward computation
shows that the pseudohyperbolic ball $E_{r}(z)$ consists of all $w$ that satisfy

$\frac{|P_{z}(w)-C_{z}|^{2}}{r^{2}\rho_{z}^{2}}+\frac{|Q_{z}(w)|^{2}}{r^{2}\rho_{z}}<1$ ,

where $C_{z}=(1-r^{2})z/(1-r^{2}|z|^{2})$ and $\rho_{z}=(1-|z|^{2})/(1-r^{2}|z|^{2})$ . Thus $E_{r}(z)$ is an
ellipsoid with center at $C_{z}$ .
Lemma 5.1. Given $r\in(0,1)$ , let $N$ be an integer ntth $N>\log_{2}\{(1+r)/(1-r)\}$ .
Then

$E_{r}(z) \subset\bigcup_{k=m-N}^{m+N}A_{k}$

for $z\in A_{m}$ and $m\geq N$ . Here, $A_{t}=\emptyset$ if $t<0$ .
Given $1\leq p,$ $q\leq\infty$ , the space $S_{p,g}$ consists of all Toeplitz operators $T_{\mu}$ of Schatten-

Herz $(p, q)$-type, meaning that $T_{\mu\chi m}\in S_{p}$ for each $m$ and the sequence $\{||T_{\mu\chi_{m}}||_{S_{\mathrm{p}}}\}$

belongs to $\ell^{q}$ . The norm of $T_{\mu}\in S_{p,q}$ is given by

$||T_{\mu}||_{S_{p,q}}=||\{||T_{\mu\chi_{m}}||_{S_{\mathrm{p}}}\}||_{\ell^{q}}$ .
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Now our main result is stated and we also show the equivalences of the associated
norms.

Theorem 5.2. Let $1\leq p,$ $q\leq\infty,$ $r\in(\mathrm{O}, 1)$ and $\mu\geq 0$ . Then the following conditions
are equivalent:

(a) $T_{\mu}\in S_{pq}$ .
(b) $\overline{\mu}\in \mathcal{K}_{q}^{p}(’\lambda)$ .
(c) $\mu_{r}\in \mathcal{K}_{q}^{p}\wedge(\lambda)$ .

Moreover, the equivalences $||T_{\mu}||_{S_{p,q}}\approx||\overline{\mu}||_{\mathcal{K}_{q}^{p}(\lambda)}\approx||\mu_{r}|\wedge|_{\mathcal{K}_{q}^{\mathrm{p}}(\lambda)}$ hold.

In the remainder of this section we observe some consequences. Given $r\in(0,1)$ ,
it is not hard to see that the averaging operator $\varphirightarrow\varphi_{r}\wedge$ is $L^{p}(\lambda)$ -bounded for $p=1$
or $p=\infty$ and thus for all $1\leq p\leq\infty$ by the Riesz-Thorin interpolation theorem. It
turns out that the averaging operator is bounded on each of the Herz spaces $\mathcal{K}_{q}^{p}(\lambda)$ .
Combining this fact with Theorem 5.2,. we have the boundedness of the Berezin
transform on $K_{q}^{\infty}(\lambda)$ which is missing in Proposition 4.6.

Corollary 5.3. Let $1\leq p,$ $q\leq\infty$ and $r\in(\mathrm{O}, 1)$ . Then the averaging operator $\varphi\mapsto\hat{\varphi}_{r}$

is bounded on $\mathcal{K}_{q}^{p}(\lambda)$ . Also, the Berezin transform is bounded on $\mathcal{K}_{q}^{p}(\lambda)$ .
Next, the following is an immediate consequence of (3.2), Proposition 3.1 and

Theorem 5.2.

Corollary 5.4. Let $1\leq p\leq\infty$ and $\mu\geq 0$ . Then $T_{\mu}\in S_{p,p}$ if and only if $T_{\mu}\in S_{p}$ .
Also, we observe that the operator norm of positive Toeplitz operators are dom-

inated by their $S_{p,q}$-norms. This consequence in turn implies that operators in $S_{p,q}$

are all compact for finite $q$ .

Corollary 5.5. Let $1\leq p,$ $q\leq\infty$ . Assume $\mu\in \mathcal{M}$ and $T_{|\mu|}\in S_{p,q}$ . Then
$||T_{\mu}||\leq C||T_{|\mu|}||_{S_{\mathrm{p},q}}$

for some constant $C=C_{p,q}$ independent of $\mu$ . If $q<\infty$ and $d\mu=\varphi dV$ in addition,
then $T_{\mu}$ is compact on $b^{2}$ .

6. REMARKS
M. Loaiza, M. L\’opez-Garc\’ia and S. P\’erez-Esteva ([4]) first introduce mixed norm

spaces associated with Schatten classes and decomposed a given positive Toeplitz
operator into a family of local operators and then characterized membership in those
spaces in terms of the so-called Herz spaces in the holomorphic case on the unit disk.
In the case of harmonic Bergman space, B. Choe, H. Koo and K. Na [1] obtained the
analogous results on the ball and removed some restriction of the main result of [4].
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