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Abstract

We deal with infinite sequences of inner functions $\{q_{j}\}_{j\geq 0}$ with the
property that $q_{j}$ is divisible by $q_{j+1}$ . It is shown that these sequences
have close relations to the module structure of the Hardy space over
the bidisk. This article is a r\’esum\’e of recent papers. Some results of
this research were obtained in joint work with R. Yang (SUNY).

1 Preliminaries

Let $\mathrm{D}$ be the open unit disk in the complex plane $\mathbb{C}$ , and let $H^{2}(z)$ denote
the classical Hardy space over $\mathrm{D}$ with the variable $z$ . The Hardy space
over the bidisk $H^{2}$ is the tensor product Hilbert space $H^{2}(z)\otimes H^{2}(w)$ with
variables $z$ and $w$ . A closed subspace $\mathcal{M}$ of $H^{2}$ is called a submodule if $\mathcal{M}$ is
invariant under the action of multiplication operators of coordinate functions
$z$ and $w$ . Let $R_{z}$ (resp. $R_{w}$ ) denote the restriction of the Toeplitz operator
$T_{z}$ (resp. $T_{w}$ ) to a submodule M. The quotient module $N=H^{2}/\mathcal{M}$ is
the orthogonal complement of a submodule $\mathcal{M}$ in $H^{2}$ , and let $S_{z}$ (resp. $S_{w},$ )
denote the compression of $T_{z}$ (resp. $T_{w}$ ) to $N$, that is, we set $S_{z}=P_{N}T_{z}|N$

(resp. $S_{w}=P_{N}T_{w}|N$ ) where $P_{N}$ denotes the orthogonal projection from $H^{2}$

onto $N$.

2 Rudin’s submodule

Let $\mathcal{M}$ be the submodule consisting of all functions in $H^{2}$ which have a zero
of order greater than or equal to $n$ at $(\alpha_{n}, 0)=(1-n^{-3},0)$ for any positive
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integer $n$ . This module was given by Rudin in [1], and he proved that this
is not finitely generated. Rudin’s submodule can be decomposed as follows
(cf. [3]):

At $= \sum_{j=0}^{\infty}\oplus q_{j}(z)H^{2}(z)w^{j}$ ,

where we set $b_{n}(z)=(\alpha_{n}-z)/(1-\alpha_{n}z),$ $q_{0}(z)= \prod_{n=1}^{\infty}b_{n}^{n}(z)$ and $q_{j}(z)=$

$q_{j-1}(z)/ \prod_{n=j}^{\infty}b_{n}(z)$ for any positive integer $j$ .
Regarding this submodule, the following are known (cf. [4]):

$\sigma_{P}(S_{Z})=\{\alpha_{n} : n\geq 1\},$ $\sigma_{c}(S_{z})=\{1\},$ $\sigma_{r}(S_{z})=\emptyset$

and
$||[R_{z}^{*}, R_{w}]||_{2}^{2}= \sum_{j=1}^{\infty}(1-\prod_{n=j}^{\infty}(1-n^{-3})^{2})$

Moreover, we have obtained the following in [2]:

$\sigma_{p}(S_{w})=\{0\},$ $\sigma_{c}(S_{w})=\overline{\mathrm{D}}\backslash \{0\},$ $\sigma_{f}(S_{w})=\emptyset$

and

$||[S_{z}^{*}, S_{w}]||_{2}^{2}$ $= \sum_{j=1}^{\infty}(1-\prod_{n=j}^{\infty}(1-n^{-3})^{2(n-j))}(1-\prod_{n=j}^{\infty}(1-n^{-3})^{2})$

$-1+ \sum_{j=1}^{\infty}(1-\prod_{n=j}^{\infty}(1-n^{-3})^{2})$

3 Inner sequences

Definition 1 An infinite sequence of analytic functions $\{q_{j}(z)\}_{j\geq 0}$ is called
an inner sequence if $\{q_{j}(z)\}_{j\geq 0}$ consists of inner functions and $(q_{j}/q_{j+1})(z)$ is
inner for any $j$ .

We note that the above condition is equivalent to that $q_{j}(z)H^{2}(z)$ is
contained in $q_{j+1}(z)H^{2}(z)$ . Therefore every inner sequence $\{q_{j}(z)\}_{j\geq 0}$ corre-
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sponds to a submodule $\mathcal{M}$ in $H^{2}$ as follows:

$\mathcal{M}=\sum_{j=0}^{\infty}\oplus q_{j}(z)H^{2}(z)w^{j}$ .

In this submodule, we can calculate many subjects of operator theory, ex-
actly.

Theorem 1 ([2, 3]) Let $\mathcal{M}$ be the submodule arising from an inner se-
quence $\{q_{j}(z)\}_{j\geq 0}$ . Then the following hold:

(i) $||[R_{z}^{*}, R_{w}]||_{2}^{2}= \sum_{j=0}^{\infty}(1-|(q_{j}/q_{j+1})(0)|^{2})$,

(ii) 11 $[S_{z}^{*}, S_{w}]||_{2}^{2}= \sum_{j=0}^{\infty}(1-|q_{j+1}(0)|^{2})(1-|(q_{j}/q_{j+1})(0)|^{2})$ .

Let $q_{\infty}(z)$ be the inner function defined as follows:

$q_{\infty}(z)H^{2}(z)= \bigcup_{j=0}^{\infty}q_{j}(z)H^{2}(z)$ .

Without loss of generality, we may assume that the first non-zero Taylor
coefficient of $q_{\infty}(z)$ is positive.

Theorem 2 ([2]) Let $N$ be the quotient module arising from an inner se-
quence $\{q_{j}(z)\}_{j\geq 0}$ . Then $\sigma(S_{z})=\sigma(q_{0}(z))$ , where $\sigma(q_{0}(z))$ is the spectrum of
$q_{0}(z)$ , that is, $\sigma(q_{0}(z))$ consists of all zero points of $q_{0}(z)$ in $\mathrm{D}$ and all points
$\zeta$ on the unit circle $\partial \mathrm{D}$ such that $q_{0}(z)$ can not be continued analytically from
$\mathrm{D}$ to $\zeta$ .

Theorem 3 ([2]) Let $N$ be the quotient module arising from an inner se-
quence $\{q_{j}(z)\}_{j\geq 0}$ .

(i) if $q_{m}(z)=1$ for some finite $m$ , then

$\sigma_{P}(S_{w})=\{0\},$ $\sigma_{c}(S_{w})=\emptyset$ and $\sigma_{r}(S_{w})=\emptyset$ ,
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(ii) if $q_{\infty}(z)=1$ and $q_{j}(z)\neq 1$ for any $j$ , then

$\sigma_{p}(S_{w})=\{0\},$ $\sigma_{c}(S_{w})=\overline{\mathrm{D}}\backslash \{0\}$ and $\sigma_{r}(S_{w})=\emptyset$ ,

(iii) if $q_{\infty}(z)\neq 1$ and $q_{J}’(z)\neq q_{0}(z)$ for some $j_{f}$ then

$\sigma_{p}(S_{w})=\{0\},$ $\sigma_{c}(S_{w})=\partial \mathrm{D}$ and $\sigma_{r}(S_{w})=\mathrm{D}\backslash \{0\}$ ,

(iv) if $q_{j}(z)=q_{0}(z)$ for any $j$ , then

$\sigma_{p}(S_{w})=\emptyset,$ $\sigma_{c}(S_{w})=\partial \mathrm{D}$ and $\sigma_{r}(S_{w})=$ D.

Let $\mathfrak{U}$ denote the weak closed subalgebra generated by $S_{z},$ $S_{w}$ and the
identity operator on $N$, and let $\mathfrak{U}’$ denote the commutant of $\mathfrak{U}$ .

Theorem 4 ([2]) Let $N$ be the quotient module arising fiom an inner se-
quence $\{q_{j}(z)\}_{j\geq 0}$ . Then $\mathfrak{U}=\mathfrak{U}’$ . Moreover, for any element $A$ in $\mathfrak{U}’$ , there
exists a sequence of bounded analytic functions $\{\varphi_{j}(z)\}_{j\geq 0}$ in $H^{\infty}(z)$ such
that $A= \sum_{j\geq 0}S_{\varphi_{j}(z)}S_{w}^{j}$ in the weak operator topology.
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