Hankel-type operators on the spaces of analytic functions

日本工業大学·工学部 大野 修一 (Shûichi Ohno) Nippon Institute of Technology

Abstract. We will study Hankel-type operators on the spaces of analytic functions on the open unit disk. These operators are a natural generalization of the classical Hankel operator on the Hilbert Hardy space. They are related to tight uniform algebras, the Dunford-Pettis property, and Bourgain algebras.

1 Introduction

Let X be a Banach space and Y a closed subspace of X. For an element g such that $gY \subset X$, we define the operator $S_g : Y \to X/Y$ by

$$S_g f = gf + Y$$

for all $f \in Y$. The norm is considered as the quotient norm, that is,

$$||S_g f|| = ||gf + Y|| = \inf\{||gf + h|| : h \in Y\}$$

for all $f \in Y$. The quotient norm is the distance from gf to $Y: d(gf, Y) = \inf\{\|gf + h\| : h \in Y\}$. This operator is called a Hankel-type operator and is a natural generalization of the classical Hankel operator on the Hilbert Hardy space. Recall that S_g is said to be (weakly) compact if S_g maps every bounded set into a relatively (weakly) compact one, and that S_g is said to be completely continuous if S_g maps every weakly convergent sequence into a norm convergent one. In general, every compact operator is completely continuous. But the converse is not always true. We define the following sets of symbols;

The author is partially supported by Grant-in-Aid for Scientific Research (No.17540169), Japan Society for the Promotion of Science.

 $Y_c = \{g : S_g \text{ is compact}\},\$

 $Y_{wc} = \{g : S_g \text{ is weakly compact}\},\$

 $Y_{cc} = \{g : S_g \text{ is completely continuous}\}.$

The conditions for S_g to be compact, weakly compact and completely continuous have been investigated in various function spaces. The problem of whether all S_g are weakly compact on a uniform algebra is related to a tight algebra [3] and the problem of complete continuity appears in the Dunford-Pettis property. The latter introduced a notion of Bourgain algebras which have been actively researched in analytic and harmonic function spaces on the open unit disk ([1], [2] and [10]). Recently, Dudziak, Gamelin, and Gorkin [5] studied Hankel-type operators on analytic function spaces and Izuchi and the author [9] investigated Hankel-type operators on the space of bounded harmonic functions on the unit disk. See [8] and [13] as surveys for convenience.

We here consider Hankel-type operators on the spaces of analytic functions on the open unit disk, explicitly, the disk algebra, Hardy and Bergman spaces.

Let \mathbb{D} be the open unit disk in the complex plane and $\partial \mathbb{D}$ its boundary. Let $C(\partial \mathbb{D})$ and $C(\overline{\mathbb{D}})$ be the algebras of all continuous functions on $\partial \mathbb{D}$ and $\overline{\mathbb{D}}$ respectively. Let $A(\mathbb{D})$ be the disk algebra of all continuous functions on $\overline{\mathbb{D}}$ that are analytic on \mathbb{D} . Then $A(\mathbb{D})$ is the Banach algebra with the supremum norm

$$||f||_{\infty} = \sup\{|f(z)|; z \in \overline{\mathbb{D}}\}.$$

For $1 \leq p \leq \infty$, let $L^p(\partial \mathbb{D})$ and $L^p(\mathbb{D})$ be the Lebesgue spaces on $\partial \mathbb{D}$ and \mathbb{D} respectively. For $1 \leq p < \infty$, we denote by H^p the classical Hardy space that is the Banach space of all analytic function f on \mathbb{D} for which

$$\|f\|_{H^p} = \left(\sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{1/p} < \infty,$$

and denote by L^p_a the Bergman space consisting of all analytic function f on \mathbb{D} for which

$$\|f\|_{L^p_a} = \left(\int_{\mathbb{D}} |f(z)|^p dA(z)\right)^{1/p} < \infty$$

where dA is the normalized area measure on \mathbb{D} . Let H^{∞} be the algebra of bounded analytic functions on \mathbb{D} . See [6], [7] and [15] for more information on the Hardy and Bergman spaces.

In the next section, we regard the disk algebra $A(\mathbb{D})$ as a closed subalgebra of $C(\partial \mathbb{D})$ or $C(\overline{\mathbb{D}})$ and H^{∞} as a closed subalgebra of $L^{\infty}(\partial \mathbb{D})$ or $L^{\infty}(\mathbb{D})$ respectively. In section 3, we will consider the case of Hardy space H^p : for $g \in L^{\infty}(\partial \mathbb{D})$, we define the linear operator $S_g : H^p \to L^p(\partial \mathbb{D})/H^p$ by $S_g f = gf + H^p$ for $f \in H^p$. Trivially $S_g : H^p \to L^p(\partial \mathbb{D})/H^p$ is a bounded linear operator. When p = 2, let H_g be the classical Hankel operator on H^2 ; for $g \in L^{\infty}(\partial \mathbb{D})$, $H_g f = gf - P(gf)$, where P is the orthogonal projection from $L^2(\partial \mathbb{D})$ onto H^2 . It is well known that H_g is compact if and only if $g \in H^{\infty} + C(\partial \mathbb{D})$. In section 3, Theorem 3.1 says that this equivalence holds on H^p for 1 . When <math>p = 1, Janson, Peetre and Semmes [11] studied the Hankel operator as form $H_b f = \overline{P}(bf)$ where f is analytic polynomial and \overline{P} is the orthogonal projection of L^2 onto $\overline{H^2}$. So we will give the attention to Hankel operators on H^p from the another approach.

On the other hand, in the case of Bergman space, Leucking [12] characterized the compactness of Hankel operators on L_a^p , 1 . So wewill note them in section 4. In section 5 we add the result on the space ofbounded harmonic functions and in the last section we pose some openquestions.

2 The disk algebra and H^{∞}

(1) The disk algebra $A(\mathbb{D})$

At first we regard the disk algebra $A = A(\mathbb{D})|_{\partial \mathbb{D}}$ as a closed subalgebra of $C(\partial \mathbb{D})$. For $g \in C(\partial \mathbb{D})$, we define the linear operator $S_g : A \to C(\partial \mathbb{D})/A$ by

$$S_g f = gf + A$$
 for $f \in A$.

Then we would characterize the sets A_c , A_{wc} and A_{cc} . Each set is a closed subalgebra of $C(\partial \mathbb{D})$.

Theorem 2.1. When we regard $A = A(\mathbb{D})|_{\partial \mathbb{D}}$ as a closed subalgebra of $C(\partial \mathbb{D})$, then

$$A_c = A_{wc} = A_{cc} = C(\partial \mathbb{D}).$$

Proof. It is trivial that $A \subset A_c \subset A_{cc} \subset C(\partial \mathbb{D})$ and that $A_c \subset A_{wc}$. Let $f_n \in A$ with $||f_n||_{\infty} \leq 1$. Then $|f_n(0)| \leq 1$. Thus there exists a subsequence (which we do not relabel) of $\{f_n(0)\}$ such that $f_n(0) \to c$ for some constant c. Then, since $\overline{z}(f_n - f_n(0)) \in A$,

$$\begin{aligned} |\overline{z}f_n - \overline{z}c + A||_{\infty} \\ &\leq \|\overline{z}f_n - \overline{z}c - \overline{z}(f_n - f_n(0))\|_{\infty} \\ &= \|\overline{z}(c - f_n(0))\|_{\infty} \\ &= |c - f_n(0)| \to 0. \end{aligned}$$

So $S_{\overline{z}}$ is compact and $\overline{z} \in A_c$. Because A_c is a closed subalgebra of $C(\partial \mathbb{D})$,

$$A_c = A_{wc} = A_{cc} = C(\partial \mathbb{D}),$$

by the Stone-Weierstrass theorem.

We here estimate the norm and the essential norm of S_g . Recall that the essential norm of a bounded linear operator T from Y to X/Y is defined as

 $||T||_e = \inf\{||T + K|| : K \text{ is compact operator from } Y \text{ to } X/Y\}.$

Using the basic duality relation ([7: Chapter IV]), we has the following.

Theorem 2.2. For $g \in C(\partial \mathbb{D})$, then $||S_g|| = d(g, A(\mathbb{D})|_{\partial \mathbb{D}})$ and $||S_g||_e = 0$.

Secondly we regard $A = A(\mathbb{D})$ as a closed subalgebra of $C(\overline{\mathbb{D}})$. For $g \in C(\overline{\mathbb{D}})$, we define the linear operator $S_g : A \to C(\overline{\mathbb{D}})/A$ by

$$S_g f = gf + A$$
 for $f \in A$.

Then each set A_c, A_{wc} and A_{cc} is a closed subalgebra of $C(\overline{\mathbb{D}})$ and their equivalence was proved by Cole and Gamelin [3].

Theorem 2.3. When we regard $A(\mathbb{D})$ as a closed subalgebra of $C(\overline{\mathbb{D}})$, then

$$A_c = A_{wc} = A_{cc} = C(\overline{\mathbb{D}}).$$

In this case we also have the following using the basic duality relation.

 \Box

Theorem 2.4. For $g \in C(\overline{\mathbb{D}})$, then $||S_g|| = d(g, A(\mathbb{D}))$ and $||S_g||_e = 0$.

(2) H^{∞}

At first we regard H^{∞} as a closed subalgebra of $L^{\infty}(\partial \mathbb{D})$. For $g \in L^{\infty}(\partial \mathbb{D})$, we define the linear operator $S_g : H^{\infty} \to L^{\infty}(\partial \mathbb{D})/H^{\infty}$ by

$$S_a f = gf + H^{\infty}$$
 for $f \in H^{\infty}$

Then using the fact that H^{∞} has the Dunford-Pettis property, Cima, Janson and Yale [1] and Gorkin [8] showed the following.

Theorem 2.5. When we regard H^{∞} as a closed subalgebra of $L^{\infty}(\partial \mathbb{D})$, then

$$H_c^{\infty} = H_{wc}^{\infty} = H_{cc}^{\infty} = H^{\infty} + C(\partial \mathbb{D}).$$

The estimation of norms is the following.

Theorem 2.6. For $g \in L^{\infty}(\partial \mathbb{D})$, then $||S_g|| = d(g, H^{\infty})$ and $||S_g||_e \leq d(g, H^{\infty} + C(\partial \mathbb{D}))$.

Secondly we regard H^{∞} as a closed subalgebra of $L^{\infty}(\mathbb{D})$. For $g \in L^{\infty}(\mathbb{D})$, we define the linear operator $S_g : H^{\infty} \to L^{\infty}(\mathbb{D})/H^{\infty}$ by

$$S_g f = gf + H^\infty \quad \text{for} \quad f \in H^\infty.$$

Then Cima, Stroethoff and Yale [2] obtained the following result.

Theorem 2.7. When we regard H^{∞} as a closed subalgebra of $L^{\infty}(\mathbb{D})$, then

$$H_c^{\infty} = H_{wc}^{\infty} = H_{cc}^{\infty} = H^{\infty} + C(\overline{\mathbb{D}}) + V$$

where $V = \{g \in L^{\infty}(\mathbb{D}) : ||g\chi_{\mathbb{D} \setminus r\mathbb{D}}|| \to 0 \text{ as } r \to 1^{-}\}.$

Furthermore the estimation of norms is the following.

Theorem 2.8. For $g \in L^{\infty}(\mathbb{D})$, then $||S_g|| = d(g, H^{\infty})$ and $||S_g||_e \leq d(g, H^{\infty} + C(\overline{\mathbb{D}}) + V)$.

3 The case of Hardy spaces H^p for 1

∞

We here consider the case of Hardy spaces. Before starting our discussion, we recall results concerning the topology of Hardy spaces H^p .

Fact 1. ([4: Chap.20, Proposition 3.15]) If $1 , <math>f \in H^p$, and f_n is a sequence in H^p , then the following are equivalent.

(a) $\{f_n\}$ converges weakly to $f \in H^p$.

(b) $\{f_n\}$ is bounded and $f_n \in H^p$ converges to f uniformly on every compact subset of \mathbb{D} .

(c) $\{f_n\}$ is bounded and $f_n(z)$ converges to f(z) for all $z \in \mathbb{D}$.

(d) $\{f_n\}$ is bounded and $f_n^k(0)$ converges to $f^k(0)$ for all $k \ge 0$.

Fact 2. ([4: Chap.20, Proposition 3.16]) Put $S = \{f \in H^1 : ||f||_{H^1} = 1\}$. Then S is weak*-compact and metrizable, but not weak compact.

For $f_n \in S$, the following are equivalent:

(i) f_n converges to f in the weak*-topology in H^1 .

(ii) $f_n(z)$ converges to f(z) for all $z \in \mathbb{D}$.

(iii) f_n converges to f uniformly on every compact subset of \mathbb{D} .

For $1 \leq p < \infty$ and $g \in L^{\infty}(\partial \mathbb{D})$, we define the linear operator $S_g : H^p \to L^p(\mathbb{D})/H^p$ by

$$S_g f = gf + H^p$$
 for $f \in H^p$.

Fact 3. For $1 and <math>g \in L^{\infty}(\partial \mathbb{D})$, the following are equivalent:

(i) $S_g: H^p \to L^p(\partial \mathbb{D})/H^p$ is compact (completely continuous).

(ii) If $\{f_n\}$ is bounded in H^p and converges to 0 uniformly on every compact subset of \mathbb{D} , then $||S_g f_n|| \to 0$.

For $1 , <math>H^p$ is reflexive. So all completely continuous operator on H^p is compact and every bounded operator on H^p is always weakly compact. Thus $H^p_c = H^p_{cc}$ and $H^p_{wc} = L^{\infty}(\partial \mathbb{D})$.

For $g \in L^{\infty}(\partial \mathbb{D})$, let H_g be the classical Hankel operator on H^2 defined by $H_g f = gf - P(gf)$, where P is the orthogonal projection from $L^2(\partial \mathbb{D})$ onto H^2 . Hartman's theorem says that $H_g : H^2 \to L^2(\partial \mathbb{D})$ is compact if and only if $g \in H^{\infty} + C(\partial \mathbb{D})$. Then for 1 , <math>P is bounded from $L^p(\partial \mathbb{D})$ onto H^p and we can easily see the equivalence of compacteness of H_g and S_g . But the next result will give the characterization of Hankel operators on H^p from the another approach.

Theorem 3.1. For 1 , the following hold:

$$H^p_c = H^p_{cc} = H^\infty + C(\partial \mathbb{D}) \text{ and } H^p_{wc} = L^\infty(\partial \mathbb{D}).$$

Proof. First, we note that $H^{\infty} \subset H^p_c = H^p_{cc} \subset L^{\infty}(\partial \mathbb{D})$. Then $B := H^p_c = H^p_{cc}$ is a closed algebra and so a Douglas algebra.

Suppose that $H^{\infty} + C(\partial \mathbb{D}) \subsetneq B$. Thus there exists an interpolating Blaschke product $\psi \in H^{\infty}$ with $\overline{\psi} \in B$. That is, $S_{\overline{\psi}}$ is compact (completely continuous). Write $\psi(z) = e^{i\alpha} \prod_{n=1}^{\infty} b_n(z)$ where $b_n(z) = (z - z_n)/(1 - \overline{z_n}z)$. Put $f_k(z) = \prod_{n=k}^{\infty} b_n(z)$. Then $f_k \in H^p$, $||f_k||_{H^p} = 1$ and $f_k(z) \to 0$ for $z \in \mathbb{D}$ as $k \to \infty$. By Fact 1, $f_k(z) \to 0$ weakly in H^p . On the other hand, we have

$$||S_{\overline{\psi}}f_k|| = ||\overline{\psi}f_k + H^p||$$

= $||\overline{e^{i\alpha}b_1b_2\cdots b_{k-1}} + H^p||$
= $\inf_{f\in H^p} ||1 + e^{i\alpha}b_1b_2\cdots b_{k-1}f||_{H^p}$
 $\geq \inf_{f\in H^p} |1 + e^{i\alpha}(b_1b_2\cdots b_{k-1}f)(z)|(1 - |z|^2)^{1/p},$

for $z \in \mathbb{D}$.

Put $z = z_1$, a zero of b_1 . So

$$||S_{\overline{\psi}}f_k|| \ge (1-|z_1|^2)^{1/q} > 0.$$

As $S_{\overline{\psi}}$ is completely continuous,

 $\|S_{\overline{\psi}}f_k\| \to 0.$

This contradicts. So $B = H^{\infty} + C(\partial \mathbb{D})$.

Furthermore the estimation of norms is the following.

Theorem 3.2. For $1 \leq p < \infty$ and $g \in L^{\infty}(\mathbb{D})$, then $||S_g|| = d(g, H^{\infty})$ and for $1 , <math>||S_g||_e \leq d(g, H^{\infty} + C(\partial \mathbb{D}))$.

4 The case of Bergman spaces L_a^p for 1

For $g \in L^{\infty}(\mathbb{D})$, let H_g be the classical Hankel operator defined by $H_g f = gf - P(gf)$, where P is the Bergman projection from L^p onto L^p_a .

Then we can easily see the equivalence of compacteness of H_g and S_g . On the other hand, Leucking [12] characterized the compactness of Hankel operators on L_a^p , 1 . And so we have the following.

Theorem 4.1. For $1 , then <math>g \in (L^p_a)_c = (L^p_a)_{cc}$ if and only if g admits a decomposition $g = g_1 + g_2$ so that

$$\lim_{|z| \to 1} \frac{1}{|D(z)|} \int_{D(z)} |g_1|^2 dA = 0$$

and

$$g_2 \in C^1(\mathbb{D}), \quad \lim_{|z| \to 1} (1 - |z|)\overline{\partial}g_2(z) = 0$$

where D(z) is the Bergman disk with center z.

Moreover it holds that $(L^p_a)_{wc} = L^{\infty}(\mathbb{D}).$

5 The space of bounded harmonic functions

We here consider Hankel-type operators on the space of bounded harmonic functions. Let $h^{\infty} := h^{\infty}(\mathbb{D})$ be the set of all bounded harmonic functions on \mathbb{D} . It follows that h^{∞} is a closed subspace of $L^{\infty}(\mathbb{D})$. We can define $h_c^{\infty}, h_{wc}^{\infty}$ and h_{cc}^{∞} as before. The Bourgain algebra h_{cc}^{∞} is characterized by Izuchi, Stroethoff and Yale [10].

For a function $f \in L^{\infty}(\partial \mathbb{D})$, we denote by \hat{f} the Poisson integral of fon \mathbb{D} , that is,

$$\hat{f}(z) = \int_0^{2\pi} f(e^{i\theta}) P_z(e^{i\theta}) d\theta / 2\pi,$$

where P_z is the Poisson kernel of $z \in \mathbb{D}$. Then $\hat{f} \in h^{\infty}$. For any nonempty subset B of $L^{\infty}(\partial \mathbb{D})$, we write $\hat{B} = \{\hat{f} : f \in B\}$. It is known that fin h^{∞} has a boundary function f^* on $\partial \mathbb{D}$ and $\hat{f}^* = f$ on \mathbb{D} , so that $h^{\infty} = L^{\infty}(\partial \mathbb{D})$. Let $H^{\infty}(\partial \mathbb{D})$ be the space of boundary functions of bounded analytic functions on \mathbb{D} . The algebra QC of bounded quasicontinuous functions on $\partial \mathbb{D}$ is given by

$$QC = (H^{\infty}(\partial \mathbb{D}) + C(\partial \mathbb{D})) \cap (H^{\infty}(\partial \mathbb{D}) + C(\partial \mathbb{D})).$$

Refer to [7] and [14] for more information.

The equality $h_{cc}^{\infty} = \widehat{QC} + V$ was given as Corollary 3 in [10], where V is the same set as in Theorem 2.7. Then Izuchi and the author [9] show the following result.

Theorem 5.1. $h_c^{\infty} = h_{cc}^{\infty} = \widehat{QC} + V.$

6 Problems

Problem 6.1. Estimate the essential norms of Hankel-type operators in cases of Hardy and Bergman spaces.

Problem 6.2. How about the case p = 1? That is, what are H_c^1, H_{wc}^1 , H_{cc}^1 ?

Problem 6.3. Let h^{∞} be the space of bounded harmonic functions on \mathbb{D} . Then characterize h_{wc}^{∞} .

References

- J.A. Cima,S. Jansen and K. Yale, Completely continuous Hankel operators on H[∞] and Bourgain algebras, Proc. Amer. Math. Soc. 105 (1989), 121–125.
- [2] J.A. Cima,K. Stroethoff and K. Yale, Bourgain algebras on the unit disk, Pacific J. Math. 160 (1993), 27-41.
- [3] B.J. Cole and T.W. Gamelin, Tight uniform algebras and algebras of analytic functions, J. Functional Analysis 46 (1982), 158-220.
- [4] J.B. Conway, Functions of One Complex Variable II, Springer-Verlag, New York, 1995.

- [5] J. Dudziak, T. W. Gamelin and P. Gorkin, Hankel operators on bounded analytic functions, Trans. Amer. Math. Soc. 352 (2000), 363-377.
- [6] P. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- [7] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [8] P. Gorkin, Hankel-type operators, Bourgain algebras, and uniform algebras, Holomorphic Spaces (Berkeley, CA, 1995), 121–134, Math. Sci. Res. Inst. Publ. 33, Cambridge Univ. Press, Cambridge, 1998.
- [9] K. Izuchi and S. Ohno, Hankel-type operators on the space of bounded harmonic functions, Proc. Amer. Math. Soc. 34 (2006), 1359–1364.
- [10] K. Izuchi, K. Stroethoff and K. Yale, Bourgain algebras of space of harmonic functions, Michigan Math. J. 41 (1994), 309-321.
- [11] S. Janson, J. Peetre and S. Semmes, On the action of Hankel and Toepliz operators on some function spaces, Duke Math. J. 51 (1984), 937–958.
- [12] D. H. Luecking, Characterizations of certain classes of Hankel operators on the Bergman spaces, J. Functional Analysis 110 (1992), 247-271.
- S. Saccone, Tight uniform algebras, Holomorphic Spaces (Berkeley, CA, 1995), 135–154, Math. Sci. Res. Inst. Publ. 33, Cambridge Univ. Press, Cambridge, 1998.
- [14] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
- [15] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York. 1990.

Nippon Institute of Technology, Miyashiro, Minami-Saitama 345-8501, Japan

E-mail address: ohno@nit.ac.jp